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Abstract. Analysis of small datasets presents a number of essential challenges 

not in the least due to insufficient sampling of characteristic patterns in the data 

making confident conclusions about the unknown distribution elusive and result-

ing in lower statistical confidence and higher error. In this work, a novel approach 

to augmentation of small datasets is proposed based on an ensemble of neural 

network models of unsupervised generative self-learning. Applying generative 

learning with an ensemble of individual models allowed to identify stable clusters 

of data points in the latent representations of the observable data. Several tech-

niques of augmentation based on identified latent cluster structure were applied 

to produce new data points and enhance the dataset. The proposed method can be 

used with small and extremely small datasets to identify characteristics patterns, 

augment data and in some cases, improve accuracy of classification in the sce-

narios with strong deficit of labels. 

Keywords: Unsupervised Learning, Clustering, Ensemble learning, statistical 

analysis, small data. 

1 Introduction 

Analysis of small datasets presents a number of essential challenges not in the least due 

to insufficient sampling of characteristic patterns in the data making confident conclu-

sions about the unknown distribution elusive and resulting in lower statistical confi-

dence and higher error. On the other hand, it can be essential in the cases and scenarios 

of novel and / or rare conditions where large amounts of data do not exist, or have not 

been accumulated [1]. 

 One of the known challenges in application of machine learning methods, including 

artificial neural networks to small datasets is that of the stability of learning. It can 

manifest itself in strong dependency on the choice of parameters, selection and order 

of training batches and other factors [2,3], as well as overfitting and inability to gener-

alize. Due to this small data volatility results obtained with models of similar architec-

ture with the data can be inconsistent, and the performance in generalization and accu-

racy, limited. As well, reproducibility of the results can be problematic even with the 

same architecture and data, complicating comparison, improvements and optimization. 
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Earlier studies attempted to approach the problem of stability of machine learning 

with small data with a variety of methods such as k-fold cross-validation and ensemble 

methods [4]; Radial-Basis Function (RBF) neural networks [5,6] and a number of other 

methods [7,8]. However, while many of these methods were successful in specific ap-

plications, generality in application to different data and problems to the best of our 

knowledge could not be assured due, not in the least, specifics of the architecture and / 

or essential assumptions about distribution of the data. 

On the other hand, methods of unsupervised machine learning [9,10] have shown an 

effective ability to achieve significant reduction of dimensionality, or redundancy of 

the observable parameter space that in a number of cases were instrumental in the anal-

ysis and determination of characteristic patterns and trends in complex data [11-13] 

including constrained data [14]. Importantly, application of these methods does not re-

quire data labeled with confidently known outcome and generally can be performed 

with smaller samples of data. In our view, these characteristics make these methods 

good candidates for an analysis of early and rare conditions, scenarios and situations, 

where large amounts of confident data have not yet been accumulated, while still al-

lowing to aggregate data for application of conventional methods of statistical analysis 

at later stages.  

To address the outlined challenges in the analysis of small datasets, it was proposed 

to use an ensemble of unsupervised models to identify characteristic structure in the 

input data, addressing both problems of the label deficit and stability of training with 

minimal datasets. The structure in the latent representations of unsupervised generative 

models that can be identified with this approach can then be used to produce new data 

points, generated based on identified characteristics of distribution of data points in the 

latent representation. Unlike some of the discussed approaches, this method does not 

depend on specific assumptions about the distribution of the data and can be used with 

data of any origin. 

2 Methodology 

An ensemble of unsupervised artificial neural networks with the architecture of deep 

autoencoder with strong dimensionality reduction [10] was used to produce low-dimen-

sional (namely, two or three-dimensional) representations of a small dataset of real di-

agnostics data, as described further in this section. The data was obtained from openly 

available statistics of the early phase Covid-19 epidemics, by national and subnational 

jurisdiction. The advantages of the selected architecture are: demonstrated efficiency in 

producing informative low-dimensional representations of diverse real-world data as 

well as universal approximation capacity of neural networks [15] making them suitable 

for virtually any type of data. 

2.1 Unsupervised Autoencoder Neural Network 

A deep autoencoder neural network model had several deep layers and a central encod-

ing layer of size two, producing a two-dimensional latent representation defined by axes 

representing activations of neurons in the encoding layer. The decoding / generating 
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stage was fully symmetrical to the encoder. An architecture diagram of the model is 

shown in Figure 1. 

 

Fig. 1. Deep autoencoder with dimensionality reduction (p = 9, d = 2). 

 Overall, the model had five fully-connected deep layers and approximately 8,000 

trainable parameters. For detailed description of the model architecture refer to [14]. 

 Unsupervised training was performed in an unsupervised process with minimization 

of deviation of the output of the model from the input with binary cross-entropy cost 

function. Training over 30 – 50 epochs produced noticeable reduction in the value of 

the cost function for majority of the training models, indicating the success of unsuper-

vised training. 

2.2 Data 

A small dataset of approximately 40 cases of early Covid-19 national epidemiological 

statistics (Early Covid-19 Epidemiology, ECE) was used, compiled from sociological 

and epidemiological statistic obtained from open sources [14]. The data described ob-

servable factors characterizing the state of selected national and subnational jurisdic-

tions at the time of early exposure to Covid-19 pandemics with nine observable param-

eters, including: population and demographics factors, epidemiological practice, public 

health policy and others, as described in detail in [14], Table 1. 

Table 1. Description, ECE dataset 

Parameter Size Dimension-

ality 

Range Mean,  

EI1 

Time scale 

Value 41 8 0.0 – 1.0 0.36 3 months 

1 Epidemiological impact. 

2.3 Ensemble of Unsupervised Models 

An ensemble approach with a set of pre-trained models of the architecture described in 

the previous sections was used to improve the confidence of the analysis, given the 

small size of data and the outlined challenges. A group of thirty models of the architec-

ture described in Section 2.1. was pre-trained with the dataset in an unsupervised pro-

cess based on minimization of generative error. Trained models produced two-dimen-

sional representations of the dataset illustrated in Figure 2. 
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Fig. 2. Latent distributions of ECE data with deep autoencoder models. 

From the resulting ensemble of pairs (trained model, latent distribution) a subset 

with higher effectiveness of generative learning was selected by the following criteria:  

• Training accuracy, measured by the change and final value of the cost function;  

• Clusterization performance, evaluated visually from distribution of data in the latent 

axes (example in Fig.2). 

By the first criterium, only the models with final cost below certain threshold were 

retained. The latter was identified visually in a blind process, that is, the contents of 

clusters in the latent distribution were not examined, only the capacity of the model to 

produce clearly identifiable regions with higher concentration of data points (Fig.2). In 

the future research, this phase of the selection process can be automated via application 

of methods of unsupervised clustering such as DbScan [16] and similar. 

The resulting subset of five models was used to analyze the distributions of data in 

the latent representations and evaluation of the method of unsupervised augmentation 

of small datasets with generation of new data points based on identified latent cluster 

structure. 

3 Results 

3.1 Consistency of Cluster Content 

An analysis of distributions in the selected ensemble of effective generative learning as 

described in the previous section produced an essential finding: though latent distribu-

tions showed significant variance between individual models, the contents of the clus-

ters identified in the latent representations were mostly stable between models in the 

ensemble.  

 As individual models were selected blindly, based on clusterization quality but not 

the content of specific clusters, a priori there could be no expectation that clusters pro-

duced by different models should have the same or similar composition. It is more likely 

though in the case where identified clusters represent stable patterns in the observable 

data and the models were successful in learning them under the incentive to produce 
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good quality generation of the original data. Table 2 shows characteristics of latent 

clusters identified with the unsupervised ensemble method. 

Table 2. Latent clusters, ECE dataset 

Cluster Population Variation, 

population 

Latent area * Variance,  

latent area 

Cluster 1 9 ~ 22 % 0.16 0.04 

Cluster 2 21 ~ 15% 0.21 0.05 

* Relative to the total latent area of the dataset 

Stability of latent clusters is a key foundation of the method of unsupervised augmen-

tation of small data, indicating that clusters described significant patterns in the dataset. 

3.2 Cluster-based Data Generation 

The architecture autoencoder allows a direct method of propagating a position in the 

latent representation to the observable (i.e. input) parameters. It can be achieved by 

using a latent position with coordinates L = (l1, l2) as an input to the generating part of 

the neural network model (Fig.1) to obtain the output Xobs in the observable parameters: 

 𝑋𝑜𝑏𝑠 =  𝐺(𝐿)  (1) 

where G: R → O, is generating submodel of the autoencoder operating from the latent 

representation R to the observable space O. 

 Generative capacity of unsupervised models thus allows to generate new data points 

by selecting specific latent positions in the representation space and obtaining their ob-

servable images in the coordinates of the input parameters with (1). 

 Based on the observation in Section 3.1 on the stable content of the identified clus-

ters, the described process can be applied to obtain new data points with observable 

characteristics similar to those in the identified clusters as follows: 

• In the first step, generating model(s), one or several, are selected based on the criteria 

of learning quality as described previously; 

• In the latent representations of selected models, areas corresponding to identified 

latent clusters are defined, based on stability of cluster content as discussed in Sec-

tion 3.1. 

• In the latent regions associated with identified clusters, new latent positions are se-

lected, by a number of methods. 

• The selected positions are propagated to the observable space with (1), producing a 

new set of data points with the coordinates corresponding to observable parameters. 

• In the final step, the generated data points can be added to the original dataset, re-

sulting in non-trivial augmentation. 

The effectiveness of the method of unsupervised clustering augmentation can be sup-

ported by the following considerations:  

 Suppose there is a small dataset S of size N with P observable parameters. If a con-

ventional approximation method was used, such as Gaussian, the error of the mean in 

each of the parameters could be estimated as mean p / √N. With a low-dimensional 

latent representation, in the case of good clusterization, the original distribution can be  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 25, 2021. ; https://doi.org/10.1101/2021.04.21.21254796doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.21.21254796
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

approximated by a quasi-multi-modal distribution with the number of modes d × Nc , 

d being the latent dimensionality, where Nc the number of clusters, with considerably 

smaller error of mean and standard deviation, as long as d remains sufficiently small 

and the number of samples in the principal clusters, sufficiently large. 

Figure 3 demonstrates application of the augmentation method with ECE dataset. 

 

Fig. 3. Cluster-based data augmentation. Green, red: identified latent clusters, cross: new latent 

data points. 

3.3 Model Invariance of Generated Data 

An important question in application of the proposed small data augmentation method 

is how stable the generated data is with respect to the latent position of origin, given 

that latent representations are specific to individual models? 

Usability of the method thus depends on the assumption that generated observable 

data would be mostly consistent between individual generating models, that is, in some 

way, model-invariant. Given the essential nature of this assumption, it was verified by 

using the augmentation method with two different model instances.  

It was observed that while latent representations produced by models were essen-

tially different by positioning of data points in the latent area, generation of new data 

points from positions in the neighborhood of real data points, that can be considered as 

“anchor points” of the latent – observable transformation resulted in similar observable 

output. In Table 2, the Euclidean distance measured in the observable coordinates be-

tween data points generated from the latent neighborhood of a real data point in the 

identified clusters (anchor point) with two different generating models is compared 

with characteristic distances of data distributions in the clusters and the entire dataset. 

Table 2. Generated data – model invariance 

 Max distance, 

generated  

Max distance, cluster Max distance, dataset 

Cluster 1 0.05 0.825 1.0 

Cluster 2 0.02 0.914 - 
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These results demonstrate that the method is to a large extent invariant with respect to 

selection of the generating model from the ensemble and can be used reliably to gener-

ate new data with characteristics determined by and similar to significant patterns in 

the original dataset. Note that the results above were produced with multivariate cubic 

interpolation [17] from identified stable data points in the clusters and their latent posi-

tions rather than generative model (1) due to relative simplicity of interpolation with a 

small number of observable parameters providing similar or better accuracy whereas 

optimization of the neural network architecture for generative accuracy was not the 

main focus of the study. 

4 Applications 

4.1 Augmentation of Small Data 

To summarize the results of the previous sections, the method of augmentation of small 

dataset with an ensemble of generative models can be applied under the following con-

ditions: 

• The latent dimensionality is sufficiently small. 

• The models show good learning accuracy and clear and consistent latent clusteriza-

tion. 

• The number of identified latent clusters is small compared to the number of samples 

in the dataset, and the population of main clusters is sufficiently large. 

Under these conditions, the original data can be reliably described and augmented with 

a multi-modal distribution in the latent regions of identified clusters as exemplified in 

the results of the study. 

4.2 Classification 

The method of augmentation of small datasets can be used to improve results of classi-

fication of supervised learning models trained with small dataset. In regular practice, 

the size and representativity of the training data can have strong influence on the result-

ing efficacy of classification. 

The application is not unconditional though and essentially depends on existence of 

a correlation of principal clusters and the effect of interest, that can be used as a label 

in supervised learning and classification. If such a correlation can be observed in the 

original data, augmentation of the dataset with new data points with labels assigned 

based on cluster relation can produce significant improvement in classification accu-

racy. In the dataset used in the study, clusters appeared to have a correlation with the 

factor of interest (i.e., epidemiological impact per jurisdiction), with identified clusters 

1 and 2 associated, by preliminary results, with higher-impact and average scenarios 

respectively, though detailed investigation of correlation was not the primary objective 

of this study and will be examined in more detail elsewhere. 

However, if correlation of cluster to factor of interest cannot be established reliably, 

it is possible that the latent coordinates in which clusterization was observed may not 

have direct correlation to the effect of interest, and a different method of labeling should 
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be used, though increasing the size of the dataset may still produce improvements in 

classification accuracy. 

5 Discussion 

The approach based on an ensemble of unsupervised generative models to determine 

characteristic clusters with a small dataset of real diagnostics data demonstrated in this 

work has proven its effectiveness in the in the considered case. The clusters identified 

with unsupervised methods allowed to generate new data points with high level of con-

fidence, with a number of possible applications, including augmentation of general da-

tasets and in some cases, as discussed in Section 4.2, to improve classification perfor-

mance. 

In novel and / or rare cases accumulation of volumes of data needed for confident 

analysis with conventional methods of machine learning could present a serious chal-

lenge. Application of methods of unsupervised machine learning, with identification of 

characteristic patterns even with smaller datasets can offer a direction toward improv-

ing the confidence and accuracy in the analysis of small data. 
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