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linked to triglycerides[79] but not directly to bilirubin, to our knowledge. It has a very
small MAF, however, and does not account for much variance.

• The predictor for platelet count is very polygenic with the variance accounted for
almost evenly distributed across all 22 chromosomes. Chromosome 12 provides a
small deviation from this pattern, accounting for ∼ 14% of the variance, partly due to
a locus near one end.

• The predictor for HDL is also highly polygenic. Previous GWASes have recorded loci
at all but chromosome 13, which has no large magnitude bi but still accounts for ∼ 1%
of the total variance.

Figure 4. Manhattan plots of LASSO b — superimposed with the aggregate single snp variance accounted for — show
both highly localized as well as widely polygenic architectures. The predictor for Lipoprotein A is almost entirely
determined by the well-known gene LPA in chromosome 6; the top 50 SNPs in this region account for ∼ 95% of the
aggregate single SNP variance. In contrast, HDL has an almost uniform distribution of the variance accounted for across all
the 22 autosomal chromosomes, despite some loci with high magnitude b-coefficients. (The difference being due to the
MAF in equation (1).) The most significant genetic loci are discussed further in the main text. The plot titles include the
achieved PGS-phenotype correlation and mean number of non-zero b ± the standard deviation for the 5 predictors trained
on each trait.

3.2. Predicting Disease Risk

The results for the disease risk predictors are divided into sections corresponding to
the (risk score | biomarkers) from approach 1 and (risk score | biomarkers | SNPs) from
approach 2, respectively.

3.2.1. Predicting case status from biomarkers

The performance of the (risk score | biomarkers) predictors was evaluated and are
reported as AUCs and odds ratio plots in Figure 5. With training optimized for European
ancestry, we regard the results for this ancestry as the main results and provide the per-
formance in other ancestries for reference. The results vary with the condition. Within
European ancestry, they range from an AUC of .53 (.60) for cancer for women (men) up to
∼ .95 for diabetes type 1 (both sexes). As a comparison, we report below on an ASCVD
predictor with an AUC of ∼ .76 which performs risk prediction as well as or better than
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Figure 5. The predictive power of (risk score | biomarkers) can single out high risk individuals with over 10x odds ratio
for many traits, and AUCs > 0.7 for most traits including tests across ancestry. Left: inclusive odds ratio (OR) plots for
diabetes type 1/2, obesity, kidney problem, liver problem, hypertension, CAD, and any cancer trained and validated on the
European population. Horizontal axis indicates individuals at that percentile and above in PRS. Marker is for predictors
trained and validated on men and marker 4 for predictors trained and validated on women. Error bars represent the
standard error of the mean value with a contribution coming from computing the OR and a contribution from including 5
predictors. Right: AUCs for (risk score | biomarkers) predictors separately trained on men and women. All predictors are
trained on the European population and then validated on European, South Asian, East Asian, and African populations.
The error bars indicate the standard deviations for 5 different predictors and do not reflect the significant uncertainties
arising from limited available statistics (sample sizes are listed in Supplementary Information).

the American College of Cardiology ASCVD Risk Estimator. We discuss this in detail
below in section 4. The odds ratio plots show a wide range of results that also vary with
condition. Figure 5 separates conditions into groups based on the odds ratios of the high
risk outliers. The strength of the diabetes predictors is probably due to their use of blood
biomarkers (e.g. HbA1c) which are standard diagnostic indicators for diabetes. That this
standard diagnostic indicator is so highly ranked lends confidence to the results of the
general methodology.

There are some differences in performance for men and women, most notably in
cancer (possibly due to sex specific cancer variants). The differences are condition specific
and viewed across all conditions the performance is similar. We delay a more detailed
analysis of these differences to future study. The reported performance variations across
the different ancestries are notably smaller and show less of a consistent pattern than what
is the usual case for prediction from genetic information; this is expected since predicting
from biomarkers stays on a higher biological level and does not involve issues such as LD
patterns and tag SNPs etc. Note, however, that these results are limited by the available
statistics, see Supplementary Information for the case/control numbers for each ancestry.

In Figure 6, we also include two examples of the LASSO coefficients for CAD and
type 2 diabetes. For CAD, we find mostly well-known biomarkers with the highest weight,
such as LDL, apolipoprotein B, total cholesterol and HDL. However, for women cystatin C
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Figure 6. Predictors for phenotypes
like CAD and type 2 diabetes from
biomarkers are dominated by a top
few inputs. Relative weights of each
biomarker within predictors for CAD
and type 2 diabetes. women and men
while error bars indicate ± standard de-
viations from the mean of five predictors.
The most impactful biomarkers are very
well-known but we highlight cystatin C
as surprisingly frequent among the mod-
erately strong coefficients. Correspond-
ing plots for all condition predictors are
shown in the Supplementary Informa-
tion.

appears at fourth place, which to our knowledge is not often used in this context. Cystatin
C also is the fifth most influential biomarker in the diabetes type 2 predictor for both sexes,
while these predictors are dominated by the standard biomarker glycated haemoglobin.
In fact, cystatin C is among the more important biomarkers for most of our predictors.
Coefficients for all conditions are listed in the Supplementary Information.

We investigated the presence of non-linear effects for (risk score | biomarkers) by
extending the input features with all possible quadratic interactions among the seven most
influential biomarkers for each condition. We saw no effect on the performance in either
direction and conclude that the effects of the biomarkers on all the listed conditions appear
to be linear to very good approximation.

3.2.2. Predicting case status from PGS of biomarkers

The concatenated predictors (risk score | biomarkers | SNPs) suffer a significant
drop in performance, as can be seen in Figure 7. The imprecise predictors (biomarker
| SNPs) introduce a lot of noise and, exacerbated further by the uncertainty in the (risk
score | biomarkers) predictors, the concatenation does in general not lead to meaningful
predictions. A notable exception are the diabetes predictors. The combination of reasonably
correlated PGS for the most important biomarkers and the exceptionally high AUCs for
these predictors lead to an average AUC of ∼ .63 for the type 2 diabetes (risk score |
biomarkers | SNPs) predictor. This is comparable to what we have achieved in the past
by training SNP-based LASSO directly on type 2 diabetes status[11]. Furthermore, the
two different types of predictors (risk score | biomarkers | SNPs) and (risk score | SNPs)
capture somewhat complementary information, as shown in Figure 8. The sum of the two
types of risk scores reaches an AUC of ∼ .67. It is unclear why the use of biomarkers as an
intermediate step adds additional information relative to training directly with SNPs as
features and case status as the phenotype. We leave this as an interesting topic for future
research.

The sibling evaluation of the disease risk predictors, described in section 2.2, is re-
ported in Figure 9. The fraction of sibling pairs with one case and one control called
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| biomarkers | SNPs) predictors
drop significantly as compared
to (risk score | biomarkers) in
Figure 5 and only the diabetes
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Figure 8. Risk scores predicted
from SNPs (risk score | SNPs)
and from PGS of biomarkers
(risk score | biomarkers | SNPs)
do not always agree, here exem-
plified by type 2 diabetes data
for men. Both predictors predict
case status directly from SNPs
alone. Their outputs correlate ∼
0.37 with a linear regression coef-
ficient of∼ 0.39. In the noise, they
capture some complementary in-
formation: the sum of the risk
scores achieves an AUC of ∼ 0.67
while the SNP and PGS based
predictors individually achieve
AUCs of ∼ 0.63 and ∼ 0.65, re-
spectively.

correctly ranged from pure chance for cancer and liver problems, while reaching ∼ 0.9 for
diabetes type 1 and 2, using the (risk score | biomarkers) predictors. The accuracy dropped
significantly for the (risk score | biomarkers | SNPs) predictors, as expected; no predictor of
this type reached a correctly called fraction above 0.6.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2021. ; https://doi.org/10.1101/2021.04.01.21254711doi: medRxiv preprint 

https://doi.org/10.1101/2021.04.01.21254711
http://creativecommons.org/licenses/by/4.0/


13 of 20

CA
D

ca
nc

er

di
ab

et
es

 1

di
ab

et
es

 2

hy
pe

rt
en

si
on

ki
dn

ey
 

liv
er

 

ob
es

ity

0.6

0.7

0.8

0.9

475 813 349 447 1831 371 292 1395

CA
D

ca
nc

er

di
ab

et
es

 1

di
ab

et
es

 2

hy
pe

rt
en

si
on

ki
dn

ey
 

liv
er

 

ob
es

ity

0.45

0.50

0.55

0.60

47 113 34 53 216 32 38 166

Figure 9. The fractions of sibling pairs with precisely one case and one control called correctly are
generally high for (risk score | biomarkers) but not much better than chance when predicting
from genotypes using (risk score | biomarkers | SNPs). The pairs were considered correctly called
if the PRS was higher for the affected sibling, without any restriction on the size of the separation.
Number of included sibling pairs differed for the two types of predictors and are listed at the top. The
error bars indicate ± the standard deviation for five different predictors for (risk score | biomarkers)
and for 5× 5 concatenation combinations of predictors in the (risk score | biomarkers | SNPs).

3.3. Comparison with ASCVD Risk Estimator

To illustrate the performance of the (risk score | biomarkers) predictor for ASCVD
and to compare it with the ASCVD Risk Estimator, we used the risk percentage output as
described in section 2.3. The ASCVD Risk Estimator was built using American cohorts of
separately European and African ancestry. Due to the similarities with the UKB population,
we deemed it could be applied somewhat fairly to the entire UKB, whereas we used the
withheld evaluation set of ∼ 40k of European ancestry for the (risk score | biomarkers)
predictor. The result is shown in Figure 10, in which the predicted risks were binned and
the actual disease prevalence within each bin was calculated, labeled "Actual risk". Both
predictors give very accurate risk estimates, with increasing uncertainty for individuals
with high predicted risk. However, although they do assign correct risk estimates for bins
taken as a whole, they do not always agree on who is at low versus high risk. The scatter
plot in Figure 10 shows their individual distributions and occasional disagreements. Their
partially complementary predictions are further highlighted in the risk heat map in Figure
10 and utilized below in a combined predictor.
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Figure 10. The ASCVD (risk score | biomarkers)
and the ASCVD Risk Estimator both make accu-
rate risk predictions but with partially complemen-
tary information. Left: Predicted risk by (risk score |
biomarkers), the ASCVD Risk Estimator and a (risk
score | SNPs) predictor were binned and compared
to the actual disease prevalence within each bin. The
gray 1:1 line indicates perfect prediction. Shaded re-
gions are 95% confidence intervals obtained from 100
fold bootstrap estimates of the prevalence in each bin.
The ASCVD Risk Estimator was applied to 340k UKB
samples while the others were applied to an eval-
uation set of 28k samples, all of European ancestry.
Upper right shows a scatter plot and distributions of
the risk predicted by (risk score | biomarkers) versus
the risk predicted by the ASCVD Risk Estimator for
the 28k Europeans in the evaluation set. The (risk
score | biomarkers) distribution has a longer tail of
high predicted risk, providing the tighter confidence
interval in this region. The left plot y-axis is the actual
prevalence within the horizontal and vertical cross-
sections, as illustrated with the shaded bands corre-
sponding to the hollow squares to the left. Notably,
both predictors perform well despite the differences
in assigned stratification. The hexagons are an over-
lay of the lower right heat map of actual risk within
each bin (numbers are bin sizes). Both high risk edges
have varying actual prevalence but with a very strong
enrichment when the two predictors agree.
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Figure 12. The risk prediction using both 45 biomarkers and all the ASCVD Risk Estimator input improves perfor-
mance as compared to Figure 10, in particular for high risk individuals, and is very good all the way up to risk levels
of 80%. The figure compares two predictors: a combined ASCVD predictor using all 45 biomarkers plus all the input
fields (age, sex, etc.) used by the ASCVD Risk Estimator, using UKB data only, and a predictor using the same input plus
the ASCVD Risk Estimator output, labeled UKB + ASCVD R.E. The latter does not perform notably better, although the
ASCVD Risk Estimator output “risk_10y” corresponds to the fourth strongest coefficient. Both perform better than both the
(risk score | biomarkers) and ASCVD Risk Estimator individually, confirming their complementary nature shown in the heat
map, Figure 10. The shaded areas in the left panel again indicate 95% confidence intervals obtained by 100 fold bootstrap
calculations of the actual prevalence in each risk bin. Figures with all coefficients can be found in the Supplementary
Information.

3.3.1. Combination of predictor from biomarkers and the ASCVD Risk Estimator

Since the ASCVD Risk Estimator and the (risk score | biomarkers) predictor use
different input and give complementary predictions, we combined them into a a very
reliable risk predictor, superseding both the former. The risk estimates are compared with
actual disease prevalence in Figure 12 for two versions of the combined predictor: (1)
a linear regression on the biomarkers and all of the input going into the ASCVD Risk
Estimator, and (2) a similar regression but also including the output of the ASCVD Risk
Estimator. Their top coefficients are listed in the same figure.

4. Discussion

UK Biobank data include about 500k individuals, for each of whom the following are
recorded: SNP genotype, biomarker (blood, urine) test results, and case status for most
common disease conditions. We have explored the pattern of correlations between these
three distinct data types using machine learning.

We have shown that SNPs can be used to predict quantitative values of biomarkers
by training new polygenic scores (PGS) for biomarker prediction. We note that the day
to day fluctuation of these biomarker levels suppresses the quality of prediction. A more
stable phenotype (e.g., average value of biomarker measured on multiple occasions) would
probably be even better predicted from SNPs alone.

As is typical for current genomic predictors, we find predictive power falls off sig-
nificantly with genetic distance from the (European) training population. This highlights
the importance of increasing ancestry diversity in genetic data collection. As genetic
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predictors begin to find clinical applications, lack of diversity can exacerbate healthcare
inequalities[48,80] (a larger list of associated ethical issues is highlighted in [44]).

We showed that biomarkers can be used as input to predict common disease risk.
Some of these (risk score | biomarkers) predictors (e.g., ASCVD, diabetes) are very strong
and may even surpass risk predictors in widespread clinical use. The combined predictor
trained using both biomarkers and ASCVD Risk Estimator inputs clearly outperforms the
latter in our comparison, at least for individuals at very high risk. It should be emphasized
here that we did not perform the careful evidence review nor the statistical analysis that
underlie the ASCVD Risk Estimator [23] and our comparison did not take into account the
time of diagnosis. As such, our ASCVD predictor presented here is merely a comparative
example and is not intended for clinical use in its current form. Yet, this naive approach
performs remarkably well, utilizing the large statistical power of the UKB.

In the case of liver and kidney disease, we are not aware of other quantitative risk
predictors that can be evaluated from biomarkers alone. Our results suggest that further
research in this direction is warranted.

We note that (risk score | biomarkers) prediction quality does not exhibit the pattern of
fall-off with genetic distance as previously found with genomic predictors3. For example,
CAD and ASCVD predictors work well in all major ancestry groups despite using a
European training sample. Further investigation is needed.

We studied concatenated predictor functions, which map SNPs to biomarkers to
risk. In general, there were significant declines in performance. The magnitudes of these
declines were perhaps expected for correlation chains of generic, high dimensional, vectors
with similar pairwise correlations. Of the (risk score | biomarkers | SNPs) predictors, only
the type 2 diabetes predictor performs well: AUC of ∼ .63. This is in fact comparable
to what we have achieved in the past by training SNP-based LASSO directly on type 2
diabetes status. Furthermore, the two different types of predictors (risk score | biomarkers
| SNPs) and (risk score | SNPs) capture somewhat complementary information, as shown
in Figure 8. The sum of the two types of risk scores reaches an AUC of ∼ .67. It is unclear
why the use of biomarkers as an intermediate step adds additional information relative to
training directly with SNPs as features and case status as the phenotype. We leave this as
an interesting topic for future research.
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