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ABSTRACT 

Context: Real-life data consist of exhaustive and unbiased data to study drug-safety profiles but 

are underused because of their complex temporality (i.e., safety depends on the dose, timing, 

and duration of treatment) and the considerable number of potential side effects to study. We 

aimed to create a pipeline that manages the complex temporality of real-life data using a data-

driven strategy (i.e., without any hypothesis on the potential side effects to search for) to 

highlight the safety profile of a given drug. We used hydroxychloroquine (HCQ) and its co-

prescription in a real-life database to illustrate this pipeline.  

Methods: We incorporated a weighted cumulative exposure statistical model into a data-driven 

strategy. This pipeline makes it possible to highlight both long-term and short-term side effects, 

while avoiding false positives due to the natural course of the underlying disease. We applied 

the proposed pipeline to a cohort of 2,010 patients with a prescription of HCQ and used their 

drug prescription as the source of data to highlight the HCQ safety profile.  

Results: The proposed pipeline introduces a bootstrap strategy into weighted cumulative-

exposure statistics estimates to highlight significant drug signals. As applied to HCQ, the 

proposed pipeline showed nine drugs to be significantly associated with HCQ exposure. Of 

note, one of them has therapeutic indications for known HCQ side effects. Other associations 

could be explained by therapeutic indications linked to conditions associated with HCQ 

indications in France. 

Conclusion: We propose a data-driven pipeline that makes it possible to provide a broad picture 

of the side effects of a given drug. It would be informative to pursue the development of this 

pipeline using other sources of data.   
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1. INTRODUCTION 

Adverse drug reactions (ADRs) have been attributed to causing over 770,000 injuries 

and 100,000 deaths and $76.6 billion in annual costs in the US (1). The rapid detection of ADRs 

has become a crucial public health issue. Currently, drug safety is monitored by the 

pharmacovigilance system, which uses spontaneous reporting systems (SRSs) to detect, collect, 

and analyze ADRs. However, SRSs suffer from underreporting. Indeed, less than 10% of 

serious ADRs are reported (2,3). Moreover, this system is subject to biases due to selective 

reporting (most of the reported cases are considered as suspected ADRs).  

The increasing availability of electronic healthcare records (EHRs) offers major 

opportunities to investigate a wide spectrum of ADRs and detect drug safety signals closer to 

real use and time, as EHR databases record information for large populations over long follow-

up periods (4). These databases, such as electronic medical records and administrative claims 

databases, have been mostly used to confirm or disprove potential signals flagged by SRSs. A 

number of data-mining techniques have been specifically developed for the automatic detection 

of drug-safety signals using either SRS or EHR databases (5–11). Over the last decade, several 

international initiatives have been developed; the Mini-Sentinel and OMOP (Observational 

Medical Outcomes Partnership) in the United States and the PROTECT (Pharmaco-

epidemiological Research on Outcomes of Therapeutics by a European Consortium) and EU-

ADR (Exploring and Understanding Adverse Drug Reactions) in Europe. 

The challenge of drug-safety signal-detection methods is to handle four types of 

difficulties. The first difficulty is the data source. The study of long-term adverse drug reactions 

or effects not suspected by healthcare professionals requires the use of a real-life data source, 

such as EHR or claims databases, which do not suffer from the known bias of underreporting 

and reporting selection (12,13). Many drug-safety methods use diagnostic codes from EHR or 

claims databases to highlight a signal. In most countries, including France, these diagnostic 

codes are only reported when patients visit hospitals and are therefore strongly biased towards 

severe side effects. In addition, the diagnostic codes in these databases are primarily reported 

for financial purposes (reimbursement) and may subsequently be biased towards diagnoses that 

can be priced. On the contrary, drug reimbursements provide a less biased data source, although 

they are less precise because a given drug may correspond to several indications and multiple 

drugs may be prescribed for a given condition. The second difficulty is the consideration of a 

broad spectrum of potential side effects, and not only candidate side effects (14), to be able to 

highlight new signals. The third difficulty is to precisely take into account the temporal aspect. 
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Time is important, because the type of adverse reactions caused by the medication under study 

may differ according to the duration of the medication prescriptions. Certain adverse effects 

may occur soon after the start of the medication under study, whereas others may require a 

prolonged period of administration to become manifest (15). Safety depends on the dose, 

timing, and duration of the treatment. The last difficulty concerns distinguishing true side 

effects from the natural course of the disease. Indeed, the natural course of the disease for which 

the prescribed drug is indicated may be associated with many other diagnoses, which may be 

indistinguishable from drug side effects using common drug-safety methods. 

In this study, we developed a data-driven pipeline based on a cumulative exposure test 

to highlight the broad picture of side effects of a given drug. We used the French national 

medication reimbursement database, and given the Covid19-pandemic context, applied this 

pipeline to HCQ. 

 

2. Description of the WCE-AI pipeline 

The WCE-AI pipeline aims to overcome the four aforementioned difficulties as follows: 

- Data source: We used all drug prescriptions as the unique source of side-effect signals. 

Drugs are represented at the 5th level of the ATC to group all medications at the active 

substance level that can be prescribed for the same indication. 

- Temporality: We modeled the increase in risk related to cumulative dose using splines 

in Cox proportional hazards models (16,17). This model is called weighted cumulative 

exposure (WCE). It allows the representation of complex cumulative effects of dose, 

timing, and duration of interest drug (18). 

- Signal sensitivity: We use bootstrapping to infer the distribution of association statistics 

between the exposure and each ATC class. This provides insight into the broad spectrum 

of association signals and highlights those that are significant. 

- Specificity of side effects: We introduced a covariate representing disease severity built 

from expert knowledge to automatically pinpoint drugs given for the condition for 

which the exposure drug has been prescribed. 

 

We first introduce the WCE-AI pipeline, followed by a presentation of a comparative method 

to our WCE-AI pipeline. Finally, we present a use case of this pipeline and a comparative 

method applied to HCQ. 
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2.1 WCE-AI pipeline 

The WCE-AI pipeline is divided into three steps: data extraction, data preparation, and safety-

profile extraction (Figure 1). 

 
Figure 1 : Flow chart of WCE-AI pipeline 

 
 

i. Data extraction: All drug prescriptions are extracted, along with their treatment 

initiation date, end of treatment date, ATC class, and patient characteristics, such as age, 

sex, and disease severity. Disease severity is defined from expert knowledge on the 

drugs being indicated for the disease for which the exposure is described. 

ii. Data preparation: We built a data frame corresponding to the WCE package (19) data 

format for each level 5 ATC class. In each data frame, each row corresponds to a given 

time period, such as day, week, or month (to be defined). Id identifies the patients. Start 

and Stop identify the beginning and end of each interval (Stop in row n = Start in row 

n+1). The intervals are closed on the right. For each patient, the first start (start = 0) is 

the date of the first drug prescription in the study period. Event is a binary indicator for 

the event of interest, which has a value of 1 if the event occurred in the interval specified 

by Start and Stop. For a given subject, event = 1 can only occur in the last interval of 

his or her follow-up. For each data frame, the event corresponds to the prescription of 

an level 5ATC class. The last four columns represent three fixed-in-time patient 

covariates (sex, baseline age, and severity), as well as exposure to the drug of interest. 

The severity covariate is set to 1 if the patient has been reimbursed at least once for the 

drug being indicated for the same condition for which it was prescribed (to be defined).   

iii. Safety-profile extraction: The weighted cumulative exposure (WCE) model is applied 

to estimate the cumulative effect of duration, dose, and prescription date for the drug of 
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interest (18). The WCE approach estimates the effect of past exposure using a weighted 

sum of all previous instances of exposure, with weights depending on the time elapsed 

since exposure and the dose (17,20). This makes it possible to account for the fact that 

the type of adverse reactions caused by the medication under study may depend on the 

duration of the medication prescription (certain adverse effects may occur soon after the 

start of the medication under study, whereas others may require a prolonged period of 

administration to become manifest). WCE is applied with adjustments for age, sex, and 

disease severity. For example, to measure the risk of obtaining a prescription of 

paracetamol/acetaminophen (event) after HCQ exposure (drug of interest), we search 

for the first prescription of paracetamol/acetaminophen for each patient in the cohort 

(event). Then, we define potential exposure to HCQ using the WCE method for the six 

months (time window) before the first paracetamol/acetaminophen prescription (Figure 

2).  
 

Figure 2: Weight function estimated by the WCE model for a paracetamol prescription after HCQ exposure  

 
 

Finally, a Cox proportional hazards model (HR) is fitted to compare a group exposed to the 

drug of interest (HCQ in this example) during the time window to a group not exposed during 

the same period.  
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To show that a drug is significantly associated with exposure, confidence intervals for each 

hazard ratio are needed. To estimate such confidence intervals, we chose to use the bootstrap 

method to extract both the confidence intervals and P-values of the HR and the age/sex/severity 

coefficient (number of repeats to be defined). The bootstrap method is applied for each unique 

patient identifier. We constructed bootstrap replicates of the data, each of which was randomly 

sampled with a replacement. Confidence intervals were estimated using the percentile method: 

 

["!"#$%	!'(') , "*++$%	!'(')] = [",∗, ".∗] 
 

where ",∗ denotes the jth quantile (lower limit) and ".∗ denotes the kth quantile (upper 

limit) 

 

& = ['2 × *], + = [(1 − '2) × *] 

 

For example, a 95-percentile bootstrap CI with 1,000 bootstrap samples is the interval between 

the 25th quantile value and the 975th quantile value of the 1,000 bootstrap parameter estimates. 

 

All analyses were performed using R (version 4.0.3) and WCE package (version 1.0.2). 

 

2.2 WCE competitor 

We compared WCE to self-control case-crossover (SCCO) (21,22), as it relies on the same type 

of data. SCCO requires to define risk periods and a wash-out period. The case-defining event 

for each level 5 ATC class was a prescription of a level 5 ATC class other than HCQ. Four 

periods were defined for each individual with a prescription for the same level 5 ATC class 

separated by a washout period: one risk period and three control periods. Each period had the 

same duration (Figure 3). We performed a sensitivity study by varying the length of the periods 

(risk and control) between 3, 6, and 9 months, with a washout period of one month. The 

Bonferroni method was used to adjust the P-values to control the type I error rate in multi-

testing. 
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Figure 3: Diagram of self-control case-crossover 

 
Schematic representation of a case–crossover analysis. The case-defining event is the prescription of a level 5 
ATC class other than HCQ and the prescription is the HCQ drug. Three control periods are selected (shown as 
CTR) and one risk period (shown as RISK) for each individual. The duration of the periods (risk and control) is 
set to three months in this example. The washout period (shown as WO) has a standard duration of one month. 
 

2.3. Use case 

In the present study, we applied the WCE-AI pipeline to patients newly exposed to HCQ 

(considered in WCE as the exposure variable). The cohort of patients receiving HCQ was 

extracted from the EGB, a permanent 1/97 representative sample of the Système National 

d’Informations Inter-régimes de l’Assurance Maladie (SNIIRAM), which includes the data for 

66 million people. The EGB includes data for approximately 780,000 people (23), consisting 

of de-identified data on demographic characteristics (sex, year of birth, date of death), long-

term diseases (ALD), and reimbursed acts (visits, medical procedures, laboratory tests, 

dispensed drugs, medical devices) (23–25). We extracted the data of all patients with at least 

one reimbursement for HCQ. We only included patients who did not receive HCQ during the 

previous year to select only newly exposed patients (Figure 4). For these patients, we extracted 

the following data: age, sex, date of all drugs deliverances, date of  “chronic disease certification 

status”, which is a marker of disease severity in the French health system.  
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Figure 4. Population flowchart of hydroxychloroquine cohort 

 
 
All the parameters that were used in our study and that can be modified for other studies are 
presented in Table 1. 

 
Table 1: Parameter set-up 

Parameter Set-up in our study Explanation 
Drug of 
interest  

Hydroxychloroquine drug for which we want to know all co-
prescriptions after exposure 

Study period 01/01/2008 to 12/31/2018 study start and stop  
Time period month time interval between start and stop 
Time window 24 months potential exposure period before the event 
Covariate age, sex, and severity covariate to fit the model 
Severity 
covariate 

value = 1 if the patient declared a 
chronic disease (lupus or rheumatoid 
polyarthritis) and/or received 
immunosuppressive treatment 

immunosuppressive treatments are 
indicated for polyarthritis, which is an 
HCQ indication. We include other 
information available on disease severity 
for this study. 

Bootstraps 1,000 repeat on sample of the WCE model 
application 

 
The EGB database contains only anonymized data and its access is legally authorized 

without having to receive authorization from the national data protection agency (CNIL). The 

study protocol was submitted to the appropriate INSERM and CNAMTS entities, as legally 

required. In addition, the study was approved by our Institutional Review Board (CER-APHP 

CENTRE, IRB n°20180603). 
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RESULTS 

The HCQ cohort contains 2,010 patients (nwomen = 1,577, 78%), with 386 different ATC 

classes. The average age at the time of the first prescription of HCQ was 54.8 (sd = 16.2). 

Within the cohort, 1,045 (52%) patients had certification (received full reimbursement) for a 

chronic disease. Among them, 12% (n = 240) each had vasculitis, systemic lupus 

erythematosus, or systemic scleroderma, 11% (n = 214) rheumatoid arthritis, and 6% (n = 122) 

each malignant neoplasm or malignant disease of the lymphatic or hematopoietic tissue. The 

average duration of follow-up was > 10 years (Table 2). However, there was an association 

between age and HCQ exposure (P < 0.001 by linear regression analysis), as well as between 

sex and HCQ (P < 0.001 by the Wilcoxon test). There was also a strong association between 

HCQ exposure and severity (P < 0.001 by the Wilcoxon test). 

 
Table 2. Population characteristics 

Description Hydroxychloroquine 
Cohort  

n (patients) 2,010 

number of women (%) 1,577 (78%) 

mean age (IQR) 54.8 (23) 

number of severe patients (%) 701 (35%) 

mean exposure, in months (sd) 9.5 (16.1) 

average follow-up, in years (sd) 10.3 (1.3) 

number of different ATC classes 386 

Number of patients with a chronic disease 1,045 (52%) 

vasculitis, systemic lupus erythematosus, systemic scleroderma 240 (12%) 

rheumatoid arthritis 214 (11%) 

malignant neoplasm, malignant disease of the lymphatic or hematopoietic tissue 122 (6%) 

 
The WCE-AI pipeline enabled the identification of nine ATC classes associated with 

the prescription of HCQ, of which five were borderline significant. The highest risk ratios were 

obtained for hydrocortisone (HR = 3.96 [1.66-7.55]), alendronic acid and cholecalciferol (HR 

= 3.24 [1.22-7.36]),  2.73 [1.03-6.13], valsartan (HR = 2.73 [1.03-6.13]), and chlormadinone 

(HR = 2.65 [1.16-4.76]) (Figure 5 & Appendix 1).    

The SCCO competitor method identified eight (81 before Bonferroni adjustment of p-

values) ATC classes associated with HCQ prescription with control and risk periods of three 

months, 40 (162 before Bonferroni adjustment of p-values) for those of six months, and 67 (210 
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before Bonferroni adjustment of p-values) for those of nine months. The top 10 odds ratios per 

period are presented in Appendix 2. 

In total, 0, 2, and 3 ATC classes were common between the WCE-AI and SCCO 

methods for the periods of 3, 6, and 9 months, respectively: anethole trithione and tropicamide 

(common to WCE-AI, SCCO 6 months and SCCO 9 months) and tixocortol (common to WCE-

AI and SCCO 9 months). 

 

 

Figure 5. Forest plot of the effect of hydroxychloroquine on its co-prescription with the WCE-AI model 
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DISCUSSION 

We report a new data-driven pipeline applied to HCQ on a cohort of 2,010 patients. This 

pipeline allowed us to identify nine ATC classes linked to HCQ, with the highest being 

alendronic acid and cholecalciferol, which are prescribed for osteoporosis.   

Among the significant results we obtained, tropicamide, which is given in eye 

examinations for diagnostic purposes, is particularly relevant. Indeed, it is known that HCQ 

causes retinopathies and this ocular condition is monitored annually in people under such 

treatment (26). In addition, we identified a relevant signal for metopimazine, an antiemetic, 

with nausea being a frequently reported HCQ side-effect (27).  

We found three drugs with a significant HR, as well as a significant severity coefficient: 

anethole trithione, a bile secretion-stimulating drug that restores salivation and relieves the 

discomfort of dry mouth in Sjögren's syndrome, often associated with lupus (28); 

hydrocortisone, a glucocorticoid often used for withdrawal from more potent corticosteroids in 

the treatment of lupus or rheumatoid arthritis; and chlormadinone, a progestin macro-pill 

recommended as a contraceptive method for women with lupus (29,30). These three drugs, with 

a significant severity coefficient, are related to the management of the disease treated by HCQ 

and should not be considered as potential side effects. 

Flu vaccine is also a co-prescription of HCQ. Indeed, influenza vaccination is a 

recommendation for patients with autoimmune disease who receive potentially 

immunosuppressive treatments (31). 

Alendronic acid and cholecalciferol are also a co-prescription of HCQ for optimal 

management of patients with lupus or rheumatoid arthritis, mostly post-menopausal women, by 

internists or rheumatologists. In the literature, lupus and menopause are found to be two factors 

that favor osteoporosis (32,33). We believe that alendronic acid and cholecalciferol are not 

directly associated with HCQ but rather with the underlying disease. 

Tixocortol is a glucocorticoid used as a nasal spray to treat allergic rhinitis. In the 

literature, there is a link between autoimmune diseases, such as lupus and allergic rhinitis. This 

link can be explained by the mechanism of these two diseases, which involves immune 

dysregulation and an increase in inflammatory mediators (34–38). 

We did not find any clinically satisfactory explanation for the association with valsartan, 

an angiotensin II receptor blocker. It is know that HCQ can cause short-term conduction 

disorders (bundle or atrioventricular block) and, less frequently, long-term morphological 

abnormalities in heart tissue (myocardial hypertrophy) (39). Valsartan is given for high blood 
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pressure and heart failure. It is impossible to know for which indication valsartan was 

prescribed, but because the signal is weak (borderline significant) and was not reproduced with 

the SCCO method, it may be a false positive signal due to multiple testing. 

This pipeline did not detect any drugs that could reflect an adverse dermatological 

effect, even though it has been described in the literature (40). 

The results of the SCCO method are difficult to interpret. This method is unable to 

separate ATC classes that are related to the course of the underlying disease (lupus or 

rheumatoid arthritis) from those that may represent a side effect. 

 
Study strengths and limitations 

 A major strength of this study was the use of a population-wide claims database based 

on the national public healthcare system, making the database population representative of the 

entire country population (41). The EGB is a particularly suitable basis for post-marketing 

authorization safety studies to assess the occurrence of rare adverse events (24,25,42–44).  

Our data-driven pipeline is based on a self-controlled method, thus avoiding  the usual 

biases of methods such as case-control (45) or propensity score (46) based approaches. In 

addition, we used exact temporal patterns to detect the broad spectrum of potential side effects 

of drugs and not only candidate side effects based on a priori hypotheses. Our method, with the 

exact temporal pattern of drug exposure, can identify short- and long-term side effects (16) and 

provides the possibility to adjust on covariates. 

Our study also had several limitations. Claims databases are primarily used for 

healthcare reimbursement purposes and we assume that the reimbursed drugs are consumed by 

the patient. These databases are extensive and can pose problems in terms of the statistical 

significance of the results and their interpretation. We only used drugs reimbursed outside the 

hospital. It may be informative to supplement this data source with hospital prescriptions. 

Another limitation is that our method only considers the co-prescription of drugs as the source 

of adverse drug reaction signals. Indeed, certain adverse drug effects do not require the 

prescription of another drug. For example, prolongation of the QT interval after exposure to 

HCQ cannot be detected by our method because the treatment for prolongation of the QT 

interval is the discontinuation of HCQ. Similarly, our method will not be able to detect fatal 

side effects or ototoxicity of HCQ (47).  

In conclusion, we present a data-driven pipeline that provides a broad picture of the side 

effects of a given drug. Applied to HCQ, our pipeline allowed us to show that the adverse 

effects of HCQ are essentially known and controlled by health professionals. 
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This pipeline could not highlight all the known side effects of HCQ, such as cardiac 

toxicity, because it relies on a single source of data, drug prescriptions. It would be useful to 

pursue the development of this pipeline by bringing in other sources of data.   
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Appendix 1. ATC Class associated with hydroxychloroquine prescription in the WCE-AI model 

Class ATC n HR [CI5%] Age coefficient [CI5%] Sex coefficient [CI5%] Severity coefficient  [CI5%] 

A04AD05 - METOPIMAZINE 747 1.45 [1.01-2.01] 0.99 [0.99-0.99] 1.42 [1.19-1.72] 0.92 [0.79-1.05] 

A16AX02 - ANETHOLE TRITHIONE 138 2.32 [1.02-4.41] 1.02 [1.01-1.04] 1.78[1.12-3.76] 1.58 [1.08-2.33] 

S01FA06 - TROPICAMIDE 254 1.96 [1.12-3.27] 1.05 [1.03-1.06] 0.48 [0.29-0.81] 1.47 [0.90-2.46] 
M05BB03 - ALENDRONIC ACID AND 
COLECALCIFEROL 71 3.24 [1.22-7.36] 0.97 [0.96-0.97] 27.66 [8.24-95630273.85] 1.43 [0.95-2.04] 

H02AB09 - HYDROCORTISONE 69 3.96 [1.66-7.55] 1.01 [1.0-1.03] 0.90 [0.52-1.94] 3.07 [1.86-5.25] 

G03DB06 - CHLORMADINONE 142 2.65 [1.16-4.76] 1.03 [1.03-1.04] 0.84 [0.69-1.05] 1.42 [1.16-1.72] 

C09CA03 - VALSARTAN 79 2.73 [1.03-6.13] 1.04 [1.03-1.06] 1.61 [0.80-4.54] 1.28 [0.77-2.11] 
J07BB02 - INFLUENZA, INACTIVATED, 
SPLIT VIRUS OR SURFACE ANTIGEN 545 1.63 [1.04-2.42] 0.99 [0.99-1.0] 1.20 [1.05-1.40] 1.01 [0.89-1.13] 

R01AD07 - TIXOCORTOL 927 1.37 [1.01-1.82] 1.05 [1.04-1.05] 0.90 [0.68-1.25] 1.09 [0.83-1.40] 
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 Appendix 2. Top 10 ATC classes associated with hydroxychloroquine prescription in the SCCO model after Bonferroni 
adjustment of p values 

 
Top 10 class ATC, SCCO model with periods (risk and control) of 6 months OR [CI5%] 

M01AH01 - CELECOXIB 6.46 [2.7-15.46] 

A12AA04 - CALCIUM CARBONATE 5.04 [2.52-10.09] 

L04AX03 - METHOTREXATE 4.97 [3.16-7.83] 

A16AX02 - ANETHOLE TRITHIONE 4.04 [2.02-8.07] 

H02AB07 - PREDNISONE 3.8 [2.73-5.29] 

M01AH01 - CELECOXIB 3.34 [1.92-5.8] 

R06AX13 - LORATADINE 3.32 [1.85-5.96] 

J02AA01 - AMPHOTERICINE B 3.26 [1.88-5.64] 

A02BC04 - RABEPRAZOLE 3.25 [1.86-5.7] 

J01AA02 - DOXYCYCLINE 3.23 [2.04-5.13] 

 
Top 10 class ATC, SCCO model with periods (risk and control) of 9 months OR [CI5%] 

M01AH01 - CELECOXIB 6.74 [4.36-10.43] 

P01AB02 - TINIDAZOLE 6.4 [2.48-16.54] 

A16AX02 - ANETHOLE TRITHIONE 5.48 [2.71-11.08] 

L01BA01 - METHOTREXATE 4.65 [2.74-7.89] 

H02AB07 - PREDNISONE 4.4 [3.21-6.03] 

A12AA04 - CALCIUM CARBONATE 4.14 [2.22-7.72] 

B03BB01 - FOLIC ACID 3.74 [2.72-5.14] 

A01AD11 - VARIOUS  3.63 [2.12-6.2] 

N06AB05 - PAROXETINE 3.6 [2.05-6.31] 

N02AA01 - MORPHINE 3.54 [1.99-6.3] 

 

Top 10 class ATC, SCCO model with periods (risk and control) of 3 months OR [CI5%] 

M01AH01 - CELECOXIB 3.88 [2.04-7.36] 

L04AX03 - METHOTREXATE 2.93 [1.83-4.7] 

S01XA20 - ARTIFICIAL TEARS AND OTHER INDIFFERENT PREPARATIONS 2.6 [1.77-3.83] 

N05BA12 - ALPRAZOLAM 2.51 [1.65-3.81] 

H02AB07 - PREDNISONE 2.27 [1.57-3.29] 

A07XA04 - RACECADOTRIL 2.24 [1.51-3.32] 

H02AB06 - PREDNISOLONE 1.97 [1.41-2.76] 

A11CC05 - COLECALCIFEROL 1.81 [1.36-2.4] 
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