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Abstract 

Drugs.com provides users’ textual reviews and numeric ratings of drugs. However, text reviews may not always be 
consistent with the numeric ratings. Overly positive or negative rating may be misleading. In this project, to classify 
user ratings of drugs with their textual reviews, we built classification models using traditional machine learning and 
deep learning approaches. Machine learning models including Random Forest and Naive Bayesian classifiers were 
built using TF-IDF features as input. Also, transformer-based neural network models including BERT, BioBERT, 
RoBERTa, XLNet, ELECTRA, and ALBERT were built using the raw text as input. Overall, BioBERT model 
outperformed the other models with an overall accuracy of 87%. We further identified UMLS concepts from the 
postings and analyzed their semantic types in the postings stratified by the classification result. This research 
demonstrated that transformer-based models can be used to classify drug reviews and identify reviews that are 
inconsistent with the ratings. 

Introduction 

The evaluation of the efficacy and safety of drugs heavily relies on randomized controlled trials with rigorous inclusion 
and exclusion criteria.1 However, such processes are limited to a small number of individuals enrolled in the study and 
are constrained to participants in the target population who meet possibly restrictive eligibility criteria, limiting the 
population representativeness and subsequent study generalizability.2,3 The ramifications of these acclimations could 
potentially have resulted in the overestimation of the efficacy of the product and misidentification of adverse 
events/side effects in the diverse population.4 To counter such issues, approaches such as post-marketing drug 
surveillance have been introduced to optimize the safety of the drug after its regulatory approval and mass production.5  

There are two major forms of post-marketing drug surveillance. Some are formed by government regulators such as 
the Vaccine Adverse Event Reporting System (VAERS) by the United States Food and Drug Administration6 or the 
Yellow Card Scheme by the United Kingdom Medicines and Healthcare Products Regulatory Agency.7 Also, 
public/private organizations have a system to monitor drug side-effects such as the Research on Adverse Drug events 
And Reports.8 Existing methods for identifying adverse events typically focused on analyzing molecular drug 
composition,9 query logs,10 VAERS records,11 or clinical notes in the medical records12 but did not analyze specifically 
the sentiment of the consumers using their reviews of the drug.13 The application of post-market drug surveillance has 
been successfully applied in the identification of adverse events through safety reports by the introduction of deep 
learning-based methods including the extraction of temporal events, the procedure performed, and social 
circumstance14.  

In the era of Web 2.0, the Internet has opened up new pathways to obtain information directly from consumers about 
their drug reviews in an elaborative format. Publicly available information on the Internet offers an easily attainable 
resource that could be leveraged to gain a deep understanding of the drug reviews by the users. Entire user reviews 
are fully available on drug review websites, on which users can comment on their personal experiences of the drugs 
they have taken for a specific condition. Unlike many other forms of medical data, this information is not filtered 
through medical professionals. Since these reviews are given by anonymous users, there is no risk of patient health 
record violation for confidentiality.  These reviews contain a plethora of information regarding individual experiences 
associated with the drugs such as symptoms, adverse events, and interactions with other drugs. Such reviews have 
also contained an extensive amount of user sentiment related to a particular condition, which could be leveraged to 
detect the side effects and efficacy of drugs.15  

However, many barriers exist in the extraction of sentiment from these online medical reviews. For instance, user 
reviews of drugs in such online forms are typically unconventional and most reviewers lack medical knowledge, 
posing barriers for extracting meaningful information from them. In addition, many review websites use some form 
of numerical rating that has served the role of quantifying such a sentiment, but they do not provide a clear guideline 
for giving a certain numeric rating. As such, these review websites may have introduced biases as individual users 
may have different perception as to what a high score means versus what would have constituted a low score. Users 
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have tended to reduce the effort required in reporting values by rating all qualities as highly important, thus resulting 
in overly positive ratings.16 This could lead to an unintended positive view of the overrated drugs by the general public, 
albeit less effective for certain population subgroups. Prior research has found that web-based reviews have the 
potential to be viewed as an applicable source of information for analysis, but the direct reliance on consumer ratings 
could be biased by the consumer experience. For example, addictive drugs have been observed to be typically highly 
rated in comparison to other drugs which have treated the same condition, even if these additive drugs 
underperformed.17 Thus, the ratings of those drugs may be skewed, thus a potential solution could be analyzing the 
relationship between the review and the rating and identify skewed ratings based on the textual review.18    

The application of machine learning, especially through transformer-based language models pre-trained with an 
enormous amount of data, offers a unique approach to classify textual information.19 In this project, we evaluated the 
feasibility of leveraging machine learning and natural language processing to classify user ratings based on their 
textual review to identify the locations of contingency. In addition, the constructed models can then be tested to 
identify overly positive and overly negative instances. To provide some interpretability of the classification results, 
we used an interpretation tool called Eli5 to highlight phrases in the text that have a positive or negative impact on the 
classification results. The overly positive (false negative) or overly negative (false positive) scores (user rating that 
was incorrectly classified by the model) were further analyzed with QuickUMLS to identify semantic type patterns 
associated with these classifications. 

Methods  

Dataset 

We obtained the dataset from the UCI Machine Learning Repository.20 These instances were collected from Drugs.com 
using Beautiful Soup. The dataset used for this study consists of user drug reviews, drug names, related medical 
conditions, and a 10-point rating. The rating were integer values ranging from 1 to 10 with 10 being the highest 
possible rating. Table 1 shows example records of the dataset. Figure 1 shows the distribution of reviews by ratings.  
The ratings were shown to be skewed to the left to suggest that most drugs received a relatively high score. Prior 
analysis of this dataset focused primarily on the sentiment analysis21 and classification of reviews used an n-gram 
technique which used unequal classes, thus skewing accuracy22. Neither was there an emphasis on the error analysis 
of the models. In total, the dataset consists of 215,063 instances. The numeric ratings had a mean of 7.00 with a 
standard deviation of 3.27. There are 836 classified medical conditions in the dataset. 

Table 1. Two examples of a high-rating review versus a low-rating review with condition, drug name, and rating. 
Drug 
Name 

Condition Review Rating 

Chantix Smoking 
Cessation 

I smoked for 50+ years. Took it for one week and that was it. I didn’t think it 
was possible for me to quit. It has been 6 years now. Great product. 

10.0 

Excedrin Migraine Does not work for people sensitive to caffeine. I was jittery and nervous and 
queasy after using a single dose. 

2.0 

 

 
Figure 1. Total number of reviews in the dataset.  
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Review Rating Classification 

Since the primary focus of this study was to classify textual reviews, the data was broken down using a median of the 
ratings: ratings 8 or above were considered above average, and below 8 were considered as below average. The binary 
classification was chosen over multiple classes since the other objective of this project was to identify overly positive 
and overly negative ratings which could be identified by misclassification of the system versus the actual score. Thus, 
misclassification identification in its simplest sense would only be possible with a binary system. Instances in which 
the reviews contained more than 514 tokens were removed from the study due to the input size limit of the transformer-
based language models. 

The common methodology for transfer learning has been applied through the application of pre-training on a large 
unannotated corpus that was capable of understanding the composition of the data type such as patterns in the 
language. This process could be considered as self-supervised learning. This pre-trained model is then followed by 
the fine-tuning process which focused on the training on an application-specific dataset.  

BERT: Some common language models are pre-trained by predicting the next word in a sequence, but Bidirectional 
encoder representation from transformer (BERT) looked at bidirectional predicting context masked intermediate text 
tokens in the pretraining from Wikipedia and BookCorpus and next sentence prediction. Bert-base-uncased was used 
for this project23.   

BioBERT: The BERT model has been pre-trained with a medical corpus from publicly available data from PubMed 
and PMC.24 The model which was used was from Huggingface labeled Bio_ClinicalBERT. 

ALBERT: A Lite BERT (ALBERT) is a model which focused on being a less memory-heavy and faster version of 
BERT through the separation of the word embedding into two matrixes and by cross-layer parameter sharing.25 Albert-
base-v2 was used for this model.  

RoBERTa: Robustly Optimized BERT Approach (RoBERTa) has been considered a pretraining model that eliminates 
the next sentence prediction task and adapts a novel approach of dynamic masking which randomized the masked 
token between training epochs.26 RoBERTa outperformed BERT of multiple results such as GLUE, RACE, and 
SQuAD. Roberta-base was the model selected for this project.  

XLNet: As a more computationally expensive model, the Generalized Auto-Regressive model (XLNet) implemented 
a system where it applies an autoencoder language model.27  

ELECTRA: Efficiently Learning an Encoder that Classifies Token Replacements Accurately (ELECTRA) replaced 
the masked language task with a generator and pre-trains the model to identify which token has been replaced.28 The 
Electra-base-discriminator was used for this project. 

We split the dataset into a training set (60%), a validation set (20%), and the test set (20%). These datasets were further 
classified into lists which were then converted into Transformer datasets that could be trained by a neural network to 
generate a model. 

We constructed these transformer-based text classification models utilizing the Huggingface transformers using the 
Python k-train pipeline wrapper class for text classification. The models used for this project consisted of BioBERT, 
ELECTRA, RoBERTa, XLNet, ALBERT, and BERT. The parameter included a 514 max token length, a 5e^-5 
learning rate, and a batch size of 6. The train test dataset was fed into the neural network trained to minimize validation 
data loss. After the training was completed, a confusion matrix of the test data was generated to determine F1 scores 
for the classes and the accuracy in comparison to the user ratings.  

As a baseline approach for evaluating the transformer-based models, bag-of-words (BOW) models were constructed 
based on term frequency and inverse document frequency (TF-IDF). The textual reviews were converted into a bag 
of words representation. Afterward, a term TF-IDF score matrix was computed for the bag of words representation. 
We trained and evaluated a Random Forest classifier and a Naïve-Bayes classifier with the BOW features. 

The test data was stratified for the top 10 conditions based on the test data user reviews as seen in Table 2. The 
transformer models were then used to classify each of the different conditions to determine condition-specific F1 score 
and accuracy.  The overall workflow is outlined in Figure 2. 
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Table 2. Condition-specific statistics. Birth Control was the most common condition which users reviewed followed 
by depression, pain, anxiety, and acne. 

Top 10 Conditions # of Instances Condition-Specific 
Mean Rating 

Condition-Specific 
Median Rating 

Birth Control 38345 6.08 7 
Depression 12129 7.10 8 
Pain 8241 7.62 9 
Anxiety 7795 7.69 9 
Acne 7411 7.37 9 
Bipolar Disorder 5598 7.12 8 
Insomnia 4895 6.69 8 
Weight Loss 4852 8.03 9 
Obesity 4748 7.73 9 
ADHD 4497 7.31 8 

 

Model Interpretation 

After the best-performing transformer model was selected, to provide some interpretability for the model, Eli5 metrics 
were applied to the model. Eli5 has been used to understand why a certain classification through the identification of 
important features such as highlighting significant text features.29 This is accomplished by inspecting the model 
parameters to discover the global implications. This was performed for many reviews to establish some sense of how 
the model performed these classifications. Top scores were also computed through the Eli5 metrics. 

Error Analysis  

An analysis of the potential relationship between false positives, false negatives, true positives, true negatives from 
the best overall performing models was conducted by analyzing the occurrences of certain semantic types of the 
Unified Medical Language System (UMLS) Metathesaurus, which links terms to biomedical concepts.30 We would 
like to see whether certain error types had deviation in the semantic types present in the review in comparison to the 
other conditional cases. This was conducted using the QuickUMLS package, an unsupervised tool for biomedical term 
extraction using simstring.31 We chose 8 semantic types that were most prevalent in the dataset and had some medical 
significance, including Sign or Symptom, Disease or Syndrome, Organism Function, Pathologic Function, Body 
Substance, Body Location, or Region, Body Part, Organ, or Organ Component, and Health Care Activity. Only 
instances with a 1.0 Jaccard similarity were retained, and the best matching CUIs were selected.  After the semantic 
types were extracted for all the reviews, the means were calculated by true positive, true negative, false positive and 
false negative (class type). A one-way ANOVA was employed to determine whether there was a significant difference 
based on the mean value of the number of concepts of a certain semantic type per post across different class types. 

 
Figure 2. The workflow of the project. 
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Results 

Classification of the Drug Review Rating 

Overall, the model generated by the BioBERT and ELECTRA outperformed the other models on a variety of metrics 
as displayed in Table 3. The BOW models showed lower accuracy compared to the other constructions. XLNet had 
the longest training time compared to the other models.  Table 4 provides the condition-specific statistics for the top 
10 conditions. The ratings of the reviews pertaining to the Birth Control, Depression, Pain drugs were classified with 
high accuracy than the ratings of the drugs for other conditions. The conditions with lower instances had lower 
accuracy than the conditions with higher instances. However, there are many notable deviations present such as the 
pain and obesity models’ lower accuracy or the higher accuracy for the ADHD model. 

Table 3. Overall condition validation from the test dataset for the minimized loss for the top-performing models.  

Model Above Average F1 Below Average F1 Accuracy 

BERT 0.84 0.84 0.84 
RoBERTa 0.83 0.83 0.84 
XLNet 0.84 0.84 0.84 
BioBERT 0.87 0.87 0.87 
ELECTRA 0.85 0.87 0.86 
ALBERT 0.75 0.81 0.78 
Random Forest (BOW) 0.77 0.45 0.68 
Naïve Bayes (BOW) 0.76 0.03 0.61 

 

Table 4. Results of condition-specific classifications for the top 10 conditions.  

Condition Model Above Average 
F1 

Below 
Average F1 

Accuracy 

Birth Control ELECTRA 0.89 0.94 0.92 
 BioBERT 0.86 0.92 0.90 
Depression ELECTRA 0.88 0.88 0.88 
 BioBERT 0.87 0.87 0.87 
Pain ELECTRA 0.83 0.81 0.82 
 BioBERT 0.85 0.83 0.84 
Anxiety ELECTRA 0.87 0.82 0.85 
 BioBERT 0.87 0.81 0.85 
Acne ELECTRA 0.90 0.88 0.89 
 BioBERT 0.86 0.84 0.85 
Bipolar Disorder ELECTRA 0.88 0.84 0.86 
 BioBERT 0.84 0.87 0.86 
Insomnia ELECTRA 0.82 0.86 0.84 
 BioBERT 0.82 0.84 0.83 
Weight Loss ELECTRA 0.87 0.80 0.85 
 BioBERT 0.89 0.79 0.86 
Obesity ELECTRA 0.82 0.77 0.80 
 BioBERT 0.85 0.79 0.83 
ADHD ELECTRA 0.86 0.88 0.87 
 BioBERT 0.88 0.87 0.87 

 

Error Analysis 

The results generated in Table 5 are produced by applying the Eli5 toolkit to the BioBERT trained model. There is a 
clear relationship between the words highlighted and the classification that was made by the model. Terms highlighted 
in green supports the classification generated by the model, while terms generated in red oppose the predictions. The 
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shade of the color represents the level of importance at which a word contributes to the classification. Phrases related 
to side-effects were typically highlighted as below-average features such as being a “bit moody” or “sore”. The 
positive effects of the drug were highlighted as above-average features such as “my pain almost totally disappeared”. 
Specific highlighted terms by the ELi5 metric could potentially be subjected to an incorrect sentiment association. For 
example, the phrase “my cramps disappeared” in Table 5 for the false negative adverse event review was shown to 
support the prediction of a negative below average feature. However, this phrase would usually have a positive 
connotation associated with it unlike what is suggested by the model. In general, the major reason for a miss prediction 
by the model was primarily due to the presence of a mixture of positive and negative elements present in the text. This 
could have resulted from the presence of multiple medications, changes in the effectiveness of the medication over 
time, the extent of the medicinal effects, or treatment experience which could work in both sentimental directions to 
result in false positives or false. Adverse Events, in general, could result in false positive or false negatives depending 
on the extent to which the side-effect concerned someone. In addition, if a classification error occurred, a lower number 
of adverse events tended to be classified as false positive versus false negative. Overall, the interpretability of 
misclassifications, through the Eli5 tool kit revealed an important aspect of how the model used specific keywords.   

Table 5. Examples of false positives and false negatives in BioBERT model with the important words highlighted in 
green (positively impacting the classification results) and red (negatively impacting the classification results) by the 
Eli5 toolkit.  

Class type/reason Review 

False 
negative/multiple 
medications 

for me, vyvanse has the “smoothest” feeling of the adhd medicines i have tried. i have found t
hat concerta (methylphenidate) and focalin (dexmethylphenidate) create an anxious feeling. v
yvanse does not make me feel this way. downside: it can be outrageously expensive. 

False 
positive/Temporal 
effectiveness 

When i first started lyrica, my pain almost totally disappeared. after about 3 weeks, my pain s
tarted returning. my tongue started to tingle and was sore. 

False 
negative/adverse 
events 

love this. cleared my skin up, made my period so light and my cramps disappear. i was a bit 
moody for the first month, but that went away. 

False positive/ 
medication 
ineffectiveness 

"i have cysteine stones...huge! passed 9 small stones within 30 mins after taking. and with ver
y little pain in the uretha but doesn’t help much with the ureter pain.  

False 
positive/treatment 
experience 

it gets the job done. tastes gross and i personally had a hard time keeping it down but i manag
ed. it took about 2 hours for the first dose to kick in and I’ve been going since. took the 2nd d
ose an hour ago and almost clear! 

 

Most semantic types were found to have a p-value < 0.05 for most of the class types based on the results shown in 
Table 6. The physiologic function semantic type for the BioBERT model and clinical drug name semantic type for 
both models were found to be insignificant. This suggests that both models tend not to heavily rely on the name of the 
clinical drug in predicting a score but could also be due to the lack of clinical drug names present in the user reviews. 
This idea is further supported based on the results of the ELi5 which shows many clinical drugs highlighted less 
impactful (lighter) to the classification than other terms in general.  Based on results of the ELECTRA model, the 
average number of concepts of most sematic types (e.g., Sign or Symptom) in true negative instances is greater than 
that of true positive instances; and the average numbers of concepts of most sematic types in the false positive and 
false negative instances are between that of true positive and true negative instances  

However, the BioBERT model has some more significant deviation from the most common class distribution in the 
ELECTRA model. Significant deviation from this class type distribution in the BioBERT model occur for Disease or 
Syndrome, Organism function, Pathologic function, Body region or Location. 

All the implementation code and more examples of the misclassifications can be found in the GitHub repository.32 
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Table 6. The average mean number of semantic types reported for each class type based on the classification results 
of the overall BioBERT and ELECTRA models. P-values were generated using a 1-way ANOVA test for each 
condition using semantic type as the independent variable. Semantic types that differed from the most common pattern 
and were significant (α=0.05) are in bold.  

Model Semantic 
Types 

Sign or 
Symptom 

Disease 
or 
Syndrome 

Organism 
Function 

Pathologic 
Function 

Body 
Substance 

Body 
Location 
or 
Region 

Body Part, 
Organ, or 
Organ 
Component 

Health 
Care 
Activity 

ELECTRA True 
Positive 

1.167 0.595 0.522 0.577 0.079 0.256 0.579 0.382 

True 
Negative 

2.317 0.925 0.867 0.879 0.153 0.435 0.944 0.534 

False 
Positive 

1.512 0.663 0.592 0.638 0.083 0.276 0.659 0.465 

False 
Negative 

1.733 0.750 0.778 0.716 0.137 0.366 0.814 0.516 

P-values < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

BIOBERT True 
Positive 

1.374 0.697 0.623 0.675 0.097 0.307 0.688 1.374 

True 
Negative 

1.993 0.784 0.734 0.752 0.130 0.369 0.802 1.993 

False 
Positive 

1.705 0.784 0.725 0.706 0.111 0.345 0.781 1.705 

False 
Negative 

1.806 0.733 0.747 0.698 0.123 0.329 0.784 1.806  

P-values < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

 

Discussion 

In this study, we built multiple classification models to classify drug review rating using the review text. Afterward, 
the Eli5 toolkit was applied to explain the models’ classification by highlighting the words that positively or negatively 
impacted the classification result. Informed by these experiments, it was clear that the consumers' online drug reviews 
contain a vast quantity of information related to the sentiment expressed by the user. Transformer-based models have 
the potential to serve as a methodology to discriminate between overly positive and truly positive scores. Overall, this 
research outlined a potential process of identifying consumer drug review bias. This was consistent with other studies 
which found that subjective effects are often distorted in rating systems.33  

When comparing different transformer-based models, the BioBERT and ELECTRA models outperformed the other 
models when the same amount of information was present. One possible reason for BioBERT to outperform other 
models is that BioBERT model was pre-trained with biomedical texts which were topically related to the drug 
reviews.34 According to the error analysis, ELECTRA model followed the pattern that the average numbers of concepts 
of most semantic types per post in true negative posts were greater than those in true positives; and those of false 
positive and false negative instances falling between those of true cases. This is further cemented by the fact that the 
ELi5 toolkit highlighted these terms as more important contributors in general. The BioBERT model tends to evade 
this classification for certain semantic types as previously stated in the error analysis. BioBERT trained with 
biomedical text allowed it to find more intricate relationships among the terms, allowing it to reach a better prediction 
accuracy. However, BioBERT and ELECTRA did significantly follow a similar pattern for the semantic types such 
as Sign or Symptom, Body substance, Body part organ or Organ component, and Health care activity. As it is clear 
that both models relied significantly on these factors to decern the sentiment of a user review, it is likely that user also 
weighted these factors higher than other semantic types when deciding their rating of the drugs. As such, higher 
number of possible adverse events (sign or symptoms), the need for more possible medical interventions (healthcare 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 8, 2021. ; https://doi.org/10.1101/2021.04.15.21255573doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.15.21255573
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

activities), and more reference to bodily fluids and organs (body substances and body part organ or organ component) 
tend to result in a lower rating.  

Overly positive and negative scores given by the users could be detected by this model. Overly positive tend to suggest 
that the review given by the user does not reflect the positive rating that the user gave and conversely for overly 
negative scores. Disparities between user reviews and ratings may signify a knowledge gap for the score criteria or a 
certain level of subjectivity of the scoring.  

Transformer models provide an automated, fast, and economic system to classify the sentiment of reviews from 
individuals for specific medications. Furthermore, transformer models' capability to generate a suggestion of a score 
solely based on user reviews can be utilized as a point of comparison to user-generated reviews. In a clinical study, 
this discrepancy could potentially contribute towards advancing a conversation with the reviewer to further investigate 
the cause for such variations. In addition, ELi5 is an easy tool to understand what noteworthy terms contribute to the 
model, and potentially reviewers relied on providing more clarity on the logic behind the score. The identification of 
significant term contributors through the ELi5 metrics could hint at factors such as adverse events that are important 
in post-market drug surveillance. The binary classification approach of BioBERT and other transformer models could 
aid in potentially finding negative drug reviews in data that lacks a numeric score. This filtration of reviews delivers 
a vital step to simplify the process in the identification of adverse events, side effects, and possible medical 
interactions. A fast-paced system sentiment score prediction attests to its impact in analyzing large social media drug 
datasets providing a manageable tool to separate reviews into separate classes. The classified social media data can 
then be adopted for different purposes such as topic modeling by sentiment types.  

Limitations and Future Work  

Although this model was able to successfully classify reviews in a binary system, the ability for large class 
identification is still unknown and warrants further investigation. One important issue with many transformer models 
was the issue of over-fitting.35 In addition, many transformer models such as XLNet are computationally expensive 
which may result in a long training time. Additional research will concentrate on the utilization of transformer models 
on non-scored-based social media data. In addition, another area of focus could be to expand this model for multi-
class identification as this may be more advantageous in the determination of highly negative reviews. 

Conclusions 

This study presents the construction of transformer-based models for the classification of drug reviews from 
drugs.com. The most successful model in this project was the BioBERT model with the highest F1 score. Overall, the 
transformer models outperformed the traditional machine learning models using bag-of-words features. These binary 
transformer models tended to be effective at decerning highly optimistic reviews from reviews that contain a mixture 
of positive and negative feedback.   
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