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Abstract 

Genome-wide association studies (GWAS) have identified tens of thousands of genetic loci 

associated with human complex traits and diseases1,2. However, the majority of GWAS were 

conducted in individuals of European ancestry3. Failure to capture global genetic diversity has 

limited biological discovery and impeded equitable delivery of genomic knowledge to diverse 

populations4. Here we report findings from 102,900 individuals across 36 human quantitative 

traits in the Taiwan Biobank (TWB), a major biobank effort that broadens the population 

diversity of genetic studies in East Asia (EAS). We identified 979 novel genetic loci, pinpointed 

novel causal variants through fine-mapping, compared the genetic architecture across TWB, 

Biobank Japan (BBJ)5–7 and UK Biobank (UKBB)8,9, and evaluated the utility of cross-

phenotype, cross-population polygenic risk scores (PRS) in disease risk prediction. These 

results demonstrated the potential to advance genomic discovery through increasing and 

diversifying GWAS populations, and provided insights into the common genetic background for 

human complex traits in East Asian populations.   

 

Main  

The Taiwan Biobank (TWB) is a community-based prospective cohort study of the Taiwanese 

population with multi-omics genomic data, and longitudinal phenotypic and environmental 

measures (see https://www.twbiobank.org.tw/new_web_en/ for more information). Genotyping 

was performed using two different customized genome-wide arrays10. A total of 27,719 

participants genotyped on the TWBv1 array and 83,207 participants genotyped on the TWBv2 

array were included in this study and subsequently went through genotype quality control (QC) 

and imputation. Figure 1 provides an overview of the TWB samples, the traits examined, their 

abbreviations, and the analyses conducted in this study. 

 

After stringent QC, we performed GWAS on 36 quantitative traits (Figure 2a; Supplementary 

Tables 1 & 2) in 92,615 individuals with imputed genotype data across the two genotyping 

arrays (Methods). We selected these traits as they are intermediate phenotypes relevant to an 

individual's health and disease status. We used Regenie11, a two-step whole genome 

regression method for genetic association tests that accounts for sample relatedness and 

population structure, to perform association analyses on the two discovery batches (27,033 and 

65,582 individuals) separately. LD score regression (LDSC)12 intercept, λGC and λ1000 showed 

that there was negligible inflation due to population stratification in these GWAS (Supplementary 

Table 3). All traits had highly consistent genetic architectures across the two discovery batches, 

as shown by the high between-batch genetic correlations (rg) estimated by LDSC13 (median = 

1.028; Supplementary Table 3). We then meta-analyzed discovery batch 1 and 2 GWAS using 

an inverse-variance-weighted fixed-effect approach14. Using FUMA15 with the 1000 Genomes 

Project (1KG)16 phase 3 EAS samples as the LD reference, we identified 1,907 independent 

genome-wide significant loci (P-value < 5x10-8) across the 36 traits (Supplementary Tables 1 & 

2), among which 1,287 loci survived Bonferroni correction for the number of traits tested (P-

value < 5x10-8/36). The number of genome-wide significant loci per trait ranged from 1 for FEV1 

and FEV1 to FVC ratio (FEV1R), to 211 for height (HT). Using LDSC12,13, we estimated the 

SNP-based heritability (h2
g) for each trait (Figure 2b; Supplementary Table 4 ), which ranged 

from 0.009 (FEV1R) to 0.384 (HT), and pairwise rg between these traits (Figure 2c; 
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Supplementary Table 5), which identified clusters of highly genetically correlated traits (e.g., 

BFR, BMI, WT, WC, HC and WHR). 

 

We fine-mapped genome-wide significant loci using SuSiE17 (Methods). Of the 1,907 loci, 1,615 

were fine-mapped to a total of 1,972 credible sets, each representing an independent 

association signal (292 loci failed to identify a reliable credible set that passed QC thresholds; 

see Methods). Out of the 1,972 credible sets, 232 were mapped to a single variant with 

posterior inclusion probability (PIP) > 95%, among which 24 were missense variants (Table 1; 

Supplementary Table 6). This represented a 9.8-fold enrichment of missense variants (P-value 

< 1x10-16) compared with all variants in the fine-mapped loci, demonstrating the importance of 

missense variants in the quantitative traits examined in this study. All fine-mapped missense 

variants with the corresponding GWAS available in Biobank Japan (BBJ) and/or UK Biobank 

(UKBB) were replicated with the same direction of effect and study-wide significance (P-value < 

0.05/15=0.0033). These putative causal missense variants not only replicated previous findings 

(e.g., T1412N in CPS1 for PLT18 and V174A in SLCO1B1 for T-BIL19), but also represented 

novel causal variants in well-known genes (e.g., R103W in EXOC3L4 for GGT20) and implicated 

novel genes (e.g., D1171N in RREB1 for BMD-T and BMD-Z). Some of these high-PIP 

missense variants were also highly pleiotropic (e.g., S267F in SLC10A1 is associated with GGT, 

LDL-C and TC), suggesting their roles in multiple complex traits.  

 

Prior studies have shown that complex traits and diseases are genetically correlated at different 

levels between EAS and European (EUR) populations21–23, but the genetic overlap within EAS 

populations has not been characterized yet. Leveraging existing GWAS summary statistics from 

BBJ and UKBB, we investigated the comparative genetic architecture of quantitative traits within 

EAS (TWB vs. BBJ), and between EAS and EUR populations (TWB vs. UKBB and BBJ vs. 

UKBB). Intriguingly, among the 21 traits for which GWAS were available across the three 

biobanks, h2
g estimates in TWB were comparable with those in UKBB, but consistently higher 

than the h2
g estimates in BBJ, except for height (Figure 3a; Supplementary Table 7), even 

though many rg estimates between TWB and BBJ were indistinguishable from 1 (median = 

0.933; Figure 3b & 3c). When comparing within-EAS and cross-population (EAS vs. EUR) 

genetic correlations, within-EAS TWB-BBJ rg estimates were in general higher than TWB-UKBB 

rg and BBJ-UKBB rg estimates (Figure 3b & 3c; Supplementary Table 8). Despite these 

differences, we note that all within- and cross-population rg estimates were high 

(median=0.927). Taken together, these results suggested that the genetic architecture for the 

quantitative traits examined here was largely consistent across EAS and EUR populations. The 

systematic differences in TWB vs. BBJ h2
g estimates and TWB-UKBB vs. BBJ-UKBB rg 

estimates likely reflected differences in sample ascertainment. In particular, both TWB and 

UKBB are community- or population-based prospective cohorts, while BBJ is a multi-institutional 

hospital-based registry, in which biomarker measurements may be affected by the health 

condition and medication use of the patients. 

 

To maximize the power for genetic discovery in EAS populations, we meta-analyzed the GWAS 

from TWB and BBJ for 23 traits, using an inverse-variance-weighted fixed-effect approach14. We 

report a signal in the meta-analysis as novel if none of the variants within the locus reached 
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genome-wide significance (P-value < 5x10-8) in BBJ and UKBB GWAS. We identified a total of 

2,491 loci associated with the 23 traits, among which 579 were novel (Figure 4a; Supplementary 

Table 9). For the 13 traits for which BBJ GWAS were not available, we identified an additional 

484 genome-wide significant loci using TWB samples only, among which 400 were novel (i.e., 

no variant in these genetic loci reached genome-wide significance in UKBB) (Supplementary 

Table 9). The minor allele frequencies (MAF) of the lead SNPs in these 979 novel loci were 

significantly greater in EAS relative to EUR (average MAF = 30% in EAS vs. 22% in EUR; 

paired t-test P-value < 2x10-16). As expected, many of the associated loci were highly pleiotropic 

(Figure 4b; Supplementary Table 10). For example, TRPS1 was associated with 14 traits 

spanning the anthropometric, bone, hematological and metabolic categories. The mechanism 

underlying these pleiotropic associations (e.g., biological pleiotropy vs. mediated pleiotropy) 

warrants further investigations. 

 

To assess the clinical utility of biomarker GWAS, we examined whether polygenic risk scores 

(PRS) of biomarkers can be used to predict the risk of common complex disease. We applied 

PRS-CSx24,25, a Bayesian polygenic prediction method, to integrate the GWAS summary 

statistics of EAS and EUR ancestry, and calculate both an EAS-specific and an EUR-specific 

PRS for each biomarker. We then predicted five complex diseases [obesity (Ncase = 824; 

defined as BMI >= 30), overweight (Ncase = 3,873; defined as BMI >= 25), hypertension (Ncase 

= 1,149), hyperlipidemia (Ncase = 771), and type 2 diabetes (Ncase = 508)], in a held-out 

sample of the TWB (N = 10,285; TWBv2 array), using a linear combination of PRS from one or 

more biomarkers (Figure 5), controlling for age, sex and top 20 principal components (PCs) of 

genotype data. Biomarker PRS were significantly associated with disease status, explaining 

>8% of the variation for obesity, overweight and hypertension, 6% of the variation for type 2 

diabetes, and 4.3% of the variation for hyperlipidemia on the liability scale (AUC = 0.62 - 0.67; 

Figure 5; Supplementary Table 11). The odds ratios comparing individuals in the top 10% vs. 

the remaining 90% of the PRS distribution ranged from 2.0 to 2.7. As a comparison, we also 

predicted type 2 diabetes using the largest-to-date disease GWAS in EAS (Ncase = 41,223; 

Ncontrol = 243,023) and EUR (Ncase = 74,124; Ncontrol =  824,006)26. While the disease 

GWAS represented much larger sample sizes, prediction accuracy achieved by biomarker PRS 

was comparable (Figure 5; Supplementary Table 11). The relative contribution of each 

biomarker to the prediction of disease risk is summarized in Supplementary Table 12. 

 

In summary, we performed genome-wide analysis on 102,900 community-based TWB 

participants across 36 human complex traits. Leveraging GWAS summary statistics from BBJ 

and UKBB, we found that the genetic architecture for the quantitative traits examined was 

largely consistent within EAS and between EAS and EUR populations. Integrating TWB and 

BBJ GWAS identified a total of 2,975 genetic loci, among which 979 had not been reported in 

previous biobank GWAS. We additionally fine-mapped over 200 association signals to a single 

variant with PIP > 95%, and identified 24 putative causal missense variants that implicated 

novel genes underlying quantitative traits. Lastly, our PRS analysis demonstrated the potential 

utility of biomarker GWAS in predicting disease risk and the promise of multi-trait cross-

population polygenic prediction. We note that, despite the large number of novel loci identified, 

the current study only included quantitative traits, due to the ongoing data collection efforts on 
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disease phenotypes in TWB, and is thus limited in the scope of phenotypes analyzed. In 

addition, the collective sample size of TWB and BBJ remains relatively small compared with 

genetic studies in EUR populations, and may be underpowered for gene discovery of polygenic 

traits. We also note that we were only able to perform fine-mapping on the TWB sample, rather 

than using the TWB-BBJ meta-GWAS, due to the limited genomic coverage of the BBJ GWAS; 

the BBJ sample was imputed to 1KG phase 1 data, which only covers 45% of the variants in the 

phase 3 reference panel (37.9 million vs. 84.4 million)5,16. Nevertheless, the novel findings from 

genome-wide association analyses, fine-mapping,  and polygenic disease risk prediction based 

on the current analysis in TWB represent a major advance in diversifying GWAS samples and 

the characterization of the genetic architecture of human complex traits in EAS populations. 

Future endeavors on increasing the sample size and phenotype coverage in TWB, and 

improving cross-biobank data harmonization will further facilitate genomic discovery. 
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Figures 

 

 
Figure 1: Overview of the Taiwan Biobank sample and analysis. 

The abbreviations and index numbers for the 36 quantitative traits examined in this study are 

used throughout the text, tables and figures. The sample size noted in the figure reflects the 

final analytical sample size after genotype quality control and imputation. 
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Figure 2: GWAS results for 36 quantitative traits in the Taiwan Biobank.  

a. A Fuji plot summary of genome-wide significant loci associated with the 36 traits identified by 

Regenie. Each layer of the plot represents a single trait, with traits within the same category 

grouped by the same color. Each dot on the circular layouts represents a genome-wide 

significant hit; trait-specific associations are shown in a smaller-sized dot, while cross-trait 

associations are shown in a larger-sized dot. The inner circle summarizes all significant 

associations across traits into a stacked, circular plot. 

b. SNP-based heritability (h2
g) for the 36 traits in TWB estimated using univariate LD score 

regression (LDSC). Abbreviations of the traits are listed in Figure 1. The complete set of h2
g 

estimates, including standard errors and p-values, is available in Supplementary Table 4. The 

unusually large confidence interval (CI) of the h2
g estimate for total bilirubin (T-BIL) is driven by 

a Mendelian locus on chromosome 2, harboring the UGT1A1 gene. Modeling the signal in this 

locus as a fixed effect and removing the locus from the LDSC analysis produced a similar point 

estimate of h2
g with a much smaller CI (see Methods). 

c. Pairwise genetic correlations (rg) between the 36 traits in TWB estimated using bivariate 

LDSC. Significant rg after FDR correction is indicated by a cross sign. The complete set of rg  

estimates, including standard errors and p-values, is available in Supplementary Table 5. Both 

h2
g and rg analyses were based on GWAS generated by linear regression (see Methods).  
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Figure 3: Comparison of SNP-based heritability and within- and cross-population genetic 

correlation estimates for 21 quantitative traits in TWB, BBJ and UKBB. 

a. Comparison of the SNP-based heritability estimates (h2
g) in BBJ or UKBB against TWB.  

b. Comparison of the genetic correlation estimates (rg) between TWB and BBJ (within EAS) 

against the cross-population rg estimates between TWB and UKBB (EAS vs. EUR).  

c. Comparison of the genetic correlation estimates (rg) between TWB and BBJ (within EAS) 

against the cross-population rg estimates between BBJ and UKBB (EAS vs. EUR).  

21 traits for which GWAS summary statistics were available across the three biobanks were 

included for comparison: HT (1), BMI (3), DBP (10), SBP (11), WBC (13), RBC (14), HB (15), 

HCT (16), PLT (17), CR (19), T-BIL (22), ALT (23), AST (24), GGT (25), ALB (27), FG (31), 

HBA1C (32), TC (33), HDL-C (34), LDL-C (35), and TG (36) (See Figure 1 for the abbreviations 

of full names). All h2
g and rg were estimated using LD score regression based on high-quality 

variants available across the three biobanks and GWAS generated by linear regression. The 

dotted line indicates the diagonal line in each plot. The complete results of the h2
g and rg 

analyses are available in Supplementary Tables 7 & 8.  
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Figure 4: Genetic loci associated with quantitative traits in the East Asian populations.  

a. Genome-wide significant loci identified in the TWB and BBJ meta-analysis, tallied based on 

their significance in TWB, BBJ and UKBB.  

b. Distribution of pleiotropic loci defined as the number of associated traits for each locus.  

The complete results of loci discovery and information on the pleiotropic genes are available in 

Supplementary Tables 9 & 10. 
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Figure 5: Polygenic prediction of common complex diseases in the Taiwan Biobank. 

PRS-CSx was applied to jointly model the East Asian (EAS) and European (EUR) GWAS 

summary statistics of each biomarker, and derive an EAS-specific and an EUR-specific 

polygenic risk score (PRS). Each disease was predicted by the linear combination of PRS from 

one or more biomarkers (right panel), controlling for age, sex and top 20 principal components 

(PCs) of genotype data. The left-out TWB sample (N=10,285) was repeatedly and randomly 

divided into a validation dataset (where tuning parameters and the optimal linear combination of 

PRS were learnt), and a testing dataset (where the predictive performance of the final PRS was 

assessed). To benchmark the predictive performance of biomarker PRS, self-reported type 2 

diabetes (T2D) was also predicted by PRS derived from the EAS and EUR type 2 diabetes 

GWAS. Biomarker GWAS in EAS were obtained from the meta-analysis of TWB and BBJ (N = 

115,405 to 230,899); biomarker GWAS in EUR were obtained from UKBB (N = 315,133 to 

344,182) and the GIANT study (for BMI; N = 681,275). The T2D disease GWAS in EAS has 

41,223 cases and 243,023 controls (4,609 cases and 87,873 controls from TWB; 36,614 cases 

and 155,150 controls from BBJ); the T2D GWAS in EUR has 74,124 cases and 824,006 

controls. Each dot in the left panel represents the prediction accuracy (variance explained on 

the liability scale) from one random split of the dataset. Error bar represents the standard error 

of the prediction accuracy across 100 random splits for each disease. PRS performance metrics 

and the contribution of each PRS to the prediction of disease risk are available in 

Supplementary Tables 11 & 12. 
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Table 1: Fine-mapped missense variants with posterior inclusion probability (PIP) > 0.95 

in the Taiwan Biobank. 

Base pair position is in hg19. Allele freq (EAS) and Allele freq (EUR) are the allele frequencies 

of the reference allele (REF column) in East Asian and European populations, calculated from 

East Asians and non-Finnish Europeans in gnomAD v2.1.1, respectively. Marginal beta is the 

marginal effect size of the reference allele. BBJ and UKBB P-values for each variant were 

extracted from the BBJ and UKBB GWAS, respectively. No GWAS: GWAS of the trait has not 

been conducted in BBJ or UKBB. Missing: the fine-mapped missense variant and all variants in 

LD (R2 > 0.4) with the missense variant were not present in the GWAS. Low MAF: minor allele 

frequency < 0.1%. For BBJ, seven variants, including variants in LD (R2 > 0.4) with them, were 

not available in the GWAS summary statistics (labeled as “Missing”), due to limited genomic 

coverage of the 1000 Genomes Project phase 1 reference panel (unpublished data). For UKBB, 

seven variants had MAF < 0.1%, and thus were not included in the GWAS (labeled as “Low 

MAF”). Full fine-mapping results are available in Supplementary Table 6. 
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METHODS 

  

Taiwan biobank (TWB) 

Sample characteristics, quality control and Imputation 

The Taiwan Biobank (TWB) (https://www.twbiobank.org.tw/new_web_en/) is a prospective 

cohort study of the Taiwanese population with multi-omics genomic data and repeated 

measurements of a wide range of phenotypes collected from 149,894 individuals (as of April 

2021), with an expected final sample size of 200,000. Participants in TWB were recruited across 

29 recruitment centers with at least one center in each city or county of Taiwan. TWB has two 

recruiting arms: the community-based arm and the hospital-based arm. All participants included 

in this study were from the community-based arm. TWB collects extensive phenotypes including 

demographics, socioeconomic status, environmental exposures, lifestyle, dietary habits, family 

history and self-reported disease status through structured questionnaires. The anthropometric 

measures, and blood and urine samples were collected at recruitment, and biomarkers were 

assayed subsequently, following the manufacturer's protocol at Linkou, Taiwan. TWB 

participants were 30 to 70 years old at recruitment, and the sex ratio was 0.57 in the final 

analytic sample of this study (37,225 males and 65,675 females; see Figure 1).  

 

We obtained genome-wide genotype data from a total of 110,926 TWB participants. Genotyping 

was performed using two different customized chips. 27,719 samples were genotyped on the 

TWBv1 custom array, which was designed based on Thermo Fisher Axiom Genome-Wide CHB 

Array with customized contents; 83,207 samples were genotyped on the TWBv2 custom array, 

which was designed by Thermo Fisher Scientific Inc. based on whole-genome sequencing data 

from 946 TWB samples with customized contents.10 We divided the samples genotyped on the 

TWBv2 array into two subsets, with 68,975 samples for loci discovery and 14,232 samples for 

polygenic risk score (PRS) analysis. We refer to samples genotyped on the TWBv1 array as 

“discovery batch 1” and the loci discovery samples genotyped on the TWBv2 array as 

“discovery batch 2” (see Figure 1). 

 

We conducted stringent quality control (QC) for the two discovery samples and the sample for 

PRS analysis separately before imputation4,27. QC was performed using a combination of bash 

script, R, python and PLINK4,27, with scripts adapted from a recent biobank genotype QC 

project: https://github.com/Annefeng/PBK-QC-pipeline. We first filtered out variants with call rate 

< 0.98 and samples with call rate < 0.98, and removed variants that were duplicated, monogenic 

or not correctly mapped to a genomic position. We then merged TWB samples with the 1000 

Genomes (1KG) Project phase 3 data (N=2,504)16, and selected high-quality, common variants 

by removing multi-allelic and strand ambiguous SNPs, SNPs with call rate < 0.98 and minor 

allele frequency (MAF) < 5%, and SNPs located in long-range LD regions (chr6: 25-35Mb; chr8: 

7-13Mb). Next, we performed LD-pruning at R2 = 0.1, and computed principal components 

(PCs) of the merged genotype data with LD-pruned variants. Using the population labels of 1KG 

samples as the reference, we trained a random forest model with top 6 PCs to classify TWB 

samples into 1KG super-population groups: East Asian [EAS], European [EUR], African [AFR], 

American [AMR], South Asian [SAS]. We retained TWB samples that can be assigned to a 

homogeneous EAS population group with a predicted probability of EAS ancestry > 0.8. After 
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initial population assignment, we filtered out samples with heterozygosity rate outside of 6 

standard deviation (SD) from the sample average, and samples with mismatched genetic and 

self-reported sex. We then performed three rounds of in-sample principal components analysis 

(PCA) to identify remaining population outliers, each time removing TWB samples with any of 

the top 10 PCs that was more than 6 SD away from the sample average. We used the in-

sample PCs derived after outlier removal in subsequent analyses. Lastly, we removed variants 

with call rate < 0.98 and Hardy-Weinberg equilibrium (HWE) test P-value < 1e-10 within the 

EAS sample. 

 

After pre-imputation QC, we used Eagle v2.428 for pre-phasing and Minimac429 for genotype 

imputation with 1KG phase 3 data as the reference panel . We performed post-imputation QC 

by retaining variants with imputation INFO > 0.6 and MAF > 0.5% for the downstream analyses, 

which included up to 8,190,806 variants for discovery batch 1 and 8,156,315 variants for 

discovery batch 2, respectively. The imputed dataset included a total of 92,615 samples for loci 

discovery (27,033 samples for discovery batch 1 and 65,582 samples for discovery batch 2), 

and 12,997 samples for polygenic risk score (PRS) analysis. We further restricted the PRS 

analysis to 10,285 unrelated individuals that were also unrelated with the discovery GWAS 

samples. We note that while most of the phenotypes examined in this study were measured on 

the large majority of the discovery samples, the final analytic sample size of GWAS reduced to 

62,901 (17,111 from discovery batch 1 and 45,790 from discovery batch 2) for FEV1, FVC and 

FEV1R, and 65,360 (19,509 from discovery batch 1 and 45,851 from discovery batch 2) for AFP 

due to missing phenotypic data. 

 

Genetic association analysis 

We performed genetic association analysis on 36 quantitative traits including anthropometric 

measures and biomarkers from 8 categories as described in Figure 1. The three repeated 

measures for systolic and diastolic blood pressure and resting heart rate within the same visit 

were averaged. For each trait, we removed samples with phenotypic measures that were more 

than 6 SD away from the sample average. By doing so, we also removed samples with 

extremely high alpha-fetoprotein (AFP) levels that could be a result of pregnancy. We also note 

that the bone mineral density was measured using ultrasound at heel and then converted to T-

score (BMD-T) using an Asian young adult reference and Z-score (BMD-Z) using an Asian age-

matched reference. In addition, we randomly removed one sample from each pair of duplicated 

samples within and across the two discovery batches. We then performed inverse rank-based 

normal transformation (IRNT) within each batch to achieve normality of the phenotype. All 

following genetic analyses were based on IRNT transformed measures. Association analyses 

were performed separately for the two discovery batches, followed by an inverse-variance-

weighted fixed-effect meta-analysis (based on effect size estimates and standard errors) 

implemented in METAL14. 

 

We used linear regression implemented in Regenie11 for association testing, controlling for age, 

age2, sex, age by sex interaction, age2 by sex interaction, and top 20 PCs. Regenie is a two-

step whole-genome regression approach that accounts for potential population stratification and 

sample relatedness, providing better statistical power than restricting the association analysis to 
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unrelated individuals. Specifically, in step 1 of Regenie, we used a subset of LD-pruned (at R2 = 

0.9) SNPs with imputation INFO > 0.8 and MAF > 1% (919,630 SNPs for discovery batch 1 and 

745,794 SNPs for discovery batch 2) to calculate a leave-one-chromosome-out (LOCO) 

polygenic score for each trait and each individual using Ridge regression. Association testing 

was then performed, in step 2 of Regenie, including the LOCO polygenic predicted value from 

step 1 as an offset in the linear regression model, in addition to other covariates, to account for 

sample relatedness. Association tests were performed in three sets of phenotypes according to 

missing data patterns: (1) AFP; (2) FEV1, FVC, FEV1R; (3) all other phenotypes. The 

association test statistics were then meta-analyzed between discovery batch 1 and 2. The final 

meta-analysis results only included variants presented on both batches.  

 

Biobank Japan (BBJ) 

All Biobank Japan (BBJ) GWAS summary statistics were publicly available: 

http://jenger.riken.jp/en/result5–7. We included 23 GWAS of quantitative traits from BBJ: height 

(HT), body mass index (BMI), diastolic blood pressure (DBP), systolic blood pressure (SBP), 

white blood cell (WBC), red blood cell (RBC), hemoglobin (HB), hematocrit (HCT), platelet 

(PLT), blood urea nitrogen (BUN), creatinine (CR), uric acid (UA), total bilirubin (T-BIL), alanine 

aminotransferease (ALT), aspartate aminotransferase (AST), gamma-glutamyltransferase 

(GGT), albumin (ALB), fasting glucose (FG), hemoglobin A1c (HbA1c), total cholesterol (TC), 

high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and 

triglyceride (TG). Phenotypes used in these GWAS were either converted to z-scores (HT, TG, 

DBP, SBP, WBC, RBC, HB, HCT, PLT, BUN, CR, UA, AST, ALT, GGT, TC, HDL-C, LDL-C) or 

inverse rank-based normal transformated (BMI, T-BIL, ALB, FG, HbA1c). All association tests 

were performed by first residualizing phenotypes on age, age2, sex, top 10 PCs, and trait-

specific covariates (e.g., disease status), followed by a linear regression, except for height for 

which association tests were conducted with a linear mixed-effects model implemented in 

BOLT-LMM (v2.2).6,30 We meta-analyzed each of these 23 GWAS with the corresponding 

GWAS in TWB using sample-size-weighted z-score meta-analysis implemented in METAL.14 

We retained variants presented in either TWB or BBJ in this meta-analysis for loci discovery in 

the East Asian populations (Figure 4; Supplementary Tables 9 & 10). 

 

UK Biobank (UKBB) 

All UK Biobank GWAS summary statistics used in this study were publicly available: 

http://www.nealelab.is/uk-biobank. These GWAS were conducted and released by Benjamin 

Neale’s lab at Massachusetts General Hospital and the Broad Institute. We included 27 GWAS 

from UKBB: height (HT), weight (WT), body mass index (BMI), body fat rate (BFR), waist 

circumference (WC), diastolic blood pressure (DBP), systolic blood pressure (SBP), white blood 

cell (WBC), red blood cell (RBC), hemoglobin (HB), hematocrit (HCT), platelet (PLT), creatinine 

(CR), Microalbumin urine (mALB), total bilirubin (T-BIL), alanine aminotransferease (ALT), 

aspartate aminotransferase (AST), gamma-glutamyltransferase (GGT), albumin (ALB), forced 

expiratory flow (FEV1), forced vital capacity (FVC), fasting glucose (FG), hemoglobin A1c 

(HbA1c), total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-

lipoprotein cholesterol (LDL-C), and triglyceride (TG). All phenotypes used in these GWAS were 

inverse rank-based normal transformated. Association tests were conducted using linear 
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regrerssion, controlling for age, age2, sex, age by sex interaction, age2 by sex interaction, and 

top 20 PCs. 

 

Pleiotropic genes 

To identify genes influencing multiple traits, we took the list of genes mapped to each locus from 

FUMA15 (“genes.txt” from the FUMA download), and picked the gene with the most significant 

P-value in the “minGwasP” column for each locus. Multiple genes were retained for a locus if 

they shared the minimal P-value. We then report the number of traits a gene was associated 

with in the “Number of trait” column in Supplementary Table 10, and visualized the distribution 

of pleiotropic loci in Figure 4b.  

 

Fine-mapping 

We implemented a summary statistics based version of SuSiE (Sum of Single Effects)17 in 

Python for the fine-mapping analysis (Code availability). All loci identified through FUMA using 

the TWB summary statistics were extended +/- 100kb to ensure sufficient locus data was 

available for fine-mapping. In-sample LD was calculated using hard-called genotypes merged 

across post-imputation samples from the two discovery batches. We identified the 95% credible 

set using the following settings: marginal P-value threshold < 5x10-8, minimum purity = 0.5, 

algorithmic convergence tolerance = 10-4, and the maximum number of iterations = 100. An 

initial run was performed limiting to a maximum of 5 signals. Loci in which five credible sets 

were identified were re-run, relaxing the maximum number of signals to 10. Loci that failed to 

converge in the initial run were rerun through an iterative process of reducing the maximum 

number of signals from 5 towards 1 until model convergence. Annotations for credible sets were 

generated using ANNOVAR31,32 (version 2019Oct24) on the GENCODE V19 database, and 

ExAC using VEP version 10131,32. 

 

Heritability and genetic correlation analyses 

LD score regression (LDSC)13 was derived under linear regression and thus may produce 

biased heritability (h2
g) and genetic correlation (rg) estimates when applied to GWAS summary 

statistics generated from mixed models. In addition, all association tests in BBJ and UKBB were 

performed under linear regression (except for height in BBJ). Therefore, to enable a fair 

comparison of h2
g and rg between TWB, BBJ and UKBB, we applied LDSC to GWAS summary 

statistics generated from linear regression in unrelated TWB samples; the sample size for h2
g 

and rg analysis (ranged from 53,962 to 79,407; Supplementary Tables 3, 4 & 5) was thus 

smaller than the Regenie-based GWAS sample size. Specifically, we removed one sample in 

each pair of second degree or more closely related relatives within and across the two discovery 

batches in TWB, and performed association tests in the remaining unrelated individuals, 

controlling for age, age2, sex, age by sex interaction, age2 by sex interaction, and top 20 PCs, 

followed by meta-analysis across the two batches using PLINK2.27 This set of association 

GWAS results was used in within-TWB h2
g and rg estimation shown in Figure 2b & 2c and 

Supplementary Tables 3, 4 & 5, and cross-biobank h2
g and rg comparisons presented in Figure 

3 and Supplementary Tables 7 & 8. 
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We used LDSC to estimate h2
g for 36 traits and the pairwise rg between them within TWB. We 

additionally applied LDSC to BBJ and UKBB GWAS summary statistics to estimate h2
g for 21 

traits that were available across the three biobanks. For fair comparison, all LDSC analyses 

were restricted to shared SNPs with INFO > 0.8 and MAF > 1% across the three biobanks. LD 

scores were calculated using the 1KG phase 3 reference panel that matched the ancestry of the 

GWAS sample. We note that the h2
g estimate for total bilirubin (T-BIL) had an unusually large 

standard error (SE = 0.105; median SE for the other traits = 0.016; see Figure 2 and 

Supplementary Table 7). We identified a Mendelian locus for T-BIL on chromosome 2 (P-value 

< 1e-1000), harboring the UGT1A1 gene, which is known to cause inherited unconjugated 

hyperbilirubinemia, including Gilbert Syndrome (OMIM: 143500), Crigler–Najjar Syndrome type I 

(OMIM: 218800), and Crigler–Najjar Syndrome type II (OMIM: 606785). Removing this 

Mendelian locus reduced LDSC h2
g estimate from 0.184 to 0.091 and its SE from 0.105 to 

0.020. We separately estimated the T-BIL phenotypic variance explained by the top signal in the 

Mendelian locus as a fixed effect to be 0.088, which matched the missing h2
g by removing this 

locus from the LDSC analysis.  

 

We used the baseline-LD-X model of S-LDXR22 (version 0.3-beta) to estimate cross-biobank 

genetic correlations, using shared SNPs with INFO > 0.8 and MAF > 1% across the three 

biobanks. To estimate the cross-population rg between TWB and UKBB, and between BBJ and 

UKBB, we used the default LD scores for EAS and EUR populations provided by S-LDXR as 

the reference panels. To estimate within-EAS rg between TWB and BBJ, we used the LD scores 

and regression weight files for EAS provided by S-LDXR as the reference panels for both 

biobanks. 

 

Polygenic prediction 

For each biomarker (BMI, DBP, SBP, HDL-C, LDL-C, TG, and HbA1c), we collected the largest 

GWAS in EAS (the meta-analysis of TWB and BBJ) and EUR populations (Neale Lab UKBB 

GWAS for all biomarkers except BMI, for which GWAS summary statistics from the GIANT 

study33 were used). Population-specific PRS for each biomarker was calculated using PRS-

CSx25, a Bayesian polygenic prediction method that jointly models GWAS summary statistics 

from multiple populations to improve polygenic prediction. Specifically, for a fixed global 

shrinkage parameter (phi = 1e-6, 1e-4, 1e-2, and 1.0 in this study) that models the overall 

sparseness of the genetic architecture, PRS-CSx returned posterior SNP effect size estimates 

for each discovery population (i.e., EAS and EUR), which were used to calculate both an EAS-

specific PRS and an EUR-specific PRS in the left-out TWB sample (N=10,285) that was 

unrelated to the discovery samples in TWB. We predicted five common complex diseases 

(obesity, defined as BMI>=30; overweight, defined as BMI>=25; hypertension; hyperlipidemia, 

and type 2 diabetes) using the PRS of one or more biomarkers. Specifically, we predicted 

obesity and overweight using BMI, hypertension using BMI, DBP and SBP, hyperlipidemia using 

BMI, HDL-C, LDL-C and TG, and type 2 diabetes using BMI and HbA1c (Figure 5, right panel). 

We repeatedly and randomly divided the left-out TWB sample into a validation dataset 

(N=5,000), where we selected the optimal global shrinkage parameter for each biomarker and 

learnt the optimal linear combination of the PRS across biomarkers that were used as 

predictors, and a testing dataset (N=5,285), where we evaluated the predictive performance of 
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the final PRS, controlling for age, sex and top 20 PCs. This process was repeated for 100 times. 

To compare the prediction accuracy of PRS derived from biomarker GWAS and disease GWAS, 

we additionally applied PRS-CSx to the largest EAS (the meta-analysis of TWB and BBJ) and 

EUR type 2 diabetes GWAS26, and used the resulting PRS to predict self-reported type 2 

diabetes in the same TWB held-out sample. 

 

Data availability  

Publicly available data were downloaded from the following databases: 1000 Genomes Project 

phase 3 data: https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.html; BBJ summary 

statistics: http://jenger.riken.jp/en/result; UKBB summary statistics: http://www.nealelab.is/uk-

biobank (“GWAS round 2” was used in this study). 

 

Code availability  

Regenie: https://github.com/rgcgithub/regenie; 

PLINK2: https://www.cog-genomics.org/plink/2.0; 

METAL: https://genome.sph.umich.edu/wiki/METAL; 

FUMA: https://fuma.ctglab.nl; 

Fuji plot: https://github.com/mkanai/fujiplot; 

LDSC: https://github.com/bulik/ldsc; 

S-LDXR: https://huwenboshi.github.io/s-ldxr; 

PRS-CSx: https://github.com/getian107/PRScsx; 

Python implementation for SuSiE (attached as a tarball and will be released in GitHub upon 

publication) 
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