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2 

Abstract:  24 

Recent studies indicate that wearable sensors have the potential to capture subtle 25 

within-person changes that signal SARS-CoV-2 infection. However, it remains unclear 26 

the extent to which observed discriminative performance is attributable to behavioral 27 

change after receiving test results. We conducted a retrospective study in a sample of 28 

medical interns who received COVID-19 test results from March to December 2020. Our 29 

data confirmed that sensor data were able to differentiate between symptomatic 30 

COVID-19 positive and negative individuals with good accuracy (area under the curve 31 

(AUC) = 0.75). However, removing post-result data substantially reduced discriminative 32 

capacity (0.75 to 0.63; delta= -0.12, p=0.013). Removing data in the symptomatic period 33 

prior to receipt of test results did not produce similar reductions in discriminative 34 

capacity. These findings suggest a meaningful proportion of the discriminative capacity 35 

of wearable sensor data for SARS-CoV-2 infection may be due to behavior change after 36 

receiving test results. 37 

 38 

 39 
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Main  47 

Recent studies 1–4 suggest enormous public health potential of wearable sensors in 48 

capturing subtle within-person changes that indicate an infection, such as by SARS-49 

CoV-2. Detection of infection via wearable data provides a potentially effective, scalable 50 

method of infection surveillance, through passive, non-invasive methods 5. However, 51 

the assessments of wearable sensors for SARS-CoV-2 infection to date conflate two 52 

distinct streams of information - direct physiologic effects of infection and behavioral 53 

changes secondary to learning confirmation of infection through receipt of test results. 54 

Understanding the relative importance of these two streams of information in infection 55 

detection is critical to determining if infection surveillance may be possible through 56 

wearable technology. This paper seeks to further this understanding by leveraging a 57 

unique data set with individual-level dates of receiving test results that are linked to 58 

wearable data collected from a cohort of symptomatic COVID-19 positive or negative 59 

medical interns.  60 

 61 

The Intern Health Study is a prospective cohort study that assesses mental health 62 

during the first year of residency training 6,7. Individuals starting residency in the 2019 63 

and 2020 cohorts were invited to take part. Participating interns received a Fitbit Inspire 64 

HR or Charge 3 device (or $50 if they already have a Fitbit,  Fitbit Inc., San Francisco, 65 

CA; or an Apple Watch, Apple Inc., Cupertino, CA) and $60 in compensation. The 66 

institutional review board at the University of Michigan approved the study. From April to 67 

December 2020, participants were sent multiple surveys that assessed whether they 1) 68 

exhibited any symptoms consistent with COVID-19 (e.g. fever, cough, shortness of 69 
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breath, headache); (2) were tested for SARS-CoV-2 infection; (3) tested positive.  Daily 70 

sleep duration, physical activity, and resting heart rate (RHR) were measured through 71 

Fitbit or Apple Watch throughout the first internship year. We focused on interns 72 

because this is a population that is likely to receive tests, receive test results quickly, 73 

and are more adherent to quarantine measures. 74 

 75 

A total of 3,532 subjects participated in the 2019 and 2020 cohorts of Intern Health 76 

Study. Among them, 506 subjects experienced COVID-19-like symptoms between 77 

March 15 and December 2020 and of these, 379 reported being tested for SARS-CoV-78 

2. There were 94 individuals who tested positive (“cases”) and 285 individuals who 79 

tested negative (“controls”). We included in the analysis 22 cases and 83 controls who 80 

had step, sleep, and RHR data available for more than 50% of the days during baseline 81 

(21 to 7 days prior to symptom onset) and test (0-7 days after symptom onset) periods, 82 

respectively (Extended Data Figure 1). Participants were on average 28.5 +/- 2.81 years 83 

of age, and 50.5% (n = 53) of the sample were female.  84 

 85 

Our results are consistent with those reported by Quer et al. (2020) 2, validating the 86 

value of passive wearable sensor data in differentiating symptomatic COVID-19 positive 87 

from negative individuals. In particular, we followed Quer et al. (2020) 2 and used 88 

externally-constructed metrics that operationalize within-person changes in RHR, sleep, 89 

steps and all three combined. The metrics effectively contrast an individual’s wearable 90 

sensor data from the test period  with those from the baseline period, which are then 91 

used to discriminate cases and controls. Using all the data in baseline and test periods 92 
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(Figure 1a), we observed that metrics of within-individual change discriminated cases 93 

from controls except for RHR (Figure 2, a-d). Sleep minutes increased more among 94 

cases than controls after symptom onset (mean change: 47.9 in cases, 16.6 in controls 95 

p=0.044; area under the curve, AUC, based on SLEEPmetric =  0.66, 95% confidence 96 

interval, CI = 0.51-0.80). Cases reduced physical activity more than controls after 97 

symptom onset (mean change: -3,703 in cases, -1,038 in controls, p=0.002; AUC based 98 

on STEPmetric  = 0.75, 95% CI = 0.63-0.87). Mean change in RHR is higher in the 99 

cases (1.3 in cases, 0.4 in controls, p=0.18) with the lowest discriminative ability based 100 

on RHRmetric (AUC = 0.63,  95% CI = 0.48-0.79). The combined metric based on all 101 

wearable sensor data results in an AUC of 0.75 (95% CI = 0.62-0.89).  102 

 103 

To test whether the realized AUCs were mainly driven by the subset of data after receipt 104 

of test results, we conducted an analysis that removed data points on and after the 105 

result delivery date (Figure 1b). Compared with the previous analysis, we observed 106 

worse discriminative ability (Figure 2e-2h) by SLEEPmetric (AUC =  0.60, 95% CI = 107 

0.42-0.76), STEPmetric (AUC =  0.63, 95% CI = 0.49-0.78), and combined sensor 108 

metrics (AUC =  0.68, 95% CI = 0.50-0.82), but similar performance in RHR (AUC =  109 

0.66, 95% CI = 0.51-0.86).  The AUC based on STEPmetric experienced the largest 110 

decrease (delta = -0.12).  111 

 112 

To assess whether the observed decrease in AUC is consistent with random data 113 

removal or systematic information loss, we further conducted one-sided conditional 114 

permutation tests for each metric (see Methods). In particular, the test assesses the null 115 
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that, compared to random data removal, no additional decrease in AUC is caused by 116 

systematically removing data after receipt of test results. For the STEPmetric, the 117 

observed decrease in AUC (step 2, Methods) stands in the left tail of the reference 118 

distribution of change in AUC (step 3, Methods; observed change in AUC: -0.12,  119 

p=0.013; Extended Data Figure 2c), indicating the observed decrease in AUC by 120 

removing post-result data is unlikely a chance event from data reduction and hence the 121 

importance of post-result data.  Although cases and controls reduced average daily step 122 

counts after they became symptomatic, the reduction was significantly more among the 123 

cases after receipt of test results (mean change: cases -4,012, controls -1,016; 124 

p=0.001) and more so than during the symptomatic period before receipt of test results 125 

(mean change: cases -2,894, controls -1,083, p=0.03). For RHR and sleep metrics, we 126 

did not observe a statistically significant decrease in the AUC after removing the post-127 

result data.  128 

 129 

Finally,  when only using the post-result-data in the test period (Figure 1c), the AUCs is 130 

comparable to the all-data AUC for all metrics (Figure 2i-2l, RHRmetric: 0.62 vs 0.63; 131 

SLEEPmetric: 0.63 vs 0.66; STEPmetric: 0.75 vs 0.75; all-sensor: 0.72 vs 0.75), 132 

indicating no substantial loss of discriminative accuracy is incurred by only using post-133 

result data when defining the metrics. We performed conditional permutation tests as 134 

above, but with the number of random days removed being the number of days prior to 135 

receipt of test results. No statistically significant decrease in AUCs was observed for 136 

any of the metrics (Extended Data Figure 2e-2h). 137 

 138 
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Our analysis reveals the discriminative accuracy of wearable data in COVID-19 139 

detection can be explained by behavior changes after receiving test results, more so 140 

driven by subjects’ within-person change in physical activity, less so by sleep or RHR. In 141 

particular, when removing data on and after receipt of test results, the AUC based on 142 

STEPmetric drops significantly from the all-data AUC. A small though non-statistically 143 

significant drop was observed for SLEEPmetric. No decrease was observed for 144 

physiology-based RHRmetric. This pattern is consistent with behavior change after 145 

receiving COVID-19 test results. Compared to symptomatic individuals who tested 146 

negative, symptomatic individuals who received a positive COVID-19 test may initiate 147 

stricter quarantine measures thus reducing activity and aim to get more sleep. It 148 

appears that in the short term sleep is more resistant to change than physical activity 149 

during the test period, likely strongly regulated by circadian rhythms 8. 150 

 151 

This study has some limitations. First, our sample is a small subset of symptomatic 152 

subjects from a sizable cohort. In future studies, it is critical to aggregate data from 153 

multiple studies to further validate and study the variation in AUC with factors that may 154 

impact the propensity of behavioral change. Second, the cohort is likely not 155 

representative of the entire spectrum of population that may have access to both 156 

wearables and tests. However, the unique cohort of medical interns who are likely more 157 

adherent to quarantine measures strengthened the specific investigation addressed 158 

here. It is of interest to investigate the same question in a broader population. Third, the 159 

SARS-CoV-2 tests are not perfectly sensitive or specific. Knowledge about these test-160 

related parameters will likely further improve AUC estimates. Fourth, recall of symptom 161 
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onset date and test date might not be entirely accurate, but this population of medical 162 

interns is particularly primed to remember the dates due to workplace enforcements of 163 

symptom screening, testing, and compulsory quarantines. 164 

 165 

In a future pandemic, passively-collected wearable data linked with test results may 166 

reveal distinct patterns of behavioral change across subpopulations. For example, lack 167 

of appropriate behavioral changes upon receiving test results may hurt discriminative 168 

accuracy based on wearable sensor data. Variation in the AUC of the step metric by 169 

age group may indicate differential levels of within-person change in activity. Groups 170 

with higher step-based AUC may have effectively quarantined after receiving their test 171 

results; while groups with lower step-based AUC may indicate either delay in their 172 

receiving the test results or difficulty and infeasibility in reducing physical activity. 173 

Subpopulations with lower observed AUCs may benefit from more targeted public 174 

health policy innovations that may promote behavioral change, such as self-quarantine 175 

measures. 176 
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Methods 230 

 231 

Metrics Definition. Participants were drawn from the 2019 and 2020 cohorts of the Intern 232 

Health Study. Study recruitment and procedures are detailed elsewhere.8 Briefly, 233 

incoming first-year medical residents were surveyed throughout the pandemic from April 234 

to December 2020 and asked to report whether and when they experienced any 235 

potential COVID-19 symptoms, were tested, and their test results. The sample for this 236 

analysis included individuals who reported symptoms and a COVID-19 test, as well as 237 

at least 50% of the wearable data (collected through Fitbit or Apple Watch) during both 238 

baseline (21 to 7 days prior to symptom onset) and test (0 to 7 days after symptom 239 

onset) periods.  240 

 241 

Following Quer et al. (2020) 2, we calculated metrics for sleep, activity, and resting heart 242 

rate (RHR), as well as an overall wearable sensor metric for each participant:  243 

 244 

RHRmetric = max(dailyRHR[test]) - median(dailyRHR[baseline])/IQR 245 

SLEEPmetric = mean(dailySLEEP[test]) - median(dailySLEEP[baseline])/IQR 246 

STEPmetric = mean(dailySTEP[test]) - median(dailySTEP[baseline])/IQR 247 

SENSORmetric = RHRmetric /10 + SLEEPmetric - STEPmetric 248 

Discriminative Accuracy. We calculated ROC curves, AUC, sensitivity (SE), specificity 249 

(SP) for each metric to compare the intra-individual change in each metric with 250 
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symptom onset between COVID-19 positive and COVID-19 negative individuals. To 251 

assess which part of the test period data is mainly responsible for the realized AUC, we 252 

calculated these parameters in three data schemes: Scheme I - using all the data in 253 

baseline and test periods; Scheme II - removing data on and after receipt of test results 254 

in test periods; Scheme III - removing data before receipt of test results in test periods. 255 

 256 

Conditional Permutation Tests. In order to test the statistical significance of the 257 

observed AUC decrease in Scheme II and III, we designed the one-sided conditional 258 

permutation tests in a way that breaks the link between the indices of days removed 259 

during the test period and the dates of receiving the test results hence creating a null 260 

distribution that is adequate for assessing the statistical significance of the observed 261 

change in AUC. In particular, for each metric (RHR, sleep, activity, sensor) we perform 262 

the following steps: 263 

 264 

Step 1. Calculate AUC based on all the baseline and test data; 265 

Step 2. Remove part of the test data (on/after receiving the test results as in 266 

Figure 1b; OR before receiving the test results as in Figure 1c), and calculate a 267 

single AUC and the change from the AUC in Step 1; 268 

Step 3. Create B=1000 data sets, each by randomly removing the same amount 269 

of data for each person as in Step 2; based on each of B random reduced data 270 

sets, calculate an AUC and the difference from the AUC in Step 1, resulting in 271 

B=1000 values of change in AUC; 272 
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Step 4. Compare the change of AUC in Step 2 against the null distribution of the 273 

change of AUCs in Step 3; Calculate the p-value by the observed fraction among 274 

the 1000 randomly reduced data sets that have AUC change less than or equal 275 

to the observed change in Step 2. 276 

 277 

All analyses were conducted using R 4.0.2 9.  278 

 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 

 288 

 289 

 290 

 291 

 292 

 293 

 294 
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 296 

Figure 1. Data Schemes. a-c, green: included data; red: excluded data; R: the day 297 

receiving test results: (a) include all data; (b) exclude data on and after the day 298 

receiving test results; (c) exclude data before the day receiving test results since 299 

symptom onset. Ninety-two subjects (87.6%) received their results within the 300 

symptomatic period (0 to 7 days after symptom onset). 301 
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 302 
 303 

Figure 2. AUCs based on RHR, sleep, activity and all-sensor metric derived from 304 

wearable sensors to differentiate symptomatic subjects who were tested positive 305 

and negative corresponding to data schemes I-III. (a-d): Scheme I - all data; (e-h) 306 

Scheme II - remove data on and after knowing the test  results; (i-l): Scheme III - 307 

remove data since symptom onset and before the test results. For each data scheme in 308 

the row, the four panels are for RHR, sleep, activity and sensor metrics, respectively.309 
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Extended Data Figure 1. Summary of key characteristics, metrics and COVID-19 test results.
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Extended Data Figure 2. One-sided conditional permutation test for assessing the 
null that, compared to random data reduction, no additional change in AUC 
caused by removing data: (a-d) on or after receipt of test result and (e-h) in the 

symptomatic period and prior to receipt of test results.  The random data removal and 

AUC calculation are done for RHR, sleep, step and the all-sensor data, respectively 

(shown in four panels in each row). In each panel, the red line indicates the observed 

change of AUC; the blue line is at zero, indicating no change. The reference 

distributions are not centered at zero despite data removal being random; because on 

average there are more days after the receipt of test results than before, random data 

removal may still impact AUCs. For each metric, if a red line is at the left tail of the 

histogram, we conclude a statistically significant additional decrease in AUC.  
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