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Abstract 

Despite tremendous efforts by the international research community to understand the 

pathophysiology of SARS-CoV-2 infection, the reasons behind the clinical variability, ranging from 

asymptomatic infection to lethal disease, are still unclear. Existing inter-individual variations of the 

immune responses, due to environmental exposures and genetic factors, may be critical to the 

development or not of symptomatic disease after infection with SARS-CoV-2, and transcriptomic 

differences marking such responses may be observed even later, after convalescence. Herein, we 

performed genome-wide transcriptional whole-blood profiling to test the hypothesis that immune 

response-related gene signatures may differ between healthy individuals with prior entirely 

asymptomatic versus clinical SARS-CoV-2 infection, all of which developed an equally robust 

antibody response. Among 12.789 protein-coding genes analyzed, there were only six and nine 

genes with significantly decreased or increased expression, respectively, in those with prior 

asymptomatic infection (n=17, mean age 34 years) relatively to those with clinical infection (n=15, 

mean age 37 years). All six genes with decreased expression (IFIT3, IFI44L, RSAD2, FOLR3, PI3, 

ALOX15), are involved in innate immune response while the first two are interferon-induced 

proteins. Among genes with increased expression six are involved in immune response (GZMH, 

CLEC1B, CLEC12A), viral mRNA translation (GCAT), energy metabolism (CACNA2D2) and 

oxidative stress response (ENC1). Notably, 8/15 differentially expressed genes are regulated by 

interferons. Our results suggest that an intrinsically weaker expression of some innate immunity-

related genes may be associated with an asymptomatic disease course in SARS-CoV-2 infection. 

Whether a certain gene signature predicts, or not, those who will develop a more efficient immune 

response upon exposure to SARS-CoV-2, with implications for prioritization for vaccination, 

warrant further study. 
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Introduction 

Since December 2019 the SARS-CoV-2 has spread throughout the world infecting dozens of 

millions of people and resulting in over 2.8 million deaths, as of April 2021. Although the case 

fatality rate in hospitalized patients may exceed 10% [1, 2], 35-50% of infected adults do not 

develop, perceive and report any clinical symptom [3, 4]. Asymptomatic infected persons may be 

responsible for viral transmission for more days than aware self-isolated cases, which may also 

explain, at least partially, the exponential increase in the number of infections globally [5, 6, 7]. 

Notably, we only know in retrospect who was indeed asymptomatic, since individuals without 

symptoms at the time of a positive molecular test should be followed for 14 days to determine the 

clinical picture, being !pre-symptomatic” if they develop symptoms later. 

The proportion of asymptomatic individuals varies widely in viral infections. For example, a 

significant fraction of cytomegalovirus infections, similarly to SARS-CoV-2, are asymptomatic and 

unsuspected [8]. In contrast, an asymptomatic carrier state has not been documented for measles 

virus infection [9]. The reasons why certain individuals, including people living with HIV [10] or 

other immunodeficiencies [11], do not develop clinical symptoms during SARS-CoV-2 infection 

are essentially unknown [12]. So far, studies assessing the immune response in asymptomatic 

infection are few. In an elegant study, Long et al. showed that asymptomatic individuals presented 

with significantly longer duration of viral shedding compared to symptomatic patients, lower levels 

of IgG antibodies to SARS-CoV-2, and lower serum levels of 18/48 cytokines, including interferon-

gamma levels, suggesting that asymptomatic individuals indeed displayed a weaker anti-virus-

reactive immune response to SARS-CoV-2 [13].  

While the role of genetics in determining immune and clinical response to the SARS-CoV-2 virus is 

currently under investigation [14], it is well established that individual human immune systems are 
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highly variable [15]. Most of this inter-individual immune variation is explained by environmental 

exposures early in life [16] but genetic factors are clearly also involved. For example, a gene 

expression signature dominated by interferon-inducible genes in the blood is prominent in systemic 

lupus erythematosus [17], whereas interferon-α is increased not only in the serum of these patients 

but also in their healthy first-degree relatives [18] pointing to genetic influences on the interferon-

mediated immune interactions.  

Clearly, the most successful response against SARS-CoV-2 occurs in those individuals who, while 

remaining asymptomatic, develop a robust adaptive immune response. We have recently examined 

the humoral immune response to SARS-CoV-2 in members of the National and Kapodistrian 

University of Athens, Greece [19]. Overall, among 4.996 people the unweighted seroprevalence of 

SARS-CoV-2 antibodies was 1.58%, whereas 49% of the seropositive individuals denied having 

had any clinical symptom compatible with previous SARS-CoV-2 infection, which was also 

unsuspected for 33% of them. Interestingly, in our study, the mean levels of antibodies to both the 

nucleocapsid (N) protein and the receptor-binding-domain (RBD) of the spike (S) protein were 

comparable between asymptomatic and clinical infection cases and not associated with age or sex 

[4]. Others have also reported that IgG antibodies are commonly observed in both asymptomatic 

and clinical infections (85% versus 94% of patients, respectively) [20]. 

Since variations in the strength and/or extent of the immune response may be critical for the clinical 

picture and progress after infection with SARS-CoV-2, existing inter-individual differences at the 

transcriptome level may be observed even later, after convalescence. Therefore, we performed 3’ 

mRNA next generation sequencing-based genome-wide transcriptional whole blood profiling to test 

the hypothesis that immune response-related genes are differentially expressed between healthy 

individuals who developed an equally robust antibody response following either an entirely 

asymptomatic or clinical SARS-CoV-2 infection. 
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Methods 

Blood collection and anti-SARS-CoV-2 antibody testing  

Blood samples were collected from members of the NKUA, Athens, Greece in June–November 

2020. The protocol was approved by the Ethics and Bioethics Committee of the School of 

Medicine, NKUA (protocol #312/02-06-2020) and study participants provided written informed 

consent. All plasma samples were analyzed as previously described [4] using, a) the CE-IVD Roche 

Elecsys® Anti-SARS-CoV-2 test, an electrochemiluminescence immunoassay (ECLIA) for the 

detection of total antibodies (IgG, IgM, and IgA; pan-Ig) to SARS-CoV-2 N-protein (Roche 

Diagnostics GmbH, Mannheim, Germany), and b) the CE-IVD Roche Elecsys® Anti-SARS-CoV-2 

S, an ECLIA for the quantitative determination of antibodies (including IgGs) to the SARS-CoV-2 

S-protein RBD (Roche Diagnostics). 

3’ mRNA sequencing, mapping, quality control, and quantifications  

Total RNA was isolated from whole blood, stored in paxgene, using the ExtractionMonarch® Total 

RNA Miniprep Kit (NEB #T2010). Upon blood isolation, Monarch DNA/RNA Protection Reagent 

(supplied as a 2x concentrate) was added undiluted to an equal volume of blood. Addition of the 

protection reagent and the following RNA isolation was performed as described in the Kit's manual 

for Total RNA Purification from Mammalian Whole Blood Samples. 

After quantification on a NanoDrop ND-1000 (Thermofisher) and Bioanalyzer RNA 6000 Nano 

assay (Agilent), 140-300ng of total RNA from samples passing quality control were processed 

using the QuantSeq 3’ mRNA-Seq Library Prep Kit FWD (Lexogen, 015.96) for library 

preparation. Libraries were assessed for molarity and median library size using Bioanalyzer High 

Sensitivity DNA Analysis (Agilent, 5067-4626). After multiplexing and addition of 13% PhiX 
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Control v3 (Illumina, FC-110-3001) as spike in, the NGS was performed on a NextSeq550 with 

NextSeq 500/550 High Output Kit v2.5 - 75 cycles (Illumina, 20024906). 

The quality of FASTQ files was assessed using FastQC (version 0.11.9) [21]. The reads were 

mapped to the GRCh38 reference human genome using STAR, as part of a pipeline provided by 

Lexogen and BlueBee. After quality control, we obtained quantifications for ~16.737 (12.789 

protein coding) genes with more than five reads in more than 25% of the 17 asymptomatic and 15 

clinical disease samples. Raw bam files, one for each sample, were summarized to a 3’UTR read 

counts table, using the Bioconductor package GenomicRanges [22], through metaseqR2 [23]. The 

gene counts table was normalized for inherent systematic or experimental biases (e.g., sequencing 

depth, gene length, GC content bias) using the Bioconductor package EDASeq [24]. For the 

downstream analysis, 12 hemoglobin (HBQ1, HBG2, HBZ, HBA2, HBA1, HBM, HBZP1, HBE1, 

HBG1, HBD, HBBP1, HBB) genes were removed from all samples. 

Blood immune cell subsets deconvolution 

CIBERSORTx [25] was used to estimate the proportion of blood immune cell subsets for each 

individual. As a signature matrix, the LM22 signature matrix for 22 subsets obtained at the single 

cell level was used.  The Mann-Whitney U test was applied in order to calculate the significance of 

the difference in distributions between the asymptomatic and clinical groups. Statistical significance 

and plotting was calculated with R. 

Differential gene expression 

The resulting gene counts table was subjected to differential expression analysis (DEA) to compare 

individuals with a history of asymptomatic versus clinical (“symptomatic”) infection using the 

Bioconductor packages DESeq [26], edgeR [27], NOISeq[28], limma [29], NBPSeq [30], baySeq 

[31]. In order to combine the statistical significance from multiple algorithms and perform meta-
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analysis, the PANDORA weighted P-value across results method was applied through metaseqR2. 

Multidimensional scaling was also applied through metaseqR2. DAVID analysis [32] was 

performed for the increased and decreased genes, both for enriched Kyoto Encyclopedia of Genes 

and Genomes (KEGG) pathways and for biological processes [Gene Ontology (GO)]. For the 

prediction of enriched regulons in asymptomatic disease we used the TRRUST (v2) reference 

transcription factor (TF)–target interaction database [33] and enrichR [34] focusing on the ChEA 

prediction with the increased genes in asymptomatic disease as input. For the identification of 

interferon-regulated genes the inteferome database (v2) [35] was used. 

Results 

Whole blood transcriptional profiling and determination of immune cell subsets in 

seropositive asymptomatic versus clinical infection 

As shown in Table 1, the two groups under study comprised 15 seropositive individuals with a 

history of clinical infection within 3-months (median) before sampling (9 men, mean age 34 years) 

and 17 seropositive individuals with entirely asymptomatic infection (11 men, mean age 37 years). 

Cases were considered asymptomatic in the absence of any symptoms since the onset of the 

pandemic, according to a detailed history obtained by a physician (absence of fever of any grade, 

fatigue, conjunctivitis/sweating coughs, headaches, respiratory distress/dyspnea, smell or taste loss, 

diarrhea). Clinical infections were in their majority of low to moderate severity. 

Age, sex distribution and levels of antibodies to both SARS-CoV-2 N-protein and the S-protein 

RBD were comparable between asymptomatic and clinical cases. 
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Table 1: Demographics and antibody measurements. 

n=14*, n=15**, n=14*** 

Whole blood-derived, 3’ mRNA next generation sequencing-based, genome-wide transcriptional 

profiling was performed and, overall, more than 386 million reads were generated. Genes with 

fewer than five counts in fewer than 25% of the samples were filtered out, resulting to 16.747 

profiled genes, of which 12.789 were protein coding. Twelve hemoglobin genes (HBQ1, HBG2, 

HBZ, HBA2, HBA1, HBM, HBZP1, HBE1, HBG1, HBD, HBBP1, HBB) were removed. A 

multidimensional scaling (MDS) plot generated using all 16.737 expressed genes, in order to avoid 

gene-type biases, revealed no clear separation of the two sample groups (Figure 1A).  

The proportions of immune cell populations, namely, naive B cells, memory B cells, plasma cells, 

CD8+ T cells, naive CD4+ T cells, resting memory CD4+ T cells, activated memory CD4+ T cells, 

follicular helper T cells, regulatory T cells, gamma delta T cells, resting NK cells, activated NK 

cells, monocytes, M0 macrophages, M1 macrophages, M2 macrophages, resting dendritic cells, 

activated dendritic cells, resting mast cells, activated mast cells, eosinophils and neutrophils in the 

peripheral blood estimated by CIBERSORTx were also comparable between the two groups 

(Figure 1B). 

Number of 
Individuals (males)

Age, mean+SD 
(range)

anti-SARS-CoV-2 
N-protein Abs, 
mean+SD (range)

anti- SARS-CoV-2 
S-protein RBD 
Abs, mean+SD 
(range) 

Clinical 
Disease

15 (9) 34+14 (18-57) 38+39 (5-119) * 179+255 (6-752)

Asymptomatic 
Disease

17 (11) 37+17 (19-70) 46+45 (1-166) ** 122+131 
(3-426)***
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Figure 1 
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Figure 1. Whole blood transcriptional profiles and immune cell subsets in seropositive 

individuals with prior asymptomatic or clinical SARS-CoV-2 infection. 

(A) Dimensionality reduction of all samples: Multidimensional scaling of all samples from 

individuals with prior clinical (n=15) and asymptomatic (n=17) infection. Each dot corresponds to 

the sample of one individual. All expressed elements were used (16.747, out of which 12.799 were 

non-zero protein-coding genes), in order to avoid gene type biases. The smaller the distance 

between each sample pair, the greater the similarity of the gene expression profile of the samples. 

No separation of the two sample groups is revealed, reflecting their similarity. (B) Blood 

transcriptome deconvolution with CYBERSORTx in asymptomatic and clinical disease groups. For 

every cell type, the Mann-Whitney U test p-value comparing the two groups is displayed on top. No 

statistically significan differences (p-values < 0.05) were detected between the two groups. 

Differentially expressed genes are associated with Innate Immunity and Interferon activity 

Although the differential expression analysis of 12.789 protein coding genes did not reveal a 

distinct transcriptional profile between the two groups of healthy individuals, 24 genes were 

returned as differentially expressed (logFC=|1|, p<0.05) in a primary analysis (S1 Figure). Because 

the number of these genes was small, we repetitively applied the DEA pipeline, removing samples 

that were possible outliers in terms of expression of each differentially expressed gene. Therefore, 

genes that were repeatedly returned as significantly differentially expressed in those with prior 

asymptomatic infection relatively to those with clinical SARS-CoV-2 infection were characterized 

as differently expressed (Figure 2).  Brief description of the function of six and nine genes that 

were found significantly decreased (S1 Table) and increased (S2 Table), respectively, in prior 

asymptomatic versus clinical SARS-CoV-2 infection is shown in Supplemental Tables.  
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Figure 2 

Figure 2. Differential gene expression analysis in seropositive individuals with prior 

asymptomatic or clinical SARS-CoV-2 infection. 

Heatmap of robustly differentially expressed genes (genes that were differentially expressed and 

highly expressed in three or more samples, logFC>|1|, p-value<0.05) in individuals with prior 

asymptomatic infection relatively to those with clinical (“symptomatic”) SARS-CoV-2 infection, 

with raw expression values being scaled. The values for all samples (17 asymptomatic on the left 

and 15 clinical on the right) is plotted. The first nine genes are increased in the Asymptomatic 

group, while the next six are decreased. 

Notably, all six decreased genes in asymptomatic SARS-CoV-2 infection (IFIT3, IFI44L, FOLR3, 

RSAD2, PI3, ALOX15), are involved in innate immune responses [36-41] while the first two are 

interferon-inducible genes. Similarly, three increased genes (GZMH, CLEC1B, CLEC12A) are 

involved in innate immunity mechanisms [38,42,43], one (GCAT) in viral mRNA translation [44], 

one (CACNA2D2) in the integration of energy metabolism [45] and one (ENC1) in oxidative stress 

responses [46]. The expression patterns of these 15 genes across all samples are depicted in Figure 

2. Enrichment analysis returned no statistically significant enriched KEGG or GO terms. Similarly, 
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there were no common upstream transcriptional regulators revealed by transcription factor (TF)–

target interaction databases for these genes. 

Finally, the inteferome database which hosts genomic and transcriptomic data generated from cells 

or tissues treated with interferons was used for the 15 genes that were found to be differently 

expressed in asymptomatic versus clinical SARS-CoV-2 infections. Collectively, 8 out of 15 genes 

are regulated by interferons (ENC1, FOLR3, IFIT3, PI3, RSAD2, IFI44L,CLEC12A, ALOX15). 

Specifically, six genes are regulated by both type I and type II Interferons (ENC1, FOLR3, IFIT3, 

PI3, RSAD2, IFI44L), whereas the remaining two are targets of interferon type II only (CLEC12A, 

ALOX15) [35] (Figure 3). 

Figure 3 

Figure 3. Venn diagram of differentially expressed genes in seropositive individuals with prior 

asymptomatic or clinical SARS-CoV-2 infection with respect to interferon activity. 

The genes characterized as differentially expressed in those with prior asymptomatic infection 

relatively to those with clinical SARS-CoV-2 infection were queried in the Interferome database; 
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8/15 were associated with interferon activity. Of those, six are regulated by both interferon type I 

and II, while two genes only by type II and none by type III; the remaining seven genes are not 

regulated by interferons. 

.   

Discussion 

Genome-wide transcriptome analyses studies using next generation sequencing technology in 

patients infected with SARS-CoV-2 provide evidence that transcriptome-wide changes may serve as 

predictors of morbidity and possibly of response to specific therapies [47]. In addition, 

transcriptomic analyses may provide mechanistic insights into certain complications associated with 

SARS-CoV-2 infection [48]. To our knowledge, this is the first whole blood genome-wide 

transcriptomic comparative analysis in healthy individuals who either recovered from a clinical 

SARS-CoV-2 infection or an entirely asymptomatic infection. In one previous study published so 

far in asymptomatic seropositive individuals infected during a super spreading event, the 

transcriptome in peripheral blood mononuclear cells was similar to that of seronegative highly 

exposed individuals from the same community. The putative time of infection of seropositive 

asymptomatic individuals was 4–6 weeks prior to sample collection, suggesting that the 

development of antibody response following viral exposure in asymptomatic cases is not 

necessarily associated with sustained alterations in the immune transcriptome [49]. 

Variations in innate immune system responses and cytokine networks could explain, at least in part, 

the wide heterogeneity in clinical presentation of SARS-CoV-2 infection [50]. The symptom that 

best reflects the potency of the immune response, namely fever, has been repeatedly shown to be a 

poor diagnostic marker in severe disease [51, 52]. Along these lines, it has been speculated that 

asymptomatic infection could be partly explained by the examples of altered innate immunity 
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mechanisms operating in bats and pangolins. Despite carrying an enormous load of viral species, 

these animals display an apparent genetic resistance to coronavirus pathology [53]. For example, 

decomposition of many type I interferon genes [54] and partial loss of function in stimulator of 

interferon genes (STING) is observed in bats [55]. Regarding pangolins, recent findings suggest 

that these animals have lost interferon-ε [56] as well as interferon-induced with helicase C domain 1 

(IFIH1), also known as IFIH1/MDA5 [57].  

Our results provide evidence that among 12.789 genes, there were only 15 with significantly 

different expression when comparing healthy, relatively young individuals after convalescence from 

a previous entirely asymptomatic SARS-CoV-2 infection to those with a clinical infection history. 

While there were no apparent differences in cellular components and no specific immune 

deficiencies or co-morbidities to explain the different clinical presentation, the small number of 

differentially expressed genes is not surprising since the cohort comprised apparently healthy 

individuals. It should be highlighted that the transcriptome analysis was not performed at the time 

of active infection; thus certain potential differential responses may have been blunted during 

assessment after infection. This could also explain the lack of differentially expressed genes with 

>2-fold change in our primary analysis. However, such differential responses should be more robust 

at the time of infection and more genes and immune networks may be differentially expressed. 

Among the six genes that were found with significantly decreased expression in previously 

asymptomatic cases relatively to clinical cases, and in line with our research hypothesis, all are 

involved in innate immune responses (S1 Table) and two of these genes (IFIT3, IFI44L) belong to 

the interferon-induced family of genes. Overall, 8 of the 15 differentially expressed genes in those 

with prior asymptomatic infection relatively to those with clinical SARS-CoV-2 infection can be 

found in datasets that include genes which have been implicated in interferon related signaling 

pathways in vitro [35]. 
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As happens in all viral infections, type I interferon response plays a major protective role for the 

host because not only promotes viral clearance but also triggers a prolonged adaptive immune 

response [58]. Insights into the innate and adaptive immune responses to SARS-CoV-2 have been 

gained by many research efforts over the past year [48]. The innate immune responses that protect 

against disease and particularly the role of type I and III interferons have been addressed in 

numerous studies, mainly in patients with severe disease at the time of sampling. Important findings 

by Casanova and collaborators have shown that either neutralizing autoantibodies to type I 

interferons [59] or deleterious mutations in components involved in interferon induction or 

signaling [60] predispose patients to life-threatening infections. Along these lines, a highly impaired 

type I interferon response has been reported in patients with severe disease [61]. However, in 

contrast to these findings, increased levels of interferons and interferon-stimulated genes have been 

observed in severe and life-threatening infections in many other studies [62, 63, 64]. Indeed, 

increased interferon-alpha levels are a biomarker of mortality [65].  

Moreover, the SARS-CoV-2 receptor ACE2, which is expressed in specific cell subsets across 

tissues is an interferon-stimulated gene in human airway epithelial cells [66], suggesting that a 

weaker individual interferon response may be protective. The latter may explain the low infection 

levels and morbidity in children [51, 52] who, relative to adults, display, in general lower interferon 

responses [67] and lower ACE2 expression [68]. Taken together, in individuals infected with SARS-

CoV-2, interferon-mediated responses may be protective or detrimental depending on the timing 

and the stage of infection, in addition to other factors, including viral load, age, and co-morbidities 

[58, 69, 70]. 

To conclude, our results suggest that subtle differences in the expression levels of innate immunity-

related genes, including lower expression of genes involved in interferon signaling, may be 

beneficial for the host upon SARS-CoV-2 infection. The current study attempts to fill the existing 
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gap regarding the potential implication of certain pathways in the clinical phenotype of SARS-

CoV-2 infection. The described association of a subtle immune response to SARS-CoV-2 with a 

lack of clinical symptoms needs further investigation, which hopefully will be performed in the near 

future by established consortia [14] or other groups. Whether a certain innate immunity signature 

predicts, or not, those who will develop a more successful immune response upon contact with 

SARS-CoV-2, with possible implications for prioritization of vaccination, warrant further study.   
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