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Abstract: 

Mutations in the SARS-CoV-2 virus has given rise to concerns how diagnostic tests, treatments, and 

vaccines are affected.  This article shows mutations in the Spike gene (S gene), which is prone to 

mutation, can be differentiated using standard TaqPath PCR (polymerase chain reaction) test. The 

methodology proposed in this article can be used as an alternative tool for detecting S gene mutations 

when sequencing is not available.  Overcoming patient-to-patient variability by conditioning on an in-

terval control, our statistical methodology classifies each patient as infected by wildtype or by some 

mutant strain(s) with reasonable accuracy.  Besides adding a new tool for tracking emerging mutations 

epidemiologically, being able to make such patient level calls may become important for treatment 

purpose, as there is evidence that some antibody treatments are less active in neutralizing the SARS-

CoV-2 virus against certain mutant strains.  Our algorithm can be continuously retrained as the SARS-

Cov2 virus evolves. 
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1 Introduction  

SARS-CoV-2, being a single stranded RNA virus, mutates easily.  These mutations give rise to so-called variants of concern (VoC).  A variant of concern 

(VoC) is one that increases transmissibility, causes the disease to be more severe or diagnostic detection to fail, or reduces effectiveness of treatments or 

vaccines.  In the UK, the current variants of concern are Kent (B.1.1.7, from South East England), South Africa (B.1.351), Brazil (P.1) and B.1.1.7 with 

E484K [PHE].  In the U.S., the current variants of concern are Kent/UK (called just the UK variant in the U.S. media), Brazil, South Africa, and two 

Californian variants (B.1.427, B.1.429) [CDC.1].  Variants that evidently impact on Medical Countermeasures (MCMs) such as diagnostic tests and/or 

therapeutics would be designated as Variant of High Consequence by the U.S. CDC.  This article proposes a statistical method which turns potential 

failure of a popular diagnostic test around so that it not only can track emerging variants at the epidemiological level but also guide effective treatment at 

the patient level. 

PCRs are popular diagnostic tests for SARS-CoV-2.  In the UK, the TaqPath PCR test is the principal analytic platform for pillar 2 which consists of 

key workers in the NHS, social care and other sectors.  Pillar 2 is also the diagnostic pathway for community cases.  Such tests typically have multiple 

probes targeting different regions of the SARS-CoV-2 genome to bind to.  Outcome of a PCR test is a Cycle threshold (Ct) for each target region, the 

thermal cycle number at which the fluorescent signal exceeds that of the background.  Ct is a semi-quantitative value that can broadly categorize whether 

the amount of the target genome sequence in the sample is high or low.  While a low Ct indicates substantial presence of the target, a high Ct may be due 

to either the amount of the target in the sample being low, or a mutation has caused a decrease in binding of the probe to the target (as the probe is built 

on the original genome sequence of SARS-CoV-2).   

To be specific, within the SARS-CoV-2 virus, the S gene which codes the spike protein is especially prone to mutation.  TaqPath targets the N gene, 

ORF1ab, and the S gene, for example.  It is known that the 69-70del mutation in the S gene, a 6 base deletion that codes for two amino acids, causes a 

decrease in the signal from the S gene probe of TaqPath. This is referred to as the S-dropouts [1].  On the one hand, one wonders whether S-dropouts 

might cause an increase in false negative rates.  On the other hand, this article shows S-dropouts can be used to advantage, for both epidemiological 

tracking of emerging variants as well as to guide prescription of treatments. 

At the population level, in the UK, S-dropouts have already been used to advantage for epidemiological tracking, to discover and locate outbreaks from 

the Kent variant [3] by using the frequency of S-gene target negatives among PCR positives as a proxy for frequency of the mutant strain.  In the U.S., 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 9, 2021. ; https://doi.org/10.1101/2021.04.07.21254917doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:Hsu.1@osu.edu
mailto:Yang.Han@manchester.ac.uk
https://doi.org/10.1101/2021.04.07.21254917
http://creativecommons.org/licenses/by-nc-nd/4.0/


Y. Han et al. 

2 

 

where the UK variant (B.1.1.7, called the Kent variant in UK) is not yet dominant [CDC.2] but may become so, this article provides a new technique, a 

statistical method, of tracking of the spread of B.1.1.7. 

We also show in this article that S-dropouts can potentially also be used to advantage at the patient level, to differentiate patients infected by wildtype 

from patients infected by mutant variant(s).  Being able to make such patient level calls is useful for treatment purpose.  For example, there is evidence 

that the antibody treatments bamlanivimab made by Eli Lilly (LY-CoV555) and casirivimab made by Regeneron (REGN10933), while retaining efficacy 

in neutralizing the B.1.1.7 variant [4], are less active in neutralization of the B.1.351 variant [5].   

Methodologically the difference between the two uses is while epidemiological tracking can be done at the aggregate level, wildtype versus mutated 

infection calling at the patient level must overcome subject to patient-to-patient variability, which appears to be considerable in the case of PCR testing 

for SARS-CoV-2.  Guided by biology and statistical principles, we develop a simple yet effective method that can be deployed at point-of-care.  Our 

proof-of-concept method is trained on a large Public Health England (PHE) data set and validated on confirmed Kent variant cases. 

2 Training and Validation Data Sets 

The training data set consists of all records created from 28 May 2020 to 2 November 2020 [2].  (Sequencing results are available on samples of positive 

cases as PCR testing capacity exceeds the national sequencing capability.)  Total sample size n = 1,048,575. Among those samples, n = 500,440 are 

Covid-19 Positive by PCR or culturing. Among those confirmed Covid-19 Positive samples, n = 309,139 have complete Ct values for the N gene, the S 

gene, and ORF1ab.  As the Kent variant, termed the Variant of Concern in [3], was first identified on 20 September 2020, this data set likely contained 

both patients infected by the original SARS-CoV-2 strain as well as those infected by the Kent variant. 

The validation data set is Variants of Concern data under investigation created from 1 November 2020 up to 3 February 2021, from the COG-UK 

dataset, PHE Second Generation Surveillance System and the PHE Rapid Investigation Team Kent investigation [3].  Total sample size n = 7,582,696.  

Among the n = 2,646,907 confirmed Covid-19 cases (called Positive by PCR or culturing), n = 2,561,279 are missing sequencing test results.  Among 

those sequenced, n = 38,612 are called as Kent variant, n = 116 are called as South African variant, with n = 46,900 called as Wildtype.  Confirmation of 

being a Kent variant is by phylogenetic tree matching analysis with the B.1.1.7 strain.  Wildtype is defined as sequenced samples other than Kent variants 

and South African variants.  Within those called Kent variant by sequencing, n = 34,018 are further classified as Confirmed Kent variant, n = 4,536 as 

Probably Kent variant, and n = 58 as Low-quality Genome.  Among the Confirmed and Probable Kent variants, only n = 76 have complete Ct values for 

the N gene, the S gene, and ORF1ab.  Those complete data 76 cases are the ones we use for validation. 

3 Observation from Preliminary Analysis and Rationale for Our Conditional Control Approach 

We first tried simply plotting the distribution of the S gene's Ct in the training set, to see if the density indicates it is a mixture of distributions, one for 

patients infected by wildtype, one or more others infected by mutant strains, see Figure 1.  Neither the histogram nor its smoothed version indicates 

anything definitive.  Apparently, there is too much person-to-person variability in the S gene's Ct within those infected by wildtype, and within those 

infected by some mutant strain, that their distributions overlap too much for us to tell which patients are infected by wildtype and which are infected by 

some mutated variant.  Sources of such person-to-person Ct variability may be many, with one being the initial viral load which changes roughly as a 

gamma distribution from the late prodromal stage until the early recovery period.  So having a mixture of asymptomatic, symptomatic and screening tests 

will cause the Ct distribution to be complicated. 

We thus examine the possibility of controlling for person-to-person variability using one or more covariates of the S gene's, specifically Ct's of the N 

gene and ORF1ab.  We view them simply as variables that might be used to "baseline" each patient, not particularly as quantitative measurements of 

initial viral loads per se.  For our purpose of differentiating patients with S-dropouts from those without, an ideal baseliner should be stable relative to 

mutation in the S gene, as if there were no mutation in that gene. 

 

  

Fig. 1. Distributions of the S gene’s Ct in the training data set. 
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4 Method and Result 

Conditioning is a tried and true principle of statistical inference.  Idea is that, for each patient, Ct's of the N gene and ORF1ab may be correlated with the 

Ct of the S gene (high or low in the same direction), so we might use the Ct of the N gene or Ct of ORF1ab or both to baseline each patient.  Once a 

variable is found to suitably reduce S gene's Ct variability conditionally given its value, we calculate its predicted Ct for S gene's Ct disregarding potential 

mutation.  Then hopefully, in most cases, patients infected by wildtype will have an observed S gene Ct lower than its predicted value, while patients 

infected by a mutant strain (and therefore experiencing S-dropout) will have an observed S gene Ct higher than its predicted value. 

We first try conditioning on a single variable, either the Ct of the N gene, or Ct of ORF1ab.  The conditioning technique we use, the simplest, is linear 

regression.  Raw value of the S gene's Ct is then replaced by its residual, its observed S gene Ct value minus its predicted S gene Ct value (given its Ct 

value of the conditioning variable).  We call such residuals S-residuals.  The hope is these S-residuals will form clusters, of patients infected by wildtype 

and of patients infected by mutant(s).  We do this on the logarithmic scale which seems to work better than on the raw Ct scale.  Ct of ORF1ab works 

well as a conditioning variable.  However, Ct of the N gene does not work well.  While we speculate that there may be differential sensitivity/specificity 

of the receptor targets used in the PCR system, these relative differences need further exploration. 

Figure 2 shows the result of this regression from the training data set.  Labeling log(Ct) of the S gene as log(S) and log(Ct) of ORF1ab as log(ORF1ab) 

on the axes, each dot represents a patient's log(ORF1ab) and log(S) values.  Due to the large size of the training data set, for clarify of message, the dots 

in Figure 2 represent only 10,000 randomly selected patients.  The regression line fitted based on the entire training set data is the red dashed line.  For a 

patient with a particular log(ORF1ab) value, its S-residual from this regression is the log(S) value of the dot representing the patient minus that patient's 

log(S) value as predicted by the red dashed line.  So a dot above the red line will have a positive S-residual, while a dot below the red line will have a 

negative S-residual.   

 

 

Fig. 2. Regression from the training data set. Fig. 3. Density plot of the S-residuals from the entire training data set. 

 

 

Figure 3 shows a density plot (a smoothed histogram) of the S-residuals from the entire training data set.  This plot suggests it is a mixture of densities, 

one centered to the left of zero while the others to the right of zero.  The relatively flat area represents where the densities blend.  In the training data, 

about 58% of the patients have S-residuals less than zero, 42% have S-residuals greater than zero.  Theorizing that patients infected by wildtype without 

S-dropout would tend to have lower S gene Ct values than patients infected by mutant(s) and thus experiencing S-dropouts, we suggest simply calling a 

patient as infected by wildtype if his/her S-residual is negative, and calling a patient as infected by mutant(s) if his/her S-residual is positive.  In other 

words, call a case wildtype if its dot is below the red line, and call it mutated if its dot is above the red line. 

We tested this algorithm using confirmed and probable Kent variant cases in the validation data set (confirmed by sequencing).  Represented by the 

red triangles in Figure 3, out of the 76 confirmed and probable Kent variant cases, 66 (about 87%) have positive S-residuals while 10 (about 13%) have 

negative S-residuals.  So we are cautiously optimistic that our method which we call the Conditional S-residual Method has potential for calling patients 

either as infected by wildtype or by mutant(s) with some accuracy.   

4.1 Some Observations 

As indicated by the blue oval in Figure 2, for low ORF1ab Ct value cases, almost no S-gene mutated cases show up in this plot of the training data set.  

Those missing observations correspond to mutated cases in the training data set with missing S Ct values.  S-dropouts are caused by a failure of the qPCR 

probe to bind due to the 69-70del mutation (page 7 of [3]).  When probes of the N gene and ORF1ab successfully bind to amplified targets but probe of 

the S gene fails to bind, this is termed S gene target failure (SGTF).  So those missing cases likely are patients infected by strains with the 69-70del 

(especially B.1.1.7).  In Figure 2, there are mutated cases with higher ORF1ab Ct values that are plotted.  Those are cases for which primer for the S-gene 

retained some ability to bind, though at the limit of the technical capabilities of the PCR systems. 
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As indicated by the magenta oval in Figure 2, we observe five horizontal bands of log(S) values for mutated cases in the 2.5 to 3.0 range of log(ORF1ab).  

These bands correspond to five distinct S gene Ct values from 16.4 to 20.8, spaced about 1,1 Ct units apart.  Uncertain of the reason why, it is our hope 

that observing these bands sheds some light on S dropouts.  

Comparing the scatterplot of log(S) vs log(N) with the scatterplot of log(S) vs log(ORF1ab) in Figure 4, we can see somewhat that log(ORF1ab) can 

predict log(S) value better than log(N) can.  To some extent, this explains why the N gene does not work well as a Control for the S gene. 

 

Fig. 4.  Scatterplot of log(S) vs log(N) with the scatterplot of log(S) vs 

log(ORF1ab). 

 

4.2 Continuous Re-training 

The original training data set contained samples up to November 2020.  Since the Kent variant was first discovered in September 2020, the original data 

set almost surely contained patients infected by the original strain and by the Kent and other mutated variants.  But since the Kent variant and other 

mutated strains likely constituted a minority in the training data set, in our analysis of the training data set, the original strain is called "wildtype". 

However, aligning with the definition of wildtype in [3], in our analysis of the validation data set which targets identification of Kent variant samples, 

wildtype became all strains that are not the Kent variant (i.e., the complement of the Kent variant). 

Viruses mutate over time, very quickly in the case of SARS-CoV-2, and by now the Kent variant has become the dominant strain in the UK.  Thus, 

assume at any given one time there is a dominant (> 50%) strain which we will call “wildtype”, and there is one or more emerging strains which we will 

call “mutants”.  It is important that the conditional S-residual regression equation be continuously re-trained each time there is a meaningfully updated 

data set, separating “wildtype” from “mutants”, to not only guide prescription of treatments to patients, but also to monitor which mutant strain is evolv-

ing to become dominant. 

5 Recommended Design and Analysis Principles 

We suggest the following principles for designing diagnostic tests for fast mutating viruses and for statistically analyzing the test results: 

1. Target multiple genes and/or open reading frames 

2. Choose probes as unique as possible relative to other organisms 

3. Within the target virus, choose probes that are biologically as functionally independent as possible 

4. Within the target virus, use simple methodology to make the probes statistically as independent (orthogonal) as possible 

Our rationales are as follows. 

Principle 1: While TaqPath targets two genes (S gene and N gene) and one open reading frame (ORF1ab), some other PCRs target only one gene and 

one open reading frame (the N gene and ORF1ab in the case of the Chinses CDC), or even just a single gene (the N gene in the case of the U.S. CDC).  

How a virus evolves is hard to anticipate, so building diverse targets into probe designs is safer, and turned out to be useful in the case of SARS-CoV-2.  

Principle 2: To avoid non-specific bindings, rationale for the second principle is biologically self-evident and is standard practice. 

Principle 3: Technically, making the probes statistically independent to classify patients with tends to work better when the probes are more biologi-

cally functionally independent.  This is because, with more biological independence, there is a higher chance that a suitable internal Control variable can 

be found to baseline the target (fast mutating) gene with. 
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Principle 4: Based on the statistical principle of conditioning, a key contribution of this article is to offer a simple yet effective statistical methodology 

for patient infection classification.  Once this scientific problem has been explicitly formulated and a solution proven feasible, other techniques (such as 

statistical learning or machine learning) can potentially be used to classify patients.  While not opposed to their use, we do feel simple methodologies 

such as ours with clear biological interpretations are preferable to black boxes. 

6 Recommended Case Calling Algorithm and Future Research 

Based on our current algorithm, in countries where the B.1.1.7 strain has not become totally dominant, for patients with positive N gene and ORF1ab 

Ct's, we recommend calling a patient as infected by a 69-70del strain (especially B.1.1.7) if the sample experiences SGTF (with its Ct for the S gene 

missing).  Call a patient as "infected by mutants" (which may include B.1.1.7) if its Conditional S-residual value is greater than zero.  Otherwise, call a 

patient as infected by wildtype.   

A future research goal of ours is to assign statistical confidence levels to such calling.  Once that has been achieved, an app based on Figure 3 can be 

made available.  The current S residual density plot is trained on data with 390,139 cases from Public Health England (2020) which consists of records 

created from 28 May 2020 to 2 November 2020.  At the moment, our proof-of-concept (for research only) app calls a case wildtype (as defined for the 

training data set) if its red dot is to the left of zero, and call a case as mutated if its red dot is to the right of zero.  Being web-based, eventually such an 

app (if approved) can be deployed at patient point-of-care.  Our algorithm for the app can be continuously retrained as the SARS-CoV-2 virus evolves. 
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