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ABSTRACT:  

Purpose: In Mendelian disease diagnosis, variant analysis is a repetitive, error-

prone, and time-consuming process. To address this, we have developed the 

Mendelian Analysis Toolkit (MATK), a configurable automated variant ranking program. 

Methods: MATK aggregates variant information from multiple annotation 

sources and uses expert-designed rules with parameterized weights to produce a 

ranked list of potentially causal solutions. MATK performance was measured by a 

comparison of MATK-aided versus human domain-expert analyses of 1060 inherited 

retinal degeneration (IRD) families investigated with an IRD-specific gene panel (589 

individuals) and exome sequencing (471 families).  

Results: When comparing MATK-assisted analysis to expert curation in both 

IRD-specific and exome sequencing (1060 subjects), 97.3% of potential solutions found 

by experts were also identified by the MATK-assisted analysis (541 solutions identified 

with MATK of 556 solutions found by conventional analysis). Furthermore, MATK-

assisted analysis identified 114 additional potential solutions from the 504 cases 

unsolved by the conventional analysis.  

Conclusion: MATK expedites the process of identifying likely solving variants in 

Mendelian traits and reduces variability coming from human error and researcher bias. 

MATK facilitates data re-analysis to keep up with the constantly improving annotation 

sources and NGS processing pipelines. The software is open source, available at 

https://gitlab.com/matthew_maher/mendelanalysis 

Key Words: Variant ranking, automation, Mendelian analysis  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.04.09.21255188doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.09.21255188


3 
 

INTRODUCTION: 

 Next Generation Sequencing (NGS) has been increasingly used in the study of 

Mendelian diseases for both new gene discovery and clinical diagnosis1. However, as 

more sequencing data becomes available, the ability to analyze that data must scale 

appropriately2. Automation in read alignment and variant calling is a rapidly advancing 

field, which has shown consistent progress in speed and accuracy3,4. Similarly, the tools 

and datasets available for variant annotation are constantly improving and expanding5,6, 

as seen in the human genome reference, transcript information, variant population 

frequency7,8 and predicted variant effects9. However, the interpretation of variants and 

the determination of a genetic diagnosis remains a primarily manual and iterative task 

which requires analysts to integrate information from multiple sources. Analysis of single 

nucleotide variant (SNV) and structural variant (SV) calls generally involves hard filters 

to reduce the number of plausible causative variants and further cross-referencing with 

multiple online databases, such as OMIM, ClinVar10 and HGMD11 (Figure 1A). While 

guidelines have been developed to standardize both SNV and SV interpretation12,13 and 

some work has been done to automate the use of these guidelines14, the task remains 

tedious, error-prone, and highly dependent on the analysts’ experience. Furthermore, 

while the upstream pipelines of variant calling and annotation constantly improve, 

individual subject data is rarely revisited by the manual curators, even though variant 

interpretation has been shown to clearly benefit from periodic reanalysis15–17. The 

motivation for the development of the Mendelian Analysis Toolkit (MATK) was to 

increase automation, accuracy, and repeatability of this process. 
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MATK is a software suite designed to prioritize variants that may be causal for a 

Mendelian disease. The software is customizable, intended to be tailored to the 

annotation pipeline and evolving knowledge of genes relevant to the disease under 

study (Figure 1B). MATK can perform pedigree-aware analysis and incorporate other 

inputs such as Copy Number Variation (CNV) predictions or arbitrary gene-level 

annotations such as probability of Loss-of-Function Intolerance (pLI) scores7 and tissue-

specific RNA expression data18.  

We have validated MATK using a cohort of subjects with inherited retinal 

degeneration (IRD)19. This disease space is an excellent test case for MATK, as IRDs 

are highly heterogeneous, with over 270 causal genes, following all modes of Mendelian 

inheritance20. Previous work has shown that ~60% of cases can be genetically solved 

by SNVs and/or CNVs in the exons of known IRD genes21,22. We show that MATK 

performs similarly to human analysts for both panel-based sequencing and exome 

sequencing (ES), while providing improvements in analysis efficiency, consistency and 

repeatability. 
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METHODS: 

Ethical guidelines 

The study was approved by the Institutional Review Board at the Massachusetts Eye 

and Ear (Human Studies Committee MEE, Mass General Brigham, USA) and adhered 

to the tenets of the Declaration of Helsinki. Informed consent was obtained from all 

individuals on whom genetic testing and further molecular evaluations were performed. 

Sequencing and Annotation (extended version present in Supplemental Methods) 

Genetic Eye Disease (GEDi) sequencing was performed as described previously21. VCF 

files were generated using the Genome Analysis Toolkit (GATK) version 3 

(https://software.broadinstitute.org/gatk/), and annotated using VEP6 and VCFAnno23. 

VEP provided transcript-specific sequence-consequence annotations from GENCODE 

v19 and regulatory annotations from ENCODE24. VCFAnno was used to annotate the 

variants with gnomAD7,8, ClinVar10, HGMD11, and CADD9. CNV predictions were 

produced using gCNV4, and the known MAK-Alu structural variant was identified using a 

custom script25.  

Exome sequencing was performed at the Center for Mendelian Genomics at the Broad 

Institute of MIT and Harvard using methodology described previously7. Exome 

sequencing data was aligned to human genome 38. Variants were called using Genome 

Analysis Toolkit (GATK) HaplotypeCaller package version 3.5. The data were displayed 

and analyzed with an online tool (https://seqr.broadinstitute.org). 

MATK configuration 

Variant-level information used in this study consisted of an annotated variant call format 

(VCF) file and CNV predictions from gCNV. For the GEDi panel sequence analyses, 
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MATK’s Annotation Binding Code (ABC) was configured based on prior expert 

knowledge as a summation of 6 unique functions pertaining to 1) sequence 

consequence, 2) population frequency, 3) ClinVar pathogenicity classification, 4) HGMD 

pathogenicity classification, 5) CADD score, and 6) ENCODE promoter status, with the 

final score capped at 20 (Figure 2A, Supplementary Table 1A). For GEDi analyses, the 

gene-level information, contained in the Gene Model File (GMF), was configured with a 

default maximum likely frequency for autosomal recessive (AR) and X linked (XL) genes 

at 0.002, and for autosomal dominant (AD) genes at 0.00001, although exceptions were 

made for some genes based on known allele frequencies for IRD variants (Figure 2A, 

Supplementary Table 2). Once MATK had ranked variants for each inheritance pattern, 

it produces a spreadsheet with columns for “Sample Name”, “Inheritance Mode”, 

“Variant Rank”, “Score” (produced by the ABC), as well as the variant annotations from 

VCF. An analyst independently reviewed the ranked variants for each sample and 

determined which ranked variants were plausible solutions (Supplementary Tables 3, 4 

and 6).  

For analysis of the ES cohort, a generalized version of MATK was used, without input of 

prior expert knowledge. The ABC was configured as a summation of 6 unique functions 

pertaining to 1) sequence consequence, 2) population frequency, 3) CADD score, 4) 

regulatory status 5) transcript expression level in retina26, and 6) variant quality score 

(all formulae are given in Supplementary Table 1B). The retina expression weighting 

function was calibrated using known IRD genes, where we determined that all IRD 

genes showed a superior expression of a lnTPM=2, where lnTPM is a natural log of gene 

expression represented as transcripts per million. We therefore added points to all 
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genes lnTPM>2. The GMF was left empty aside from the default maximum likely 

frequencies of AR and XL at 0.001, and AD at 0.00001.  

Code availability: The software is open source, available at 

https://gitlab.com/matthew_maher/mendelanalysis 
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RESULTS: 

MATK functionality 

The MATK software was developed to increase automation and accuracy of variant 

interpretation in the context of Mendelian disease. MATK is a suite of Python scripts that 

outputs a ranked list of variants and/or variant pairs according to a customizable set of 

rules and parameterized weighting functions, using sample-specific and gene-specific 

inputs. Sample-specific files include the annotated VCF, as well as optional inputs such 

as a structural variation file and pedigree information. Gene-specific files are meant to 

be customized for a given disease space and may include a curated list of known 

disease-associated genes with their expected causal variant frequencies and 

inheritance mode, or other gene-level information relevant to the studied disease (e.g. 

gene expression, pLI scores). Variant-level information is used in the Annotation 

Binding Code (ABC), a customizable component of the software that scores each 

variant for functional consequence, population frequency, ClinVar and/or HGMD 

pathogenicity classification, or in silico predictions of deleteriousness such as the CADD 

score. The ABC assigns scores differently to the genes with known or presumed 

autosomal recessive (AR), X-linked (XL) or autosomal dominant (AD) inheritance 

(Figure 2A). For example, loss-of-function variants are scored higher in AR, XL genes 

and AD haploinsufficient genes than in genes with AD inheritance known for a gain of 

function or dominant negative mechanism of disease. The gene-level information is 

encoded in the Gene Model File (GMF), which contains a default maximum likely 

frequency of a variant for a given disease or gene, which can be different for different 

inheritance modes, if the gene is known to contribute to both types of disease (Figure 
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2A, Supplementary Table 2). Once the GMF and ABC have executed, MATK calculates 

a score for each variant in a sample based on the specified inheritance mode. MATK 

then ranks the variants by score, and for the AR inheritance mode, creates ranked pairs 

of variants within each gene. The final step requires an analyst to determine if any of the 

ranked variants are accepted as candidate solutions. In this study we have measured 

MATK performance by a comparison of the MATK-assisted and conventional variant 

analysis of 1060 IRD subjects investigated with an IRD-specific gene panel (589 

individuals) and exome sequencing (471 families) (Figure 2B). 

 

MATK-assisted analysis of panel sequencing data improves genetic diagnosis  

To test the practicality of MATK, we performed a comparative analysis of a proband-

only IRD subject cohort. We analyzed 589 primarily early-onset IRD samples in two 

independent rounds. The first round of analysis utilized our conventional analysis 

protocol, starting with an application of hard frequency and functional consequence 

filters to the dataset. The remaining variants are then evaluated based on frequency, 

variant type, computer prediction models, and prior reports to identify variants of 

interest. CNVs are analyzed separately, often second, with special attention to 

monoallelic (one potentially pathogenic variant in a recessive gene) cases or cases with 

no SNVs of interest. The second round of analysis incorporated the MATK software to 

prioritize the variants for analysts to review. For our cohort, we experimentally 

determined that displaying the first 20 variants for each inheritance mode was sufficient, 

although the number of MATK outputs can be adjusted based on preference. In both 

rounds, the analysts would choose one of two outcomes: the case was either potentially 
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solved by a single or set of potentially pathogenic variants, or the case was left 

unsolved. Finally, all variants that were identified as potentially solving were classified 

using the ACMG/AMP guidelines, and based on these classifications, solutions were 

split into 3 confidence tiers: Tier 1 solutions comprised of likely pathogenic (LP) or 

pathogenic (P) variants; tier 2 solutions comprised of AR genes with one LP/P variant 

and one variant of uncertain significance (VUS); and tier 3 solutions comprised of two 

VUSs in an AR gene or one VUS in an AD gene. Samples in which only one variant in 

an AR gene was found and in which a chosen variant was classified as benign (B) or 

likely benign (LB) were considered as unsolved. Of the 589 cases, 502 (85.2%) had 

identical outcomes using both protocols, consisting of 323 potentially solved cases and 

179 unsolved (Figure 3A, Supplementary Table 3). Overall, there were more solutions 

of each tier with the MATK-assisted analysis than in the conventional analysis (χ2 test, 

df=3, p=0.0005) (Figure 3A, B) and the MATK-assisted analysis identified 97.3% 

(323/332) of the potential solutions found by the conventional analysis. Of the 87 

samples in which there was a discrepancy, 52 involved high confidence, tier 1 solutions. 

To further analyze the discrepancies, we considered only the 52 tier 1, high confidence 

solutions, because we believe that recording of the lower confidence solutions may be 

due to the analysts’ differences in stringency of variant interpretation rather than the 

analysis method. Forty-nine of the tier 1 discrepant solutions were discovered through 

the MATK assisted analysis and 3 via the conventional analysis (Figure 3A). Of the 49 

tier 1 solutions found exclusively by MATK, 24 solutions involved structural variants, 16 

solutions were missed in the conventional analysis due to human error and 8 were 

missed because of upstream pipeline errors related to issues with the variant caller, 
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gene transcripts, and hard filters that resulted in the likely solving variants being hidden 

from the analysts. The last tier 1 solution missed in conventional analysis and found 

using MATK was a sample (OGI2423_003982) in which the two analysis protocols 

resulted in two different potential genetic solutions (Supplementary Table 3). In this 

case, the ACMG/AMP classification clarified that the MATK-assisted analysis chose the 

most likely solution. Of the three tier 1 solutions found exclusively using the 

conventional analysis, one solution was a mitochondrial solution (OGI2050_003476, 

NC_012920.1 MT-ATP6 m.8993T>G), which the MATK program did not consider in any 

of its inheritance modes. One solution was missed because the gene transcript model 

incorrectly labeled a variant as non-coding, which caused the variant to be scored so 

low as to not appear in the MATK output (OGI2401_003960, NM_014249.3 NR2E3: 

c.932G>A, p.(Arg311Gln) ; c.151G>A, p.(Gly51Arg)). Finally, one solution 

(OGI1257_002429) was presented by MATK but was missed due to human error in 

interpreting a complex indel in USH2A (NM_206933.2: c.13335_13337del, c.13339A>T, 

c.13342_13347del), even though all data was available in MATK for the analyst to make 

the correct interpretation of c.13335_13347delinsCTTG, 

p.(Glu4445_Ser4449delinsAspLeu) (Supplementary Table 3).  

The remaining discrepant solutions (35 cases, 29 from the MATK assisted analysis and 

6 from the conventional analysis) involved low confidence solutions (tier 2 and 3), which 

were interpreted differently in the two different analysis rounds. Reviewing these 

samples using the ACMG/AMP classification guidelines found that these potentially 

solving solutions had one or more VUS variants, and thus the genetic cause could not 

be resolved unequivocally. Therefore, for the purpose of the comparison between the 
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conventional and MATK-assisted analysis, the 297 high-confidence solutions are most 

informative, where 294 (99.0%) were obtained with the MATK-assisted analysis, and 

248 (83.5%) were obtained with the conventional analysis. 

 

MATK facilitates data reanalysis after upstream pipeline changes  

Routine reanalysis of all the sequenced samples with a conventional protocol each time 

a reference genome, transcript model, other crucial database or software is updated is 

time consuming for a genetic diagnostic lab, however an automated process enables 

regular reanalysis. We have therefore used the MATK-assisted analysis to understand 

how updating the human reference genome and associated datasets can affect 

diagnostic rate in the known IRD genes. The sequence reads for all of 589 samples 

were realigned to hg38. Reanalysis with MATK and comparison with the existing 

solutions produced 13 additional potential solutions, four of which were ultimately 

placed in the tier 1 category. Of these four, one was found because of a new ClinVar 

entry that brought the variant to the attention of the analyst (OGI2484_004049, 

NM_001030311.2 CERKL: hom c.237_238+13del), one was found because of an 

updated transcript model (OGI2114_003548, NM_014249.3 NR2E3: hom c.932G>A, 

p.(Arg311Gln)), and two were found because of updated gCNV results 

(OGI2201_003682, NM_015629.3 PRPF31: hg38:chr19:54115160-

54118353_duplication), and (OGI1943_003348, NM_015662.1 IFT172: hg38: 

chr2:27458072-27465609:deletion) (Supplementary Table 4). 
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MATK improves accuracy of paired SNV and CNV calls 

In three cases, where a heterozygous deletion paired with an overlapping pathogenic 

SNV, the variant was called as homozygous. The MATK-assisted analysis gave a more 

accurate genetic solution in each case. For sample OGI1820_003160, a nonsense 

variant in NM_006343.2 MERTK (hg19:chr2:112732995G>T, c.1090G>T, 

p.(Glu364Ter)) overlapped with a deletion of hg19:chr2:112655935-112787192. For 

OGI1973_003378, a known IRD pathogenic variant in NM_206933.2 USH2A 

(hg19:chr1: 216420460C>A, c.2276G>T, p.(Cys759Phe)) overlapped with a deletion of 

hg19:chr1:216380365-216424690. Lastly, for OGI2285_003796, a missense variant in 

NM_022787.3 NMNAT1 (hg19:chr1: 10042553G>A, c.634G>A, p.(Val212Met)) 

overlapped with a deletion of hg19:chr1:10003159-10044256. (Supplemental Table 3). 

MATK comparison to Exomiser 

We next compared MATK to Exomiser, an open source variant prioritization software27. 

For a subset of our panel sequenced cohort (96 samples), we ran Exomiser in PhenIX 

mode, which prioritizes variants in known human disease genes (Supplemental 

Methods). We then compared the Exomiser rankings to the previously established tier 1 

solutions found by analysts using MATK. Data was reviewed to determine if Exomiser 

ranked the same solution, a “partial” solution (for example, ranking only one variant in 

an AR solution), or did not rank any of the established solution. Of 34 tier 1 solutions, 

Exomiser presented a full solution only for 17 cases (two variants in an AR and one 

variant in an AD or XL case) and in 11 cases only one variant from an AR solution was 

presented. Of the full solutions, 12 were presented in the top 3 suggestions and five in 

the top 25. A similar trend was observed in the tier 2 and 3 solutions presented by 
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Exomiser. No additional solutions in the 39 unsolved IRD patients were revealed by the 

Exomiser analysis (Figure 4, Supplementary Table 5).  

 

MATK results in exome sequencing 

To test the utility of MATK in the analysis of exome data (ES), we ran MATK on 471 

exome sequenced cases, consisting of both proband-only cases and families. After 

examining the sequencing results with both the conventional analysis and MATK 

assisted analysis, we found the two protocols agreed in 429 (91.1%) of cases, 

consisting of 218 potentially solved (142 tier 1 samples, 39 tier 2 samples, 37 tier 3), 

and 211 unsolved cases (Figure 5A, B, Supplemental Table 6). The MATK-assisted 

analysis was able to find 97.3%, (218/224) of the solutions found by conventional 

analysis. Of the tier 1 solutions, there were 4 cases in which the conventional analysis 

found solutions that MATK missed. These consisted of one family with a partial 

penetrance inheritance pattern (OGI842, NM_015629.3 PRPF31 c.73_166dup, 

p.(Asp56GlyfsTer33)), and three solutions that were found in a genomic region where 

difficulties in sequencing resulted in heterozygous calls on the X chromosome, even 

though the samples in question were male, and thus failed the inheritance checks in 

MATK (OGI1426, NM_001034853.1  RPGR c.1582_1585del, p.(Thr528LeufsTer4)), 

(OGI1741, NM_001034853.1 RPGR c.2909del, p.(Gly970GlufsTer119)), (OGI1735, 

NM_001034853.1 RPGR c.2506dup, p.(Glu836GlyfsTer243)). The MATK-assisted 

analysis found 26 possible new solutions missed by conventional analysis. Specifically, 

20 of the 26 involved CNVs and 6 of the 26 were missed because of shortcomings in 
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the analysis pipeline such as filtering out common pathogenic variants and gene 

transcript errors (Figure 5A, B, Supplementary Table 6).  

Next, we tested a more generalized version of MATK which excluded the use of known 

IRD genes or prior variant reports. The purpose of this test was to produce a “mock 

scenario” in which MATK might be run on a disease cohort in an early gene discovery 

phase when less is known about genetic causality of that disease. For this trial, we took 

a subset of the ES cohort consisting of 55 families of trios or larger. As with Exomiser, 

we considered whether the generalized MATK ranked the established solutions fully, 

partially, or not at all. In order to narrow down the gene search without utilizing known 

disease genes or reported variants, we used publicly available gene expression data in 

the relevant tissue (in this case, retina)26 and used a weighting function that strongly 

discounted genes expressed at low levels in retina (see Methods). Of the 21 tier 1 

solutions uncovered with the IRD-specific MATK, the generalized MATK recapitulated 

17 fully, 3 partially, and missed one solution entirely. For tier 2 and tier 3 solutions, the 

generalized MATK performed similarly to the IRD-specific MATK, missing only one 

solution partially in each category (Figure 5C, Supplementary Table 6).  
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DISCUSSION  

We have demonstrated the utility of an automated variant analysis process in providing 

genetic diagnoses using a cohort of patients with retinal disorders. Our MATK software 

was practical and efficient for finding causal variants in the known IRD genes in targeted 

gene panel data and in ES data. The MATK-assisted analysis showed a higher number 

of plausible solutions than the non-MATK-assisted analysis, largely due to the 

customization options in MATK, which allow for incorporation of the existing scientific 

knowledge about the genetics of a disorder into the ranking algorithms. Even with 

minimal customization, many clear genetic solutions were still ranked highly by MATK in 

ES data. In addition, we showed the utility of MATK for rapid re-analysis of a large 

cohort after realignment to a new genome build and transcript model, which resulted in 

finding new solutions. 

Comparison between the conventional and MATK-assisted analysis showed a high level 

of reproducibility, with the MATK-assisted analysis identifying 97.3% (541/556) of 

potential solutions that were found using a more conventional analysis in both IRD gene 

panel sequencing (323/332) and exome sequencing (218/224). Furthermore, the MATK-

assisted analysis identified 78 additional potential solutions for the gene panel cohort, 

and 36 additional potential solutions in the exome cohort, the majority of which 

consisted of high confidence, tier 1 solutions (49/78 for the gene panel cohort and 26/36 

for the exome cohort). Some of these new findings were easily anticipated, such as the 

solutions found with MATK’s improved utilization of the structural variation data. 

Although this discrepancy between MATK and conventional analysis should eventually 

be decreased by better incorporating CNV analysis into the conventional protocol, we 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted October 28, 2021. ; https://doi.org/10.1101/2021.04.09.21255188doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.09.21255188


17 
 

believe that as more sophisticated annotations are developed, there will always be a lag 

in integrating them, which further highlights the advantage of using MATK to re-run 

variant ranking with new information.  Some of the high confidence solutions were 

missed without MATK due to human error, which primarily involved samples with many 

rare variants passing the hard filtering thresholds, creating more visual noise in the 

variant viewer software used in the conventional analysis. However, some of the 

discrepancies exposed deeper shortcomings in our analysis pipelines, for example, 

certain issues in the variant annotation and filtering steps resulted in the solution not 

being available to the analysts. Since these upstream sequence data processing and 

annotation pipeline are often being updated and improved, we anticipate that regular 

data re-analysis will uncover such missing diagnoses. In the gene panel cohort, the 

MATK assisted analysis missed three high confidence solutions. Only one of these, the 

mitochondrial DNA solution in OGI2050_003476, represented a true shortcoming in the 

software. The other missed solutions erroneous variant annotation leading to 

inadequate variant scoring by the software, such as in the case of OGI2401_003960 

where the gene transcript in NR2E3 was labeled “noncoding”, which deprioritized the 

variant in the MATK algorithm.  Or they were due to human error, such as in the case of 

OGI1257 _002429 where a complex indel in USH2A was not correctly identified as a 

pathogenic variant even though all data was available to the analyst.  With the exome 

sequencing cohort, four high confidence solutions were missed in the MATK assisted 

analysis, all of which were due to atypical inheritance situations. This could be easily 

remedied in future runs of MATK by relaxing the inheritance requirements. 
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There were 35 discordant results in the gene panel cohort and 12 discordant results in 

the exome cohort where the potential solution involved at least one VUS (tier 2 and 3 

solutions). We believe these discrepancies stem from the uncertainty, or differences in 

interpretation of the variant’s potential disease-involvement. Such discrepancies, even 

when using standardized guidelines, are common and have been reported previously28. 

Even though they are ambiguous, a potential recessive solution with one P/LP variant 

and one VUS can be worth further investigation, as shown in previous studies that 

determined a single pathogenic variant paired with a clear phenotypic association 

strongly implies the solution will be found in that gene29. Sequence data for a great 

number of subjects (113/589 for the gene panel cohort and 88/471 for the exome 

cohort) contain such ambiguous solutions. This further highlights the utility of using a 

software with a reproducible output to assist with variant analysis, as such VUS 

containing solutions should be periodically reinvestigated as more evidence is 

accumulated to push the variant toward either a pathogenic or benign interpretation.  

Using MATK allowed us to identify three false homozygous SNV calls when a variant 

was most likely in trans with a heterozygous CNV deletion. Critically, the samples with 

false homozygous pathogenic calls would not have been further investigated in our 

conventional analysis protocol. This would lead to providing an inaccurate genetic 

diagnosis, incorrect genetic counseling to family members regarding their carrier status, 

and misreporting of the allele frequency of that variant. Not all subjects have family 

members available for segregation testing, however even in the case where segregation 

testing occurs, a false homozygous call may lead to an interpretation of non-paternity 

rather than CNV. In the era of emerging CRISPR-based genetic therapies, where 
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variant or exon-specific therapies will one day be more common, such inaccurate 

diagnosis could impact the efficacy of a gene therapy30. For example, the ongoing 

clinical trial NCT03872479 involves a gene editing product specific for the intronic variant 

(CEP290: c.2991+1655A>G), and whether the patient is compound heterozygous 

versus homozygous could potentially reduce the benefit of the treatment. 

For a subset of our patients, we have benchmarked MATK against another freely 

available variant prioritization software, Exomiser, using a setting designed for known 

human disease genes (PhenIX). For a well-described monogenic disease space such 

as IRDs, MATK outperforms Exomiser in finding likely pathogenic variants. Other 

software such as Variant Score Ranker31, Variant Ranker32, Diploid Moon, and 

EmedGene, have been developed in recent years to address the issue of variant 

prioritization and new gene discovery, and programs such as PathoMAN14 are designed 

to classify variants according to ACMG/AMP guidelines13. There has been great 

success in using such programs to help find disease causing variants33,34. Our MATK 

software differs from these in that it is far more customizable and can incorporate 

disease-specific information.  

For IRDs, there are over 270 known disease genes20, and knowledge about the 

plausible pathogenic variant frequency and inheritance modes have been incorporated 

into the MATK via one of the input files, the Gene Model File. For such a thoroughly 

characterized field, a highly customized MATK helps to encode prior scientific 

knowledge. In our IRD panel test cohort, there were solutions found in 77 unique genes, 

and gene rarity varied widely, with USH2A accounting for 85 solutions, and 29 genes 

causing disease in a single individual in the cohort. This level of diversity can be 
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demanding for an analyst to remain cognizant of. However, not all Mendelian disorders 

have been so well characterized and many new disease genes remain to be 

discovered. Thus, we have tested a more general configuration of MATK on an exome 

sequencing dataset. We emulated a search for new disease genes by removing the 

disease-specific genetic information and the use of prior genetic knowledge such as 

ClinVar scores, and by including retinal RNA expression data to identify genes that are 

relevant to eye tissue. For many disease spaces, other gene-level data sets could be 

included such as loss-of-function or missense intolerance (pLI) scores7, however these 

are not useful for IRDs because vision loss does not influence reproductive fitness and 

thus known pathogenic variants are not depleted in the general population as in other 

systemic diseases. Our results showed that MATK was able to prioritize most of the 

solutions and thus could be used as a first pass analysis for other Mendelian diseases 

with minimal customization. As more knowledge is acquired about a specific disease, 

MATK customization can be added in an iterative process, allowing all previously hard-

won knowledge gains to accumulate to the benefit of future analysts. Even for such well 

characterized disorders as IRD, only about 60% of IRD patients receive genetic 

diagnoses in the known genes21,22, meaning there still may be undiscovered pathogenic 

genes. In future studies, especially as the field moves to sequence exomes and 

genomes of unsolved families, we would consider incorporating other dataset such as 

SpliceAI35, GO terms36, String terms37, HPO terms38, and Monarch data39 into MATK.  

Integrating well calibrated automated variant ranking tools into analysis protocols is a 

critical step in improving Mendelian disease diagnosis and new gene discovery in both 

clinical and research settings.   
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Data availability 

Variants will be available through ClinVar (Submission Number SUB9430499, 

SUB9443633, and SUB9363246) and in Supplemental Materials. Sequence data will be 

available through dbGaP and upon request. 
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FIGURE LEGENDS: 

 

Figure 1: Standard variant assessment protocol for human analysts. A) The 

process of NGS variant analysis without MATK, which involves hard filtering of variants 

down to a manageable list, then using the analyst’s disease-specific expertise to weigh 

the evidence for each variant, often going through multiple iterations of filtering. B) In 

the analysis with MATK, much of the domain expertise is encoded in the Gene Model 

File (GMF) and the evidence is weighed by the Annotation Binding Code (ABC) which 

allows for a standardized analysis. The GMF and the ABC are fully customizable. 

Created with BioRender.com 

 

Figure 2: Functionality of MATK and study design. A) The two major components of 

MATK: The Annotation Binding Code (ABC), is the weighting function used to assign a 

score to each variant. The function used on the IRD cohort was tuned empirically, and 

utilized population frequency, sequence consequence, CADD scores, regulatory 

information, and prior reports, capped at 20 points. The Gene Model File (GMF) 

encapsulates disease specific gene-level information such as known inheritance modes, 

allele frequencies, haploinsufficient dominant status, and level of confidence in the field 

that a gene may be disease causing. B) 1060 IRD patients were analyzed with IRD-

panel (589 subjects) and exome sequencing (471 subjects/families). Each sequence 

underwent two independent analysis rounds: with a conventional presentation of 

variants and hard filtering performed by the analysis and with MATK-assisted analysis. 

Solutions from both were analyzed for overlap and discrepancies. 
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Figure 3: Comparison of 589 panel sequenced IRD patients analyzed with and 

without MATK assistance. A) A flow chart detailing all of the results obtained from the 

conventional and MATK-assisted variant analyses.  There was a high degree of overlap 

between the two methods, with MATK assisted analysts missing only 9 potential 

solutions and non-MATK assisted analysts missing 78 potential solutions. The overlap 

of the solutions in all three confidence tiers is also presented. B) A bar graph illustrating 

the overall performance of both methods.  

 

Figure 4: Comparison of Exomiser and MATK in 96 panel sequenced samples. Out 

of 56 total solutions found using MATK, Exomiser successfully ranked 20 total solutions, 

15 in tier 1, three in tier 2, and two in tier 3, without finding any new solutions that were 

missed by MATK. 

 

Figure 5: Comparison of 471 exome sequenced IRD patients analyzed with MATK 

versus the conventional analysis pipeline. A) Venn diagrams of the results obtained 

from the conventional and MATK-assisted variant analyses, showing a high degree of 

overlap between the two methods, with MATK assisted analysts missing only 6 potential 

solutions and non-MATK assisted analysts missing 36 potential solutions. B) A bar 

graph illustrating the overall performance of both methods C) Comparison of gene-

specific MATK vs generalized MATK. Out of 27 total solutions, the generalized MATK 

successfully ranked 17 of 21 solutions in tier 1, with additional 3 partial solutions 
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(monoallelic recessive solution). All tier 2 and 2/3 of tier 3 solutions were also fully 

identified. The generalized MATK was able to find one solution that was unsolved in the 

gene-specific MATK analysis run, but was determined to be a tier 1 solution. 
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