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Abstract 

The new paradigm of multidimensional sleep health (‘sleep health’) offers both challenges and 

opportunities for sleep science. Buysse (2014) has described sleep health to be multidimensional, 

framed as positive attributes, operationalizable into composite measures of global sleep health, 

sensitive to upstream exposures, and consequential for downstream health. We highlight two 

paradigm-shifting effects of a multidimensional sleep health perspective. The first is the use of 

composite sleep metrics which i) enable quantification of population shifts in sleep health, ii) 

with possibly reduced measurement error, iii) greater statistical stability, and iv) reduced 

multiple-testing burdens. The second is that sleep dimensions do not occur in isolation, that is, 

they are commonly biologically or statistically dependent. These dependencies complicate 

hypothesis tests yet can be leveraged to inform scale construction, model interpretation, and 

inform targeted interventions. To illustrate these points, we i) extended Buysse’s Ru SATED 

model; ii) constructed a conceptual model of sleep health; and iii) showed exemplar analyses 

from the Multi-Ethnic Study of Atherosclerosis (n=735). Our findings support that sleep health is 

a distinctively useful paradigm to facilitate interpretation of a multitude of sleep dimensions. 

Nonetheless, the field of sleep health is still undergoing rapid development and is currently 

limited by: i) a lack of evidence-based cut-offs for defining optimal sleep health; ii) longitudinal 

data to define utility for predicting health outcomes; and iii) methodological research to inform 

how to best combine multiple dimensions for robust and reproducible composites.  
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Multidimensional Sleep Health: Concepts, Advances, and Implications for Research and 1 

Intervention. 2 

Introduction 3 

 Although it would be convenient if we had a single variable in our data sets called ‘sleep’ 4 

that encompasses the complex neurophysiologic process of sleep, what data sets typically 5 

include is a wide range of metrics about sleep: estimates of specific features of sleep as well as 6 

the impact of sleep on daytime symptoms and function. Each feature or dimension of sleep is 7 

often modeled separately and interpreted independently – as exposure or outcome – in distinct 8 

models: an effect size for total sleep time, one for sleepiness, and yet another for sleep 9 

efficiency. 10 

However, sleep dimensions do not exist in isolation, and sleep health is multidimensional 11 

(1). Just as food is not consumed as singular nutrients (2), sleep is not experienced as singular 12 

dimensions. Adults who meet national recommendations of 7-9 hours of duration may evince 13 

vast heterogeneity in sleep latency, continuity, macro- and micro-architecture, and satisfaction. 14 

Moreover, a substantial body of evidence suggests that a variety of sleep dimensions influence 15 

academic outcomes, mental and physical health, illness, and mortality; and that these dimensions 16 

are sensitive to exposures at the individual level (e.g. age; physiological shifts over the life-17 

course, such as menopause; financial strain; caffeine, tobacco, and other substance use; 18 

physical activity, genetic risk loci, etc.) and social and environmental levels (e.g. neighborhoods 19 

and the built environment; social cohesion; social relationships; socioeconomic status in 20 

childhood; marital status; loneliness; discrimination; and work schedules, etc.). Accordingly, 21 

Buysse (2014) has defined sleep health as: “a multidimensional pattern of sleep-wakefulness, 22 
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adapted to individual, social, and environmental demands, that promotes physical and mental 1 

well-being” (1). 2 

A multidimensional paradigm is, however, already intrinsic to our understanding of sleep.  3 

Clinicians, for instance, routinely consider multiple aspects of sleep in diagnosis and 4 

management of sleep disorders. Moreover, the literature has long reflected interest in the 5 

combined, including interactive, aspects of sleep, although has focused more on sleep 6 

disturbances rather than sleep health, and focused on clinical disorders rather than population 7 

health. Thus: What is distinctive and useful about the paradigm of ‘multidimensional sleep 8 

health’? How does it differ from prior and current work? Does ‘multidimensional sleep health’ 9 

constitute a paradigm shift, that is, a new way of thinking about sleep? 10 

We provide empirical data to support multidimensional sleep health as a distinctively 11 

useful approach for characterizing ‘sleep health’ across the population. One innovation is the 12 

quantification of sleep health, which ranges beyond disorder or insufficiency – acknowledging 13 

the existence of gradients of “healthy sleep” beyond meeting a minimum duration of sleep or an 14 

absence of disorders such as insomnia or obstructive sleep apnea (OSA) (1). Sleep health also 15 

parallels broader paradigm shifts which acknowledge the World Health Organization’s definition 16 

of health as more than the absence of illness (3). 17 

While these are important frameshifts, sleep health has other distinctive but less 18 

emphasized features, which render it a more radical and useful paradigm shift than would seem 19 

at first glance. First, sleep health approaches multiple sleep dimensions (conceptually, 20 

operationally, analytically) as contributors to a unitary or a composite concept – a metric of 21 

global sleep health (1, 4). Extant scales include Buysse’s Ru SATED scale and the National 22 

Sleep Foundation’s Sleep Health Index (5, 6). Consistent and valid scales are necessary for 23 
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scalable, longitudinal data collection that enables quantification of population shifts in global 1 

sleep health. Such work does not preclude analyzing each dimension in its own right, although 2 

statistical dependence among dimensions complicates model interpretation because sleep 3 

dimensions do not exist in isolation.  4 

Second, sleep health emphasizes that sleep dimensions do not exist in isolation (4, 7). 5 

There are physiological reasons why certain dimensions are correlated, perhaps causally, with 6 

others, for instance, duration and sleepiness, OSA and continuity, timing irregularity and 7 

duration, circadian body-temperature nadir and sleep onset latency, et al. (8-11). Sleep 8 

dimensions also may show statistical correlation when derived from common measurement tools. 9 

Thus, interpretation of individual dimensions as if they were independent may lead to erroneous, 10 

or partial conclusions about ‘sleep’: what kind of continuity, quality, alertness, and regularity is 11 

likely to be seen among ‘sufficient’ sleepers (however defined) as opposed to ‘insufficient’ 12 

sleepers?  13 

The purpose of this study was to illustrate these two frameshifts: i) unidimensional 14 

composites; and ii) consideration of correlations. We explored the utility of expanding Buysse’s 15 

model by incorporating sleep stage information (% N3, % Rapid Eye Movement [NR]), the 16 

Apnea-Hypopnea Index[AHI], self-reported frequency of long sleep onset latency (an insomnia 17 

complaint), and regularity in duration (12, 13) by mapping these dimensions to a conceptual 18 

sleep health model. We considered how to model multiple dimensions and found merit in both 19 

analyzing individual dimensions as well as a global sleep health metric: from a public health 20 

perspective, it was important to know which sleep dimensions are the drivers of a global sleep 21 

effect. Finally, we showed how these composite and individual dimensions map across 22 

race/ethnic groups, an extension of prior work (14). 23 
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Methods 1 

Sample: The sample was from the Multi-Ethnic Study of Atherosclerosis (MESA), a 6-2 

community cohort of aging adults, diverse in race/ethnicity (White, Black, Hispanic, Chinese). 3 

Details on this cohort are published (15). In brief, at Exam 5 (2010-2013), participants were 4 

invited to the MESA-Sleep ancillary study and underwent single-night at-home 5 

polysomnography (PSG), 7-day wrist actigraphy (Actiwatch Spectrum; Philips Respironics, PA; 6 

Actiware-Sleep v 5.59), and validated sleep questionnaires (Epworth Sleepiness Scale, Women’s 7 

Health Initiative Insomnia Rating Scale) (16, 17). A previous racial-ethnic sleep disparities 8 

project included adults 54-93 years old (14); in following analyses, only adults 54-64 years were 9 

included, because there are more normative data available for this age range (18). 10 

Sleep health conceptual model: As described previously (14), sleep health domains were 11 

drawn primarily from Ru SATED but also the National Sleep Foundation’s Sleep Health Index 12 

(6). Selection of additional variables was informed by prior knowledge of a high prevalence of 13 

OSA and sleep fragmentation in middle-age and older adults (19). Thus, several continuity 14 

metrics were chosen a priori: sleep maintenance efficiency (SME), the Fragmentation Index (FI), 15 

and Wake after Sleep Onset (WASO). Other additions to Ru SATED such as % NR, % N3, AHI 16 

(3% desaturation to define hypopneas), duration regularity, and self-reported frequency of 17 

un/desirable onset latency (freq. of difficulties initiating sleep) were also selected a priori, using 18 

expert knowledge or evidence from the literature indicating their relevance for health outcomes 19 

(20). Specifically, the mapping of each sleep variable to our conceptual model of sleep focused 20 

on these four periods (Figure 1): 1) the transition from wake to sleep (onset latency, self-report) 21 

and daytime sequalae (quality, alertness) from the participants’ perspective; 2) the period 22 

between sleep onset and offset evaluated objectively by PSG (eg, sleep architecture and/or 23 
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actigraphy (eg, fragmentation); 3) inter-daily variability in timing and duration; and 4) the entire 1 

sleep experience both during and across nights (14).  2 

Two strategies were used to construct sleep health composites: i) Principal Components 3 

Analysis (PCA); and ii) a summary score of dichotomized sleep variables. PCA was conducted 4 

on a) Ru SATED variables (midpoint regularity [MPsd], quality, timing (log-transformed), 5 

maintenance efficiency, and duration); b) Ru SATED, expanded with selected variables from 6 

PSG, adding AHI, % N3, %NR; c) all variables chosen a priori for the Sleep Health Score 7 

(adding several variables measuring similar dimensions: duration regularity, sleep onset latency 8 

(frequency of trouble sleeping), WASO, fragmentation) (14). The resulting PC scores were 9 

standardized and coded so that higher values represent better health, and a 1-unit increase 10 

corresponds to a 1-sd increase in sleep health. For PCA, actigraphy-assessed onset latency was 11 

used rather than self-report due to the high skewness of the latter ordinal variable. 12 

As described in (14), for the summary score (21-23), cut-points defined optimal ranges, 13 

with coding of ‘favorable’ or ‘healthier’ sleep as ‘1’ and non-optimal ranges as ‘0’. Optimal 14 

ranges were drawn from the literature, the NSF’s objective sleep quality report (eg, for WASO), 15 

expert consensus, or sample characteristics (12, 13, 18, 19, 21). These dichotomous indicators of 16 

favorable sleep were summed into a global metric, a Sleep Health Score (SHS), additionally 17 

categorized as: least favorable (SHS 0-3), less (4-6), more (7-9), and most favorable (9-12) sleep 18 

health.  19 

 20 

Statistical Methods: Pearson correlations were computed for continuous sleep metrics 21 

(log-transformed where necessary). Correlations were further investigated by inspecting 22 

Principal Components for three composites: (1) Ru SATED; Ru SATED + OSA/Sleep 23 
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Architecture; and the Sleep Health Score (comprehensive indices across domains). Sensitivity 1 

analyses assessed a parsimonious version of the Sleep Health Score (PC1) that eliminated 2 

potentially redundant measures. Composite score internal reliability was assessed by alpha 3 

Cronbach. Consistency in PC weights - both direction and magnitude - was evaluated across 4 

each component. Trends among individual sleep health variables (e.g., duration, sleepiness) in 5 

relation to SHS categories were reported. Global sleep health variations by racial/ethnic group 6 

were assessed for potential utility for sleep health disparities research in the non-elderly. 7 

Outcomes of composite sleep health scores (linear regression), and their dichotomized 8 

components (modified Poisson regression (24)), were regressed on the exposure of race-ethnicity 9 

(White=ref), with adjustment for age and sex. Analyses were conducted in R 3.6.3. 10 

 11 

Results 12 

The sample of 735 ethnically/racially diverse participants had an average age of 59.4 ± 13 

3.0 years, 55.6% were female, 31.8% were currently employed, and most obtained at least a high 14 

school degree (n=664, 90.3%) (Table 2).  The majority met criteria for actigraphy-assessed 15 

sufficient sleep (6-8 hrs; n=461, 62.7%; Table 1) but did not meet favorability thresholds for: 16 

continuity (WASO (6.8% favorable), fragmentation (27.1%)), sleep architecture (% N3 [11.4%], 17 

% NR [34.1%]), regularity (midpoint (21.4%) and duration (36.9%)), AHI (48.2%), and quality 18 

(21.4%).  19 

Figure 2a shows the Sleep Health Score, Sleep Health Score (PC1), Ru SATED + 20 

OSA/Sleep Architecture (PC1), Ru SATED (PC1), and their components by race-ethnicity, 21 

adjusting for age and sex. Consistent with a prior report (14), the sample averaged 5.7 ± 2.1 of 13 22 

possible favorable dimensions on the SHS. Blacks averaged 1.34 fewer favorable domains than 23 
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Whites in global sleep health (p<0.001). Hispanics averaged 0.74 fewer favorable domains 1 

(p<0.001); however, most of the dimension-level disparities in Hispanics overlap with the 2 

reference. Ru SATED (PC1), Ru SATED + OSA/Sleep Architecture (PC1) showed similar 3 

variation by race/ethnicity as the Sleep Health Score, and Sleep Health Score (PC1). Figure 2b 4 

suggests that the largest drivers of global racial-ethnic disparities were sleep regularity (timing 5 

and duration), continuity (fragmentation, maintenance efficiency), and total sleep time. 6 

Figure 3 shows correlations among sleep variables within and across domains. Within the 7 

continuity domain, fragmentation and sleep maintenance efficiency are highly correlated 8 

(ρ=0.72). Across domains, there are non-trivial statistical dependencies: timing regularity 9 

(MPsd(log)) and sleep duration (TST) are moderately correlated (ρ=0.40), as are timing 10 

regularity with sleep timing (Timing(log)) (ρ=0.32). AHI correlates with continuity metrics (FI, 11 

SME, WASO) and % NR (ρ’s range: -0.34 to 0.32).  12 

Table 2 suggests that when the components in Table 1 are summed into the SHS, 13 

increasing Sleep Health Scores capture variable yet systematic positive shifts across all sleep 14 

dimensions. Mean (median) differences in most-least favorable sleep health were notable in 15 

duration (+1.6 hours), midpoint regularity (-43.8 minutes), duration regularity (-48.7 minutes), 16 

AHI (-23.1 events/hr), % NR (+8.4%), % N3 (+9.9%), and WASO (-58.5 minutes).  17 

Table 3 shows PC weights for the first three PCs for each composite score (variance 18 

explained ranged from 43.0% for the SHS (PC1) to 66.3% for Ru SATED). The first PC for each 19 

score is consistently interpretable in all models as a “sleep health score”: the directionality of 20 

PC1 weights for individual variables concur with a priori knowledge of “better” sleep (e.g., 21 

higher AHI contributes negatively, higher TST contributes positively). As expected, the PC1 22 

weights varied depending on variables included but did not substantively change the 23 
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interpretation of the PC1 composites. The simplest Ru SATED score shows that the measures of 1 

irregular timing, absolute timing, and duration loaded on PC1 while satisfaction/alertness and 2 

efficiency loaded on PC2. When measures from PSG and actigraphy were added to the Ru 3 

SATED score, AHI tended to load with efficiency and irregularity, %NR loaded with 4 

satisfaction/alertness, irregular duration loaded with irregular timing, and fragmentation loaded 5 

with efficiency. Across the extended (SHS) scores, timing and regularity tended to load on PC2 6 

while self-reported sleep indices loaded on PC3. Moderate internal consistency was observed for 7 

different sleep health composites, with alpha Cronbach varying from 0.42 for Ru SATED to 0.61 8 

for the full SHS. 9 

Discussion 10 

There is growing interest in considering sleep health as not merely the absence of a 11 

disorder but as a summary of the positive attributes of healthy sleep. Similarly, there is 12 

movement towards using a conceptual framework that articulates sleep as multidimensional, 13 

potentially summarized as a composite measure (1). We further suggest the value in considering 14 

the intrinsic correlations and interactions among sleep measurements that comprise global sleep 15 

scores; the challenges in developing optimal composite indices; and the potential value in 16 

extending sleep health scores to include additional dimensions that describe common sleep 17 

disorders (especially in middle-aged and older populations), quantify sleep architecture, and 18 

consider regularity in not only sleep timing but sleep duration.  19 

In evaluating alternative ways to summarize sleep health in an aging multi-ethnic 20 

community sample, we found evidence to support the utility of composite sleep health scores 21 

based on the Ru SATED framework as well as scores extended to include measures from PSG 22 

and actigraphy.  In extending the Ru SATED framework with the additional consideration of 23 
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sleep architecture (particularly % NR), OSA (AHI), and duration regularity, as well as several 1 

measures of sleep efficiency/continuity, we observed that the new composite yielded 2 

interpretable principal components with more comprehensive scores evincing higher internal 3 

reliability than simpler scores.  PCA on original and extended Ru SATED frameworks showed 4 

that the individual indices of sleep health for each score aggregated in consistent dimensional 5 

patterns.  The face validity of the extended SHS as a composite was supported by the empirical 6 

finding that it summarized broad systematic shifts (most-least favorable categories; 0-3 vs 9-12) 7 

across multiple sleep health metrics, including shifts in the initial components of Ru SATED as 8 

well as in duration regularity, AHI, and sleep architecture. Moreover, each composite score 9 

varied with race/ethnicity, supporting its utility for describing and monitoring sleep health 10 

disparities.  Adding additional sleep information also suggested important patterns of 11 

association.  For instance, timing and duration irregularity showed sleep disparities, which might 12 

suggest that assessing determinants or barriers to (ir)regular bed and wake times may be 13 

beneficial in reducing racial-ethnic sleep disparities rather than a focus on regular bed or wake 14 

times alone (25). Although timing and duration regularity are moderately correlated, only about 15 

31% of the variance of one accounts for the other, suggesting these regularity metrics to be 16 

patterned yet distinct phenomena. For example, rotating shift-workers may have consistent 17 

duration, yet inconsistent timing. Therefore, in middle-age or older cohorts where sleep disorders 18 

and circadian disruption are prevalent, there is value in extending global sleep health assessments 19 

with data from PSG and actigraphy. Moreover, metrics of OSA, altered sleep architecture, and 20 

sleep duration variability predict adverse health outcomes, cognitive decline and mortality, 21 

underscoring the potential utility of these data for informing sleep health assessments (26-28). 22 

  23 
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Our analyses not only supported use of composite indices, but also concurrent 1 

consideration of multiple individual dimensions. For example, we found that the individual 2 

“drivers” of differences in sleep health composites differed across race/ethnic groups, consistent 3 

with prior work in both adults and the elderly (14). For example, compared to Whites, scores in 4 

Blacks were influenced by sleepiness and %NR, while scores in Chinese were influenced by 5 

AHI. Identifying individual drivers of sleep health may be particularly important for designing 6 

targeted interventions. However, post-hoc analysis of the individual components of a summary 7 

score requires cautious interpretation, and confidence intervals and p-values for individual 8 

dimensions may be less informative than the pattern and trend among point estimates (2). Below 9 

we further discuss some of the challenges and opportunities presented by multidimensional sleep 10 

health, and analysis of both composite and individual dimensions. 11 

Statistical correlation among sleep variables and implications for a composite sleep 12 

health approach 13 

We demonstrated that many sleep dimensions (both within and across domains) are inter-14 

correlated, reflecting their intrinsic physiological inter-relationships and potential responsiveness 15 

to common stressors. Imagine, for instance, that each dichotomized SHS dimension in Table 1 is 16 

represented by a light in a circuit. In the absence of dependence patterns, sleep health dimensions 17 

would function like lights that burn out in parallel circuits, where health in one dimension does 18 

not inform the others. However, if there are dependencies, much like a complex circuit with both 19 

serial and parallel components, there is increased likelihood of some lights burning out (% NR, 20 

sleepiness, sleep fragmentation) if certain other lights burn out (AHI). For instance, in our data, 21 

higher sleep irregularity (timing and duration) and less sleep duration tended to co-occur. If this 22 

pattern indicates the effects of an underlying common cause or latent factor, including measures 23 
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of both irregularity and duration should better characterize this driver within the distribution of a 1 

composite.  2 

In scales such as the SHS, therefore, the distribution of the composite score may reflect 3 

relationships among the individual items that are informative. However, it is challenging to not 4 

only select which measures to include in composites, but to determine the optimal way to 5 

aggregate and weight each item, and whether to use continuous metrics or cutoff values 6 

(discussed later). In choosing sleep variables for a composite, interpretability and ease of data 7 

collection argue for a more parsimonious approach; on the other hand, there are potential 8 

benefits of more comprehensive inclusion. First suppose that sleep health dimensions have 9 

independent errors (e.g. from different measurement modalities, or measurements on 10 

independent nights). Analogous to the case that adding test items improves measurement in 11 

classical test theory, including additional dimensions within the same domain would reduce 12 

measurement error, increasing signal and stability for an underlying latent target. On the other 13 

hand, if multiple variables representing the same domain are calculated from the same 14 

underlying data, the errors will not be independent; but if it is not known in advance which 15 

function/non-linear transformation results in a measure more correlated with other variables in 16 

the composite, including both forms may improve the chance of discovering these 17 

relationships. Data-driven techniques may allow room for new dimensions/patterns to 18 

emerge (29), perhaps better representing underlying drivers, etiological factors, or groups for 19 

stratified interventions. 20 

 Public health: Population sleep health assessment by defining optimal ranges and 21 

characterizing individual dimensions and patterns across dimensions 22 
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For public health utility, however, a categorical basis using prior knowledge to define 1 

optimal ranges for each sleep dimension may also be appropriate. Early work operationalized Ru 2 

SATED domains by dichotomizing daily diary, questionnaire, or actigraphy measures and 3 

summing them into an overall sleep score (21-23). While continuous sleep exposures or 4 

outcomes offer greater statistical power, categorical assessments – those involving a cut-point – 5 

provide three practical benefits (30). First, cut-points aid clinicians in making decisions. Second, 6 

prevalence can be defined and then used for needs assessment: e.g., approximately one third of 7 

Americans do not meet sleep quantity recommendations (31). Third, cut-points enable 8 

quantification of prevalence trends over time and across groups. Additionally, cut-points may 9 

help avoid issues of non-linearities in exposure-response relationships, and cut-points are useful 10 

for setting goals for public health initiatives. Categorical assessments may be appropriate even if 11 

there is no evidence of a latent, internal discrete structure (taxon) for that dimension. As Kessler 12 

(2002) notes, “there appears to be no taxon for high blood pressure,” and yet cut-points for blood 13 

pressure based on external criteria such as risk of stroke guide clinical and public health 14 

decisions (30).  15 

Implications of the categorical approach for population sleep health are illustrated in 16 

Table 1. At the dimension level, needs assessment becomes clearer. That WASO ≤20 minutes, 17 

for instance, only has 6.8% favorability in MESA may suggest a calibration of the NSF’s optimal 18 

ranges through extra data collection or may indicate an unmet need in middle-aged and older 19 

adults (or both). Both cases are of public health import because age-appropriate optimal sleep 20 

ranges can provide a set of public health targets to be validated against external criteria, whereas 21 

unmet needs in a community suggest a need for investigation and intervention.  22 

 23 
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Leveraging information from both composite scores and individual dimensions: patterns 1 

of association illuminating potential sources of sleep health disparities 2 

Our results indicate how composites and individual dimensions can be mutually 3 

informative. Compared to Whites, and consistent with prior evidence in MESA which included 4 

both adults (aged 54-64 years) and the elderly (65-93 years) (14), adult Blacks in MESA show i) 5 

lower sleep health composite scores, on average by more than a full component’s difference for 6 

the SHS; and ii) the largest dimension-level disparities for Blacks are in regularity (timing and 7 

duration), duration, % N3, and continuity (Figure 2). Viewed from the sleep health paradigm, 8 

Figure 3 suggests the likelihood of observing multiple disparities given a large disparity in, and 9 

high correlation with, a single sleep dimension. We know why maintenance efficiency (SME) 10 

and fragmentation (FI) show a similar pattern of disparity: each measures different facets of 11 

sleep continuity. The bases for inter-relationships among sleep irregularity, duration, and 12 

continuity and their racial-ethnic patterning are less clear. If timing irregularity is accompanied 13 

by circadian misalignment (32), the two-process model of sleep suggests that circadian 14 

misalignment and duration variability may interact, suggesting internal (to sleep health) causal 15 

relationships. On the other hand, the observed disparities may reflect external, socioecological 16 

causal factors such as light, shiftwork, etc. that influence sleep regularity, duration, and 17 

continuity. Here, inter-correlation is cast as a source of research hypotheses about patterns of 18 

multiple dimensions of sleep (2).  19 

Consequently, we offer an interpretation of Buysse’s definition that sleep health is a 20 

pattern of sleep-wakefulness, illustrated by the dimensions of the SHS. Sleep health researchers 21 

could estimate independent models for each dimension and assemble the interpretation of these 22 

models in light of i) a global sleep health effect; and ii) correlated sleep dimensions. For 23 
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instance, individuals of Hispanic ethnicity showed average global sleep health (as indexed by the 1 

SHS) that was significantly lower than that of Whites (Figure 2a). However, few of the 2 

dimension-level disparities for Hispanics are distinct from the reference. The old paradigm that 3 

focused on single dimensions may have under-estimated Hispanic sleep disparities. Rather, 4 

under the sleep health paradigm, it is notable that the Hispanic sleep health disparity pattern 5 

mostly resembles that of Blacks. 6 

Statistical correlation among sleep variables: patterns of association and implications 7 

for intervention targeting and evaluation 8 

Changing a single sleep dimension may have “carry over” effects on other sleep 9 

attributes. For example, an intervention which improves sleep regularity may improve sleep 10 

continuity. Conversely, if sleep deteriorates in one dimension (e.g. duration), deteriorations in 11 

other dimensions of sleep health may be expected (e.g. sleepiness, satisfaction, duration 12 

variability, timing variability, etc.). For dimensions more difficult to directly target (% NR), 13 

interventions could focus on correlated dimensions that are amenable to intervention (e.g., 14 

irregularity, AHI). Examining multiple dimensions also may be useful in evaluating the effects 15 

of interventions such as zolpidem, which may positively influence features such as sleep latency 16 

and WASO but negatively influence sleepiness/alertness and NR sleep. Interventions that affect 17 

only one sleep dimension may be the exception rather than the rule.  18 

Multidimensionality opens the possibility of ‘indirect’ or ‘root-cause’ targeting, such as 19 

targeting OSA to improve multiple sleep health metrics such as alertness, quality, continuity, and 20 

% NR on a population level. Indeed, the high prevalence of OSA, its underdiagnosis, and causal 21 

effects on other sleep dimensions suggest OSA as a driver of poor sleep health (19, 33-35), and 22 
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thus an attractive intervention target to improve multiple sleep health dimensions (36-38). 1 

Notably, multidimensionality does not preclude focus on multiple dimensions. (39, 40) 2 

While sleep duration has been a key focus of epidemiological research, our analyses 3 

support the importance in examining the contributions of multiple dimensions. Findings on the 4 

detrimental effects of insufficient sleep duration may implicitly capture effects of poor sleep in 5 

correlated dimensions – such as regularity, continuity, sleep architecture, OSA, placement in the 6 

24-hour day, and sleepiness/alertness – and erroneously attribute this omnibus effect to duration. 7 

Investigating dimensions other than duration may thus inform interventions on a population 8 

scale. It may prove more accurate to say: ‘Sufficient sleep duration (and all that it implies) is 9 

protective of later health.’ Alternatively, ‘Sleep health, of which average sleep duration is one 10 

vital component, is protective of later health.’ Novel sleep health analyses using machine 11 

learning support this conclusion (7, 41). 12 

Limitations 13 

The first limitation concerns the dependencies among dimensions, which may be one of 14 

the more interesting and useful features of sleep health. The source(s) of these dependencies, 15 

however, remain poorly understood. It is possible that the correlations observed are particular to 16 

the sample or attributable to confounding factors such as the socioecological context, age or 17 

other factors.  18 

A second limitation concerns evolving or uncertain definitions and criteria of sleep 19 

health. Consensus measures to assess sleep health with objective sleep data are lacking. We 20 

leveraged comprehensive sleep data in MESA, and in doing so traded the parsimony of the 21 

original Ru SATED framework for flexibility in adding dimensions empirically linked to race-22 

ethnicity (42, 43) as well as downstream health (26, 44) – at the cost of scalability.  Future work 23 
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might estimate weights for each dimension in relation to a health outcome, with the limitation 1 

that weights may be particular to the population and outcome.  2 

The composites used self-reported and objective sleep indices. Even for the simple Ru 3 

SATED score, which we derived by using objective data to define timing, duration and 4 

efficiency, and from questionnaire data on quality and sleepiness/alertness, the PCA showed that 5 

the objective and subjective measures each loaded on distinct components. These distinct loading 6 

could reflect measurement bias rather than dimensional differences. The correspondence 7 

between purely self-reported composite scales and those involving objective measures is not 8 

characterized, and prior research indicates systematic differences in estimates between self-9 

report and objective measures according to short/long duration, sleep efficiency, health, and 10 

socio-demographics (45).  11 

Moreover, explicit guidance on population specific thresholds is limited.  The core 12 

definition of Ru SATED dimensions is evolving as well, with sleep regularity a recent addition. 13 

A canon of sleep health parameters for evolving measures of sleep micro-architecture (e.g. 14 

spindles, k-complexes) has yet to be established despite emerging data on the unique information 15 

contained in these measures (27, 46).  16 

 These limitations highlight that sleep health is undergoing conceptual advances and scale 17 

development (1, 6), scale validation (5, 6), implementations of sleep health in cohort studies and 18 

community samples (21, 47), innovations in methodological approaches (4, 7, 41, 48), optimal 19 

range and threshold determination (18, 22), and many practical choices on how best to analyze 20 

multidimensional sleep data. We suggest that statistical dependencies are an additional factor to 21 

contend with. As sleep health continues to develop as a field, we suggest two solutions that may 22 

help sleep health’s future development.  23 
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 1 

Solution 1: Studying challenges and solutions in disciplines which have already shifted to 2 

multidimensional paradigms 3 

From multidimensional/symptom psychiatric epidemiology (30), it is instructive to 4 

observe the outcome of the tension between epidemiological theories of ‘distribution shifts vs 5 

targeted intervention’ and policy making (30). Although shifting distributions is a powerful 6 

public health approach, the current policy paradigm favors targeted intervention, prevalence 7 

estimates, reporting prevalence trends over time, etc. (31). Thus, identifying an initial threshold 8 

target, with monitoring of impact of interventions on this target and related health outcomes, 9 

provides an example of how sleep health research can be translated to policy. This approach is 10 

similar to the long-standing practices of using blood pressure cut-offs as public health and 11 

individual targets despite evolving data on specific thresholds that confer disease (30). Future 12 

research to develop normative sleep ranges will further support the utility of this approach for 13 

policy makers and the public health. Logically implied are similar needs for developing and 14 

validating normative or optimal ranges for composite sleep metrics.   15 

Advantages to using composite scores include the reduction of multiple testing burden (as 16 

compared to analysis of multiple individual dimensions) and the ability to detect the effects of 17 

multiple small effects. An analogy can be drawn between sleep health and nutrition, in which 18 

most nutrients appear to contribute in small ways to a larger composite effect (and sometimes 19 

this composite effect better describes nutritional profiles than when individual nutrients are 20 

examined) (2). Given their simplicity, composites also have ready public health application, 21 

similar to promoting diets such as the Mediterranean diet rather than recommending specific 22 

nutrient targets. (2). However, while summary scales may be selected a priori based on extant 23 
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empirical or conceptual work, prospective data are needed to demonstrate that they predict  1 

clinically meaningful outcomes. 2 

Methodological advances in sleep health composites are anticipated with advances in 3 

sleep knowledge (and vice versa), perhaps leveraging increasingly larger datasets (49). 4 

Nonetheless, there is a need to recognize that the components of global sleep health scores will 5 

likely vary according to the questions at hand (e.g., interest in a pediatric versus aging 6 

population; interest in cardiovascular disease or cancer).  Future work might draw from prior 7 

literature on composites in other fields which also deal with complex systems with high-8 

dimensional data. This may be of high utility in choosing how to weight and aggregate the 9 

complex set of phenomena comprising sleep health in a context-specific way (50).  10 

Another tension appears to depend on sleep health’s complexity and wide-ranging 11 

importance. Because sleep health is multidimensional, whose dimensions may be variably 12 

more/less responsive to a wide set of individual and social factors, and whose different 13 

components may be more/less consequential for different outcomes, a single, canonical 14 

operationalization of sleep health may be suboptimal for any particular project. It may be useful 15 

to construct at least two sleep health indices: i) canonical Ru SATED (one dimension per 16 

domain); and ii) modified Ru SATED for a specific project (if necessary). This may help 17 

preserve consistency in the field while also affording flexibility in answering varied research 18 

questions. For assessing racial-ethnic disparities, the Sleep Health Score showed adequacy in 19 

distinguishing between groups; analysis of individual effects pointed to the strongest and 20 

modifiable drivers of the composite association, for public health targeting (regularity, duration). 21 

 22 

Solution 2: Objective and longitudinal sleep data.  23 
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A recent NIH workshop report on sleep health disparities emphasized that 1 

multidimensional sleep health must be experienced on a regular basis (51). However, there are 2 

little extant cohort data to assess whether sleep health is experienced on a regular basis, and what 3 

factors produce regular sleep health. Moreover, there are few data on within-individual 4 

correlations of sleep dimensions across time, and thus little understanding of the ‘natural 5 

histories’ of good or poor multidimensional sleep health, and a lack of longitudinal data limits 6 

causal modeling through natural experiments. Two solutions to these problems are 1) analysis of 7 

multi-day sleep studies as a time series (52); 2) longitudinal, comprehensive cohort sleep data 8 

collection. 9 

 First, Hale, Troxel, and Buysse (2020) argued that daily sleep assessments, modeled as a 10 

time series, may unpack bi-directional relationships between sleep and regular exposures such as 11 

diet and stress (52). Such work can help to capture the effect of short-term exposures. Moreover, 12 

a single night’s poor sleep health in a particular dimension may cascade to affect other 13 

dimensions the same or next night or may suggest common exposures that affect multiple 14 

dimensions (e.g. rotating shift work) (9). Multi-day comprehensive sleep assessment with daily 15 

physical and psychosocial exposure measurements should elucidate how sensitive sleep health 16 

dimensions may be to acute, fluctuating exposures. Thus, future cohort studies might consider 17 

daily psychosocial instruments or an expanded sleep diary(now possible through electronic data 18 

collection) to capture daily exposures of interest across the sleep study period and consider how 19 

such data are summarized as composites or individual dimensions. 20 

 Consumer wearables are a promising alternative to traditional actigraphs. Consumer 21 

wearables are relatively inexpensive and are amenable to data collection over long periods. Sleep 22 

data can be paired with physical activity measurement and geo-coding to get a fuller picture of 23 
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sleep-wake patterns.(53) As these data are collected on larger numbers of individuals, it will be 1 

important to consider whether they provide novel metrics of sleep timing, variability and others 2 

features not apparent in shorter-term measurements.  3 

Longitudinal sleep data are critically needed to better understand the ‘natural history’ of 4 

multidimensional sleep health, and may help identify which dimensions are the most variable 5 

over long time scales and how favorable patterns of sleep health may become distorted by 6 

changes in behavior or environment over the life course (e.g. major life events) (54, 55). 7 

Accordingly, longitudinal data may help better characterize critical features and etiology of 8 

consequential sleep health phenotypes. For instance, Vgontzas et al. (2012) reported that 9 

objective short sleep duration (<6 hours) at baseline was associated with higher odds of 10 

persistent insomnia 7.5 years later compared to normal sleepers and those with fully remitted 11 

insomnia (56). Longitudinally collected sleep phenotypes can clarify time-dependent features 12 

whose proximal cause and age of onset and time-dependent modifying factors are otherwise 13 

difficult to characterize. 14 

Longitudinal data may be particularly useful to clarify specific sleep drivers and levers. 15 

We suggest sleep regularity (in timing and duration) as candidates for further longitudinal 16 

research due to their i) potentially modifiable nature (as reflected in sleep hygiene 17 

recommendations for consistent bed and wake times), ii) consistent correlation with many other 18 

sleep dimensions (Figure 3), and iii) ability to forecast incident metabolic dysfunction and 19 

cardiovascular events (12, 13). If regularity as a candidate driver of sleep health is supported by 20 

longitudinal studies, then targeted interventions can be tested, including the impact on sleep 21 

health composites and clinical endpoints.  22 
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In summary, comprehensive and repeated sleep assessment may inform the etiology and 1 

‘natural history’ of multidimensional sleep health, identify candidate drivers and phenotypes, and 2 

help establish normative sleep health ranges for scientific knowledge and as targets for public 3 

health. To create robust sleep health scores, additional research showing their value in predicting 4 

health outcomes is needed. 5 

 Incorporate qualitative data 6 

Finally, qualitative research complements other research methods, providing information, 7 

from the participant’s point of view, about: i) barriers and facilitators to achieving sleep health 8 

and ii) impact of sleep on overall health and well-being. For instance, in a small Boston sample 9 

of racially-ethnically diverse low-income adults, commonly stated barriers to “good sleep” were 10 

work (or multiple) work schedules, consuming large quantities of soda in the evening, reluctance 11 

to stop using personal electronics at bed-time, child-care, and financial worries (25). Further 12 

investigation of factors such as these can be thoughtfully integrated into future data collection 13 

efforts that inform multidimensional sleep. Qualitative work is vital to retrospectively understand 14 

changes in sleep health and is thus of high value to understanding etiology. For instance, one of 15 

the richest pieces of evidence in support of the ‘precipitation’ component of the 3-P model of 16 

insomnia (predisposition, precipitation, perpetuation) comes from Healey et al. (1981) who used 17 

a set of retrospective interviews assessing stressful life events as precipitants of insomnia 18 

complaints (55).  19 

Summary 20 

Multidimensional sleep health represents a paradigm shift in sleep science. Two useful 21 

frameshifts are that sleep health is both conceptually and operationally a composite concept and 22 

that sleep dimensions do not exist in isolation. These frameshifts logically implicate sleep 23 
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disordered breathing and sleep regularity as targets for further research and intervention. To fully 1 

explore the implications of this new paradigm, comprehensive longitudinal assessment of sleep 2 

is necessary.3 
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Tables and Figures 

Table 1. Sleep variables, dimensions, and dichotomization rules. The Multi-Ethnic Study of 

Atherosclerosis, age < 65 years (n=735). 

Sleep variable 

Sleep health 

dimension Measure 

Dichotomization 

rule (coded as ‘1’) 

Sample 

prevalence of 

favorability 

(‘1’). n (%) Abbreviation 

Midpoint variability 

(sd, min)  
Regularity Actigraphy <30 minutes (13) 157 (21.4%) MPsd 

Duration variability 

(sd, min) 
Regularity Actigraphy <60 minutes (13) 271 (36.9%) TSTsd 

Quality (WHIIRS 

Likert subscale; 

higher is increasing 

complaints) 

Satisfaction Questionnaire 

“Sound and 

restful” or “very 

sound or restful” 

157 (21.4%) Quality 

Sleepiness  Alertness Questionnaire ≤10 (17) 199 (27.1%) ESS 

Timing (midpoint)b  Timing Actigraphy 02:00-04:00b  466 (63.4%) Timing 

Sleep Maintenance 

Efficiency (%) 
Efficiency Actigraphy >90% 524 (71.3%) SME 

Fragmentation 

Indexa  
Efficiency Actigraphy ≤15a 199 (27.1%) FI 

Wake after Sleep 

Onset (min) 
Efficiency Actigraphy ≤20 minutes (18) 50 (6.8%) WASO 

Total Sleep Timeb 

(min) 
Duration Actigraphy 6-8 hoursb 461 (62.7%) TST 

%NRb  Architecture PSG 21%-30%b (18) 251 (34.1%) % NR 

%N3b Architecture PSG 16%-20%b (50) 84 (11.4%) % N3 

Apnea-Hypopnea 

Index (events/hr) 
SDB PSG ≤15 events/hr (19) 354 (48.2%) AHI 

Sleep onset latency 

(difficulties 

initiating sleep – 

WHIIRS subscale) 

Wake-sleep 

transition 
Questionnaire 

“Less than once a 

week” or “no, not 

in the past 4 

weeks” 

476 (64.8%) SOLsr 

Sleep onset latency 

(min) 

Wake-sleep 

transition 
Actigraphy -  SOL 

a: The cut-point for FI was defined as the nearest whole number to the most favorable quartile 

(lowest quartile). 

b: These dimensions have optimal ranges in which overexpression of this dimension is 

considered problematic.  
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Table 2. MESA-Sleep Participant socio-demographics, global sleep health, and sleep health metrics by Sleep Health Score. The Multi-

Ethnic Study of Atherosclerosis, ages <65 years (n=735). 
  Sleep Health Score categorized: least to most favorable SHS  
 

Overall least (0-3) less (4-6) more (7-9) most (9-12) p 

N 735 120 378 205 32 
 

Socio-demographics       

Race-ethnicity (%) 
     

<0.001 

   White 265 (36.1%) 26 (21.7%) 123 (32.5%) 96 (46.8%) 20 (62.5%) 
 

   Chinese 93 (12.7%) 11 (9.2%) 49 (13.0%) 30 (14.6%) 3 (9.4%) 
 

   Black 200 (27.2%) 52 (43.3%) 108 (28.6%) 38 (18.5%) 2 (6.2%) 
 

   Hispanic 177 (24.1%) 31 (25.8%) 98 (25.9%) 41 (20.0%) 7 (21.9%) 
 

Female (%) 409 (55.6%) 55 (45.8%) 205 (54.2%) 126 (61.5%) 23 (71.9%) 0.011 

Age 59.4 (3.0) 59.3 (3.0) 59.6 (3.0) 59.2 (2.9) 59.4 (2.9) 0.638 

Education 
     

0.082 

   Less than high school 71 (9.7%) 11 (9.2%) 43 (11.4%) 14 (6.8%) 3 (9.4%) 
 

   High school or some college 352 (47.9%) 57 (47.5%) 191 (50.5%) 95 (46.3%) 9 (28.1%) 
 

   College degree 174 (23.7%) 34 (28.3%) 79 (20.9%) 52 (25.4%) 9 (28.1%) 
 

   Graduate 138 (18.8%) 18 (15.0%) 65 (17.2%) 44 (21.5%) 11 (34.4%) 
 

Married 480 (65.3%) 65 (54.2%) 248 (65.6%) 141 (68.8%) 26 (81.2%) 0.010 

Employed 234 (31.8%) 42 (35.0%) 124 (32.8%) 59 (28.8%) 9 (28.1%) 0.615 
       

Global sleep health 
      

Sleep Health Score↑ 5.7 (2.1) 2.6 (0.7) 5.1 (0.8) 7.8 (0.8) 10.3 (0.5) <0.001 

Sleep Health Score (PC1)↑ 0 (1) -1.1 (0.9) -0.2 (0.8) 0.8 (0.5) 1.4 (0.4) <0.001 

Ru SATED (PC1)↑ 0 (1) -1.0 (0.9) -0.1 (0.9) 0.6 (0.7) 1.2 (0.5) <0.001 

Ru SATED + OSA + Architecture 

(PC1)↑ 

0 (1) -1.2 (0.9) -0.1 (0.8) 0.7 (0.6) 1.4 (0.4) <0.001 

       

Sleep Health variables 
      

  Regularity       
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Midpoint variabilitya (sd, min)↓ 47.2 

[31.8, 70.6] 

67.8 

[47.9, 95.2] 

53.0 

[36.9, 76.1] 

35.3 

[25.5, 50.8] 

23.2 

[16.7, 26.7] 

<0.001 

Duration variabilitya (sd, min)↓ 76.4 (36.8) 90.1 (29.9) 83.2 (38.0) 61.6 (32.0) 39.6 (12.8) <0.001 

  Satisfaction       

Qualityc (Likert subscaled; 

higher=increasing complaints)↓ 

2.8 (0.9) 3.3 (0.8) 2.8 (0.9) 2.4 (0.8) 2.3 (0.7) <0.001 

  Alertness/sleepiness       

Epworth Sleepiness Scalec↓ 6.3 (4.2) 9.0 (4.9) 6.2 (4.1) 5.4 (3.4) 4.1 (2.3) <0.001 

  Timing       

Timinga (midpoint minutes from 

midnight)↓ 

196.1  

[155.1, 242.5] 

230.8  

[151.2, 278.8] 

201.1  

[157.9, 254.6] 

182.1  

[151.2, 222.3] 

177.5  

[151.2, 205.1] 

0.001 

  Efficiency       

Sleep Maintenance Efficiencya (%)↑ 91.4 (3.4) 89.2 (4.3) 91.1 (3.1) 93.0 (2.2) 93.2 (1.8) <0.001 

Fragmentation Indexa↓ 19.3 (6.8) 23.3 (7.4) 20.3 (6.7) 15.7 (4.7) 14.7 (4.0) <0.001 

Wake after Sleep Onseta (min)↓ 76.8 (56.3) 102.8 (63.2) 81.9 (58.5) 57.3 (40.0) 45.5 (33.1) <0.001 

  Duration       

Total Sleep Timea (hrs) ↗ 6.4 (1.2) 5.6 (1.4) 6.4 (1.2) 6.9 (0.9) 7.2 (0.6) <0.001 

  Sleep Architecture       

% NRb ↗ 19.0 (6.6) 15.5 (6.9) 18.4 (6.5) 21.2 (5.7) 23.8 (4.0) <0.001 

% N3b↗ 9.7  

[3.2, 16.7] 

8.2  

[3.2, 14.7] 

8.6  

[1.9, 15.9] 

10.9  

[4.9, 17.6] 

18.6  

[11.9, 20.0] 

<0.001 

  Obstructive Sleep Apnea       

Apnea-Hypopnea Indexb (events/hr)↓ 22.0 (20.2) 34.6 (23.7) 23.7 (20.0) 13.6 (13.7) 8.3 (6.7) <0.001 

  Wake-sleep transition – insomnia 

complaint 

      

Onset latencyc (freq. of difficulties 

initiating sleep) 

     
<0.001 

   No, not in the past 4 weeks 405 (55.1%) 33 (27.5%) 203 (53.7%) 142 (69.3%) 27 (84.4%) 
 

   Yes, less than once a week 71 (9.7%) 6 (5.0%) 28 (7.4%) 34 (16.6%) 3 (9.4%) 
 

   Yes, 1-2 times a week 132 (18.0%) 37 (30.8%) 74 (19.6%) 21 (10.2%) 0 (0.0%) 
 

   Yes, 3-4 times a week 66 (9.0%) 17 (14.2%) 41 (10.8%) 7 (3.4%) 1 (3.1%) 
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   Yes, 5+ times a week 61 (8.3%) 27 (22.5%) 32 (8.5%) 1 (0.5%) 1 (3.1%) 
 

  Wake-sleep transition (actigraphy)       

Onset latencya (actigraphy)  4.2 (3.0) 4.6 (3.8) 4.1 (2.9) 4.1 (2.7) 3.6 (2.1) 0.326 

↑ = Higher is better; ↓ = lower is better; ↗ = generally higher is better, but overexpression can be problematic (eg long sleepers, 

excessive % REM) 

a: actigraphy 

b: polysomnography 

c: self-report 

d: Women’s Health Initiative Insomnia Rating Scale, subscale 

p-values for skewed variables by Kruskall-Wallis; otherwise ANOVA.
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Table 3. Principal Components Analysis of Sleep Health dimensions: Ru SATED, Ru SATED + OSA and Architecture, SHS, SHS-

parsimonious 

 Ru SATED 
Ru SATED + OSA and 

Sleep Architecture 
SHS-PC1 SHS-PC1 (parsimonious) 

 α= 0.42 α= 0.47 α= 0.61 α= 0.45 

Proportion of 

Variance 

27.72% 20.01% 17.06% 20.40% 15.09% 13.01% 19.55% 13.71% 9.32% 18.39% 14.06% 11.75% 

 
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 

Ru SATED             

Irregularity
↓

(timing) -0.59 0.26 -0.12 -0.45 -0.45 0.06 -0.31 -0.53 0.11 -0.45 -0.43 0.10 

Satisfaction/quality
↓

 

(increasing insomnia 

symptoms) 

-0.07 -0.61 -0.45 -0.08 0.22 0.63 -0.07 0.10 0.50 -0.08 0.23 0.60 

Alertness
↓

 (increasing 

ESS) 
-0.31 -0.51 -0.31 -0.29 0.10 0.53 -0.18 -0.03 0.37 -0.29 0.10 0.50 

Timing
↓

 (increasing 

delay) 
-0.39 0.41 -0.35 -0.26 -0.49 -0.04 -0.14 -0.36 0.00 -0.25 -0.46 0.01 

Efficiency
↑

 

(maintenance) 
0.24 0.36 -0.69 0.32 -0.29 0.06 0.41 -0.32 -0.09 0.33 -0.32 0.05 

Duration
↗

 0.58 0.05 -0.29 0.50 0.21 -0.07 0.33 0.24 -0.03 0.49 0.24 -0.07 

PSG (architecture)             

Apnea-Hypopnea 

Index
↓

 
   -0.38 0.43 -0.23 -0.32 0.18 -0.29 -0.38 0.38 -0.27 

% N3
↗

    0.14 -0.34 -0.18 0.14 -0.12 -0.08 0.15 -0.31 -0.14 

% NR
↗

    0.35 -0.25 0.48 0.27 -0.05 0.53 0.35 -0.17 0.51 

SHS additions             

Irregularity
↓

 

(duration) 
      -0.27 -0.42 0.15    

Onset latency
↓

       -0.11 0.26 0.33 -0.06 0.34 0.12 

Fragmentation
↓

       -0.44 0.36 0.11    
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↑ = Higher is better; ↓ = lower is better; ↗ = generally higher is better, but overexpression can be problematic (eg long sleepers, 

excessive % NR) 

WASO
↓

         
-0.32 -0.01 -0.28 
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Figure 1. Conceptual Sleep Health dimensions across time.  
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Note: Diagram of two consecutive days/nights of sleep. Dark bars indicate sleep; white bars indicate wake. This diagram is conceptual 

and does not represent a particular individual in MESA-Sleep. Diamonds indicate midpoint. Onset latency, quality, and alertness are 

evaluated during wake (self-report). 
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Figure 2. Age and sex-adjusted estimates of a) global sleep health and b) its components 1 

regressed on race-ethnicity. The Multi-Ethnic Study of Atherosclerosis (n=735).  2 

Figure 2a 3 

 4 

 5 

 6 

 7 

 8 
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Figure 2b: 1 

 2 
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Figure 3. Pearson correlation matrix of objective sleep variables and Epworth scores. The Multi-1 

Ethnic Study of Atherosclerosis (n=735)a. 2 

 3 

a. onset latency, self-report was omitted due to unimprovable skew. Quality is a Likert-4 
scale, approximately normally distributed; lower is better.  5 

b. Pie size and shading indicate degree of correlation. 6 
 7 
 8 
 9 
 10 
 11 
 12 
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Appendix A. Comparison of Ru SATED and the Sleep Health Score (SHS) 

 

Table A1. Compare/contrast Ru SATED and Sleep Health Scores 

 

Sleep dimension Ru SATED SHS  

Regularity x x 

Satisfaction x x 

Alertness x x 

Timing x x 

Efficiency x x 

Duration x x 

Sleep architecture  x 

Duration regularity  x 

Onset latency   x 

Dimensions 
1 measure per domain 

(parsimony) 

Multiple related 

measures allowed (see 

discussion of 

composite scores) 
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Figure A1. Distributions of sleep health composites: i) Ru SATED (PC1), ii) Ru SATED + SDB 

and Architecture (PC1), iii) Sleep Health Score, iv) Sleep Health Score (PC1), v) Sleep Health 

Score (PC1) parsimonious (one measure per domain) 
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Appendix B.  

 

Table B1. Age and sex-adjusted regression results for Ru SATED (PC1), Ru SATED + SDB/Architecture (PC1), SHS (PC1), and the 

SHS. 

 

 
Ru SATED (PC1) 

Ru SATED + 

OSA/Architecture (PC1) 
SHS (PC1) SHS 

  β [95% CI] p β [95% CI] p β [95% CI] p β [95% CI] p 

Chinese 

-0.28  

[-0.50, -0.06] 
0.013 

-0.24  

[-0.46, -0.02] 
0.029 

-0.25 

[-0.46, -0.03] 
0.027 

-0.29 

[-0.77, 0.19] 
0.235 

Black 

-0.87  

[-1.05, -0.70] 
<0.001 

-0.82  

[-0.99, -0.65] 
<0.001 

-0.76 

[-0.92, -0.59] 
<0.001 

-1.34 

[-1.72, -0.97] 
<0.001 

Hispanic 

-0.32  

[-0.50, -0.14] 
<0.001 

-0.31  

[-0.48, -0.13] 
0.001 

-0.33 

[-0.51, -0.16] 
<0.001 

-0.77 

[-1.16, -0.38] 
<0.001 

Female 

0.29  

[0.15, 0.43] 
<0.001 

0.54  

[0.41, 0.67] 
<0.001 

0.53 

[0.40, 0.67] 
<0.001 

0.55 

[0.25, 0.84] 
<0.001 

Age (years) 

0.02  

[-0.00, 0.04] 
0.077 

0.00  

[-0.02, 0.02] 
0.945 

-0.02 

[-0.04, 0.01] 
0.161 

-0.01 

[-0.06, 0.04] 
0.796 

(Intercept) 

-1.04  

[-2.41, 0.33] 
0.138 

-0.02  

[-1.36, 1.32] 
0.976 

0.98  

[-0.37, 2.34] 
0.155 

6.36 

[3.36, 9.36] 
<0.001 
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Table B2. Variable-level regression results for the components of the SHS. N=735. 

 Black Hispanic Chinese Age Female (Intercept) 

Variable: RR [95% CI] RR [95% CI] RR [95% CI] RR [95% CI] RR [95% CI] RR [95% CI] 

MPsd 0.44 [0.31, 0.62] 0.72 [0.54, 0.97] 0.80 [0.56, 1.14] 1.02 [0.98, 1.06] 0.97 [0.77, 1.22] 0.12 [0.01, 1.19] 

TSTsd 0.42 [0.33, 0.55] 0.85 [0.71, 1.02] 0.79 [0.62, 1.01] 1.00 [0.97, 1.02] 0.92 [0.79, 1.07] 0.61 [0.13, 2.96] 

Fragmentation 0.55 [0.42, 0.73] 0.68 [0.52, 0.88] 0.90 [0.68, 1.19] 0.97 [0.93, 1.00] 1.57 [1.27, 1.95] 2.09 [0.29, 15.32] 

TST 0.65 [0.57, 0.74] 0.80 [0.72, 0.90] 0.76 [0.65, 0.88] 0.99 [0.98, 1.01] 1.12 [1.02, 1.23] 0.99 [0.39, 2.52] 

% N3 0.56 [0.35, 0.88] 0.62 [0.39, 1.00] 1.09 [0.68, 1.75] 0.97 [0.92, 1.03] 1.80 [1.25, 2.59] 0.45 [0.02, 12.82] 

SME 0.83 [0.76, 0.92] 0.89 [0.81, 0.98] 0.85 [0.74, 0.96] 1.00 [0.99, 1.02] 1.17 [1.08, 1.27] 0.60 [0.28, 1.28] 

AHI 0.99 [0.86, 1.15] 0.88 [0.75, 1.03] 0.83 [0.67, 1.03] 0.97 [0.95, 0.99] 1.71 [1.48, 1.97] 2.44 [0.74, 7.99] 

SOL 0.91 [0.81, 1.01] 0.85 [0.75, 0.96] 1.08 [0.95, 1.21] 1.02 [1.00, 1.03] 0.83 [0.76, 0.91] 0.29 [0.12, 0.73] 

% NR 0.75 [0.60, 0.95] 1.09 [0.89, 1.33] 1.01 [0.77, 1.31] 1.00 [0.97, 1.03] 1.29 [1.08, 1.54] 0.34 [0.07, 1.82] 

ESS 0.89 [0.83, 0.96] 0.99 [0.93, 1.05] 1.01 [0.93, 1.09] 1.01 [1.00, 1.02] 1.01 [0.96, 1.06] 0.45 [0.26, 0.78] 

Timing 0.90 [0.79, 1.01] 0.92 [0.81, 1.04] 1.14 [1.00, 1.29] 0.99 [0.97, 1.00] 1.02 [0.93, 1.12] 1.31 [0.51, 3.35] 

WASO  0.63 [0.33, 1.20]  0.98 [0.56, 1.72]  1.37 [0.74, 2.56]  0.90 [0.83, 0.97]  1.71 [1.05, 2.77] 31.38 [0.34, 2909.80] 

Quality 1.10 [0.90, 1.35] 0.93 [0.74, 1.17] 1.30 [1.03, 1.64] 1.05 [1.02, 1.08] 0.91 [0.77, 1.06] 0.02 [0.00, 0.12] 
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