- 1 SARS-CoV-2 infectivity by viral load, S gene variants and demographic
- 2 factors and the utility of lateral flow devices to prevent transmission
- 3
- 4 Lennard YW Lee,^{1*} Stefan Rozmanowski,^{2*} Matthew Pang,² Andre Charlett,³ Charlotte Anderson,³
- 5 Gareth J Hughes,³ Matthew Barnard, ² Leon Peto,¹ Richard Vipond,⁴ Alex Sienkiewicz,⁴ Susan
- 6 Hopkins,³ John Bell,¹ Derrick W Crook,^{1,5,6} Nick Gent,³ A Sarah Walker,^{1,5,6} Tim EA Peto^{1,5,6§}, David W
- 7 Eyre^{5,6,7§}
- 8 ¹ Nuffield Department of Medicine, University of Oxford, UK
- 9 ² Department of Health and Social Care, UK Government, London, UK
- 10 ³ Public Health England, London, UK
- 11 ⁴ Public Health England, Porton Down, UK
- 12 ⁵ NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- ⁶ NIHR Health Protection Research Unit in in Healthcare Associated Infections and Antimicrobial
- 14 Resistance, University of Oxford, UK
- ⁷ Big Data Institute, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- 16
- 17 *Contributed equally
- 18 §Contributed equally
- 19
- Corresponding author: David Eyre, John Radcliffe Hospital, Oxford, OX3 9DU, United Kingdom.
 <u>david.eyre@bdi.ox.ac.uk</u>.
- 22 Alternative corresponding author: Tim Peto, John Radcliffe Hospital, Oxford, OX3 9DU, United
- 23 Kingdom. <u>tim.peto@ndm.ox.ac.uk</u>.
- 24 Keywords: infectivity, contact tracing, SARS-CoV-2, lateral flow device, B.1.1.7 variant
- 25 Running title: SARS-CoV-2 infectivity

27 Key points

- 28 In 2,474,066 contacts of 1,064,004 SARS-CoV-2 cases, PCR-positive tests in contacts increased with
- 29 higher index case viral loads, the B.1.1.7 variant and household contact. Children were less
- 30 infectious. Lateral flow devices can detect 83.0-89.5% of infections leading to onward transmission.

31

32 Abstract

- 33 Background: How SARS-CoV-2 infectivity varies with viral load is incompletely understood. Whether
- 34 rapid point-of-care antigen lateral flow devices (LFDs) detect most potential transmission sources
- 35 despite imperfect sensitivity is unknown.
- 36 Methods: We combined SARS-CoV-2 testing and contact tracing data from England between 01-
- 37 September-2020 and 28-February-2021. We used multivariable logistic regression to investigate
- 38 relationships between PCR-confirmed infection in contacts of community-diagnosed cases and index
- case viral load, S gene target failure (proxy for B.1.1.7 infection), demographics, SARS-CoV-2
- 40 incidence, social deprivation, and contact event type. We used LFD performance to simulate the
- 41 proportion of cases with a PCR-positive contact expected to be detected using one of four LFDs.
- 42 **Results:** 231,498/2,474,066 (9%) contacts of 1,064,004 index cases tested PCR-positive. PCR-positive
- 43 results in contacts independently increased with higher case viral loads (lower Ct values) e.g.,
- 44 11.7%(95%Cl 11.5-12.0%) at Ct=15 and 4.5%(4.4-4.6%) at Ct=30. B.1.1.7 infection increased PCR-
- 45 positive results by ~50%, (e.g. 1.55-fold, 95%Cl 1.49-1.61, at Ct=20). PCR-positive results were most
- 46 common in household contacts (at Ct=20.1, 8.7%[95%Cl 8.6-8.9%]), followed by household visitors
- 47 (7.1%[6.8-7.3%]), contacts at events/activities (5.2%[4.9-5.4%]), work/education (4.6%[4.4-4.8%]),
- and least common after outdoor contact (2.9%[2.3-3.8%]). Contacts of children were the least likely
- 49 to test positive, particularly following contact outdoors or at work/education. The most and least
- sensitive LFDs would detect 89.5%(89.4-89.6%) and 83.0%(82.8-83.1%) of cases with PCR-positive
- 51 contacts respectively.
- 52 **Conclusions:** SARS-CoV-2 infectivity varies by case viral load, contact event type, and age. Those with
- high viral loads are the most infectious. B.1.1.7 increased transmission by ~50%. The best performing
- 54 LFDs detect most infectious cases.

56 Introduction

- 57 The global health impact of SARS-CoV-2 is profound.¹ There is widespread on-going transmission
- 58 despite control efforts predominantly focused on quarantining symptomatic cases and population-
- 59 level self-isolation.² The emergence of potentially more transmissible variants, such as B.1.1.7³ which
- 60 has spread widely in the UK, has hampered control. However, vaccine roll-out offers the prospect of
- 61 reduced disease and transmission.⁴
- 62 Intermittent national and regional social distancing and self-isolation measures have been imposed
- 63 in many countries.^{5,6} Additional self-isolation measures for "contacts" (individuals exposed to SARS-
- 64 CoV-2) vary by country, but generally last 7-14 days.⁷ While reducing transmission,
- 65 quarantine/isolation measures have indirectly had many wider effects on economic productivity,
- 66 well-being⁸ and non-COVID-19-related excess deaths.^{9–11} Not all exposure to SARS-CoV-2 leads to
- 67 infection, e.g., in some settings only 5-7% of exposed "contacts" develop COVID-19 infection^{12,13} and
- 68 modelling suggests ~15% of individuals are responsible for most SARS-CoV-2 transmission.¹⁴
- 69 Therefore, using isolation selectively for those who are most infectious could lessen some of its
- 70 collateral impacts.^{12,13}
- 71 Our understanding of how individual infectiousness varies is limited. Several assays for infectivity
- 72 have been proposed. Functional assays include animal and cell culture models, whereas viral sub-
- 73 genomic mRNA is a nucleic acid-based measure of infectivity.¹⁵ Detection of viral protein, i.e.
- 74 antigen, as assessed by lateral flow devices (LFDs), has been shown to be more closely linked to viral
- 75 culture infectivity than PCR measurements.¹⁶ However, few of these surrogate measures of
- 76 infectivity have been convincingly demonstrated to predict the real-world likelihood of a SARS-CoV-2
- 77 infected individual infecting someone else.
- 78 Here we use data from the England's national contact tracing and testing programs to explore the
- relationship between infectivity and SARS-CoV-2 viral load, as measured by PCR cycle threshold (Ct)
- 80 values. We identify demographic factors associated with infectivity and assess the impact of the
- 81 emergence of the B.1.1.7 variant. We apply our results to a population of PCR-positive individuals to
- 82 estimate the proportion of infectious individuals detected by viral antigen LFDs under a range of
- 83 performance conditions.
- 84

85 Methods

- 86 Data from community and hospital PCR testing in England between 01-September-2020 and 28-
- 87 February-2021 were obtained and linked with national contact tracing data by the UK Government
- 88 Department of Health and Social Care. Data extracts were de-identified prior to analysis and
- 89 included for PCR-confirmed cases and their contacts: demographic details (age, sex, ethnicity), if
- 90 symptoms were present for cases and the timing of testing relative to symptom onset, and test
- 91 results, as well as details on the nature of the contact events.

92 Index cases and contacts

- 93 We defined index cases as SARS-CoV-2 PCR-positive individuals with a community-based test
- 94 performed by three high-throughput national testing facilities ("Lighthouse Laboratories" in Milton
- 95 Keynes, Alderley Park or Glasgow), which reported Ct values indicating viral load. Samples were

- 96 processed using the same RNA extraction and Thermo Fisher TaqPath PCR platform in each
- 97 laboratory (targeting S and N genes, and ORF1ab; details in Supplement). Only the first positive
- 98 result per person was included. Index cases without available Ct values were excluded. The B.1.1.7
- 99 variant contains a deletion in the S gene, resulting in S gene target failure (SGTF). Sequencing of
- 100 SGTF samples showed 89.5% were due to B.1.1.7 by mid-January 2021,¹⁷ so SGTF was used as a
- 101 proxy for B.1.1.7.
- 102 Contacts of index cases were defined as all individuals notified to the national contact tracing service
- 103 from the day of the index cases' positive test until 10 days later with whom the index case had been
- 104 in close proximity from 48 hours before their symptom onset to 10 days afterwards (further
- 105 definitions in Supplement). Contacts could be tested PCR-positive through any community or
- 106 hospital-based test as these were nationally reported.

107 Statistical analysis

- 108 We aimed to determine factors associated with PCR-positive results in contacts, including the
- 109 demographics, viral load and SGTF status of the index case. To identify outcomes most likely
- 110 representing onward transmission from the index case rather than a third party, we excluded
- 111 contacts named by more than one index case. We also restricted to positive test results obtained 1-
- 112 10 days following the index case's test date, i.e., the period when the index case may have been
- 113 infectious, to exclude earlier results in contacts and avoid contacts who were the source for the
- 114 index case's infection. Given these restrictions, the absolute proportion of contacts testing PCR-
- positive cannot be interpreted as a secondary attack rate, because some onward transmission
- events are excluded. Where contacts had more than one PCR test within the follow-up window, all
- 117 were considered to identify positive results.
- 118 We used multivariable logistic regression to investigate associations between PCR-confirmed
- 119 infection in contacts (including contacts whether or not they had PCR tests) and the index case's Ct
- value and SGTF status (B.1.1.7 proxy), the contact event nature, the case's demographics, and
- incidence and social deprivation index at the contact's home location. We did not adjust for
- symptoms in the case, as these may be mediators of the effect of viral load on onward transmission.
- 123 We used splines to account for non-linearity in continuous variables and screened for all pairwise
- 124 interactions between main effects (details in Supplement).
- 125 We performed sensitivity analyses to test our restriction to contacts tested 1-10 days after each
- index case and including only contacts with PCR tests. We used unadjusted linear regression to
- 127 investigate the proportion of the variation in Ct values in contacts that could be explained by the
- 128 case's Ct value.

129 Simulations of the number of cases identified by antigen LFDs

- 130 We used our findings to estimate the proportion of potential transmission events where the source
- 131 case would have been detected using an antigen LFD, using existing data on the sensitivity of four
- 132 LFDs: Innova, Deep Blue, Orient gene and Abbott.¹⁸ For each source case we simulated a positive or
- negative LFD result by randomly drawing from the probability of a LFD being positive by the source
- 134 case's Ct value (see Supplement, Figure S1). Each simulation was repeated 1000 times. Additionally,
- 135 we ran simulations for a range of hypothetical LFD performances.

136 Ethics

- 137 The study was conducted as part of national COVID-19 surveillance under the provisions of Section
- 138 251 of the NHS Act 2006 and therefore did not require individual patient consent. It was approved
- 139 by Public Health England (PHE), the UK COVID-19 LFD oversight group and NHS Test and Trace. The
- 140 protocol for this work was reviewed by the PHE Research Ethics and Governance Group, which is the
- 141 PHE Research Ethics Committee, and was found to be fully compliant with all regulatory
- 142 requirements. As no regulatory or ethical issues were identified, it was agreed that a full ethical
- 143 review would not be needed, and the protocol was approved.

144

145 Results

146 Cases and contacts

- 147 3,577,246 SARS-CoV-2 PCR-positive results were available from England between 01-September-
- 148 2020 and 28-February-2021. Of these 1,818,456 (51%) tests were performed by three national
- 149 laboratories providing high-throughput community testing with a standardised PCR assay, yielding a
- 150 first positive test per person in 1,796,139 individuals. 27,893 (2%) were excluded as no Ct value was
- available, 439,482 (24%) had no recorded contacts, and 264,760 (15%) had only recorded contacts
- 152 shared with other index cases, leaving 1,064,004 index cases in the analysis (Figure 1, Table S1).
- 487,653 (46%) cases had SGTF, consistent with B.1.1.7, increasing to near 100% by 28-February-2021
- 154 (Figure S2).
- 155 The 1,064,004 index cases had 2,974,596 contacts identified within 10 days of their test of whom
- 156 918,758 (31%) had a PCR test within ±10 days of the index case and 638,456 (21%) tested PCR-
- 157 positive. 2,474,066 (83%) contacts were named only by a single case and are included in the analysis;
- 158 231,498 (9%) tested PCR positive 1-10 days after the index case's PCR-positive result, our main
- 159 outcome measure, i.e., consistent with possible transmission from the index case to the contact.
- 160 The median (IQR) age of cases and contacts was 36 (24-51) and 31 (16-49) years respectively, and
- 161 54% and 52% with available data were female (Table 1). Most contact events occurred within
- households (77.4%), followed by visits to households (8.3%), workplaces or education (8.0%),
- 163 attending events or activities (5.3%), and outdoors (0.3%).

164 Predictors of PCR-positive results in contacts

- 165 On univariable analysis (Table 2, Figures S3-S6), PCR-positive tests in contacts were associated with
- 166 lower case Ct values (i.e. higher viral loads), SGTF in the index case, higher incidence in the local
- 167 population, less social deprivation, white ethnicity and male sex. Household contacts were most
- 168 likely to be PCR-positive. PCR-positive results were least frequent in contacts of children, with
- 169 highest rates in contacts of older adults.
- 170 Adjusted multivariable analysis showed strong evidence of effect modification (interactions) and
- 171 non-linear relationships, such that associations are best described graphically (Figures 2-3, S7-S11).
- 172 Index case Ct value was an important determinant of PCR-positive results in contacts, with an
- approximately linear decline in positive results as Ct value increased, that was independent of the
- 174 nature of the contact event (Figure 2). For example, amongst household contacts, with other
- 175 variables set to median values/baseline categories, rates of PCR-positive tests were 11.7% (95%CI

- 176 11.5-12.0%) for index case Ct=15 and 4.5% (4.4-4.6%) for Ct=30. Contacts were most likely to test
- 177 PCR-positive after household contact (percentage of PCR-positive tests, at median Ct value=20.1,
- 178 8.7% [95%CI 8.6-8.9%]), followed by visitors to households (7.1% [6.8-7.3%]), contacts at
- events/activities (5.2% [4.9-5.4%]), then work/education (4.6% [4.4-4.8%]), with outdoor contacts
- the least likely to test positive (2.9% [2.3-3.8%]).
- 181 SGTF was associated with increased percentages of contacts testing PCR-positive, by 1.55-fold more
- 182 (95%CI 1.49-1.60) at index Ct=15, 1.55 (1.49-1.61) at Ct =20 and 1.44 (1.38-1.51) at Ct=30. At Ct
- values near the upper limit of the assay, the relative increase in PCR-positive results fell to near 1
- 184 (Figure 3).
- 185 Contacts of children were the least likely to test positive, particularly following contact outdoors or
- 186 at work or in education (Figure 4). Most contact types had similar rates of PCR-positive results across
- 187 adult ages, except for household contact where risk increased as age increased above 35 years and
- 188 contact at work/education, events/activities and outdoors where risk of a PCR-positive result was
- 189 highest in adults in their 20s.
- 190 Associations between PCR-positive results in contacts and sex varied with age (Figure S8). Broadly,
- 191 increasing incidence increased PCR-positive contacts, likely reflecting increased acquisition from
- 192 third parties. There were fewer PCR-positive contacts in areas of greater social deprivation (Figure
- 193 S11) and amongst Black, Asian and minority ethnic groups (Figure S9-S10).
- 194 A sensitivity analysis supported the 1-10 day follow-up window for PCR results in contacts (Figure
- 195 S12). Case Ct values explained only a small proportion of the variability in contact Ct values
- 196 (unadjusted linear regression coefficient 0.14 [95%Cl 0.13-0.14, p<0.001], R-squared = 0.02).
- **197** Predictors of PCR-positive results in contacts attending PCR testing
- 198 In a sensitivity analysis restricted to contacts who had a PCR test (Table S2, Figures S13-S19), similar 199 relationships were seen between PCR-positive results and index case Ct values, contact type and
- 200 SGTF (Figures S19). While rates of PCR-positive results remained highest in older adult household
- 201 contacts, there was attenuation of the lower rates seen in children, consistent with main analysis
- findings of less transmission from children arising from less testing being required or undertaken in
- 203 contacts of children (Figure S18). In contrast to the main analysis, contacts of all non-white ethnic
- 204 groups (Table S2) and those living in more deprived areas (Figure S17) were more likely to be PCR-
- 205 positive, potentially due to differences in access to and use of testing by different ethnic and
- 206 socioeconomic groups.
- 207 Proportion of cases with PCR-positive contacts detected by LFDs
- 208 Overall, 85.4% (197,677/231,497) of case-contact pairs with PCR-positive contacts, i.e., plausible
- 209 onward transmission, had case viral loads of \geq 10,000 RNA copies/ml (i.e. Ct \leq 24.4) versus 75.2% of
- all cases (800,020/1,064,004). Index cases with SGTF had lower Ct values, except for results near the
- 211 detection threshold (Figure S20).
- As antigen LFD sensitivity varies by viral load, we used the distribution of viral loads in case-contact
- 213 pairs with a PCR-positive contact to simulate the proportion of such cases who would have been
- 214 detected using antigen LFDs (Figure 5). The Deep Blue LFD would have detected 85.9% (95%CI 85.8-
- 86.0%) of cases who plausibly subsequently transmitted to a contact, the Innova LFD 83.0% (82.8-

- 216 83.1%), the Orient Gene LFD 89.5% (89.4-89.6%) and the Abbott LFD 85.8% (85.7-86.0%).
- 217 Performance was very similar before and after B.1.1.7 expansion (Table S3). The performance
- 218 characteristics required to detect varying proportions of transmission sources by a novel LFD are
- 219 illustrated in Figure S21.
- 220

221 Discussion

We have performed a large-scale analysis of combined SARS-CoV-2 contact tracing and testing data from England involving >2 million contacts of PCR-confirmed cases. We show SARS-CoV-2 infectivity is associated with index case viral load, including after adjustment for demographic factors and type of contact event. SGTF, a proxy for the B.1.1.7 variant, increased transmission by ~50% at most viral loads. Onward transmission from children was relatively uncommon compared to adults, although this may partly be due to less testing in their contacts. We confirm earlier findings that household

- 228 contact is associated with greater rates of transmission compared to workplace, educational or
- 229 recreational contact outside of homes.^{19,20}

230 Except SGTF, it is noteworthy that we found no evidence of significant interactions between Ct

values and any other variables in the analysis, i.e. the effect of viral load on infectivity is

232 generalisable across populations and settings. These results are consistent and add to a recent

- 233 smaller cohort study.²¹
- 234 Consistent with other reports³ we found that SGTF increased the proportion of contacts testing PCR-
- positive, by around 55% at high viral loads (Ct values of 10-20), rising with moderate viral loads to a
- 236 maximum of 75% (Ct=25) before declining again to below 10% at low viral loads (Ct=34). SGTF also
- affected how the likelihood of transmission varied with age, contact event type and ethnicity. The
- higher relative infectiousness at moderate viral loads may represent increased infectiousness of
- individual virions at viral loads where stochasticity is more important compared to higher viral loads.
- The attenuation of the relative infectiousness at high Ct values partly arises from greater numbers of wildtype strains exhibiting SGTF due to stochastic failure to detect a single gene at low viral loads. As
- 242 lower viral loads are less infectious, it may also reflect more PCR-positive contacts acquiring
- 243 infection from third parties, such that the characteristics of the index case matter less. This is
- supported by the proportion of contacts testing PCR-positive not tending to zero at very low viralloads.
- 246 85.4% PCR-positive contacts had an index case with a viral load of \geq 10,000 RNA copies/ml (Ct \leq 24.4).
- 247 Hence, 85.4% of infections in contacts are potentially attributable to the 75.2% of cases overall with
- a viral load of ≥10,000 RNA copies/ml. While such data could be used to drive differential
- 249 interventions to prevent onward transmission with a particular focus on those with high viral loads,
- 250 our findings suggest that most infected individuals still have some risk of transmitting onwards
- 251 based on Ct values.

However, we show that several LFDs are sufficiently sensitive to detect most cases that led to

- 253 onward transmission. These tests offer potential advantages, in returning a result in 15-30 minutes,
- 254 not requiring laboratory infrastructure and costing significantly less than PCR tests. However post-
- analytic infrastructure is still needed to collect results. Using the estimated sensitivity of four LFDs,

- 256 we estimate they would detect 83.0%-89.5% of cases leading to onward transmission. While such
- 257 performance is not sufficient to replace PCR for testing of all symptomatic individuals, use of LFDs in
- addition to existing testing, particularly of those who otherwise would not be tested at all (including
- those without symptoms), would allow many of the most infectious individuals to be identified
- 260 earlier, potentially preventing onward transmissions and helping to drive reproduction numbers
- 261 below 1, despite imperfect performance against PCR. The specificity of each LFD is another
- important consideration, particularly as incidence falls; the false positive rate for the Innova LFD has
- been previously reported as 0.32% (95%Cl 0.20-0.48%),¹⁸ and large-scale evaluations of the other
- LFDs are on-going. In settings where the positive predictive value of an LFD is insufficiently high,
- 265 confirmatory PCR testing may be required.
- 266 Our study has important limitations. Firstly, ascertaining infection in contacts depends on the
- 267 contact being reported by the case and the contact being tested. In the UK, PCR testing is only
- 268 recommended for those with symptoms and therefore we do not ascertain most asymptomatic
- 269 infections. Whilst Ct values are generally slightly lower in those without symptoms,²² they may
- 270 nevertheless contribute substantially to transmission.²³ Additionally, access to testing depends on
- 271 social and demographic factors, e.g. the relationships between PCR-positive results in contacts and
- ethnicity varied if we conditioned on contact attendance for a PCR test (Table 2 vs. Table S2).
- 273 Secondly, our classification of contact events is relatively simple, e.g., we do not have any direct
- 274 measures of human behaviour, such as proximity or duration of contact. We also do not account for
- the dynamic nature of viral loads over time,²⁴ relying on a single measurement at varying times post
- 276 infection. Despite this, the time from symptom onset to testing in the cases was relatively
- 277 consistent, median (IQR) 2 (1-3) days, such that measured Ct values plausibly represent similar
- 278 stages of the illness in cases. We use only a single assay to determine Ct values, but have calibrated
- 279 this to allow comparison with other platforms.
- 280 Finally, it was not possible to account for unobserved third-party transmission, although we
- 281 designed our study population to minimise this risk. This likely means that some contact events
- identified as possible transmission events may actually not be the source of the infection in the
- 283 contact. It is likely that proportionally this effect is greatest at lower viral loads (higher Ct values), as
- the likelihood of transmission rises with viral load.
- 285 In summary, we provide strong evidence that SGTF increases SARS-CoV-2 transmission and that 286 SARS-CoV-2 infectivity increases with increasing viral load. We show that the relative strength of the 287 effect of viral load is consistent across ages, ethnicities, and different types of contact events. 288 Despite this association, most individuals have Ct values compatible with onward transmission.²⁵ 289 Nevertheless, LFDs can detect most individuals who are potential transmission sources. This 290 supports wider use of LFDs as rapid and regular screens to detect infectiousness in populations at 291 high risk of acquisition, including recent contacts of cases. Further prospective studies will be 292 required to demonstrate whether targeted isolation and/or contact tracing, together with wider use 293 of LFDs in combination with vaccination are effective in preventing ongoing SARS-CoV-2 294 transmission.

296 Figures

300 Figure 1. Index cases and contacts in England, 01 September 2020 to 28 February 2021.

Figure 2. Relationship between PCR cycle threshold (Ct) value in cases and the proportion of their
contacts with a PCR positive result, by contact type and S gene target failure. Model predictions
are plotted after adjustment for index case age (set to the median value, 35 years), case ethnicity
(set to white), index of multiple deprivation score at contact's home address (set to median, 14,465),
incidence at contact's home address (set to median 350 cases per 100,000 population per week) and
index case sex (set to female). The shaded area indicates the 95% confidence interval.

312 Figure 3. Relationship between PCR-positive results in contacts and index case Ct value and S gene

313 target failure (SGTF) indicative of B.1.1.7 variant. Panel A shows the proportion of contacts testing

by PCR-positive. Panel B displays the ratio of the two lines from panel A, i.e., the relative

315 infectiousness of index cases with SGTF vs. without SGTF. Model predictions are adjusted for index

case age, sex and ethnicity, contact index of multiple deprivation and incidence as in Figure 2.

319 Figure 4. Relationship between index case age and the proportion of their contacts with a PCR

320 **positive result, by contact type and S gene target failure**. Model predictions are plotted after

adjustment for Ct value (set to the median Ct value, 20.1), and other variables as in Figure 2.

325 Figure 5. Simulated proportion of cases with a PCR-positive contact detected using four lateral

326 flow devices (LFD). The proportion of cases detected by PCR viral load group is shown in the PCR

327 column. The number of cases with a PCR-positive contact who would be detected using each LFD is

328 shown for 4 LFDs.

329 Tables

330

Variable	Case, n = 1,064,004 ¹	Contact: not PCR- positive within 1-10 days, n = 2,242,569 ¹	Contact: PCR-positive within 1-10 days, n = 231,497 ¹
Sex			
Female	560,557 (53%)	820,203 (37%)	114,837 (50%)
Male	476,967 (45%)	765,538 (34%)	99,539 (43%)
Not specified	26,480 (2.5%)	656,828 (29%)	17,121 (7.4%)
Age	36 (24 - 51)	30 (15 - 48)	37 (23 - 52)
Not available	9	720,544	17,853
Ethnic group			
Asian	128,218 (12%)	77,932 (3.5%)	9,491 (4.1%)
Black	27,658 (2.6%)	17,167 (0.8%)	1,874 (0.8%)
Mixed	27,263 (2.6%)	19,342 (0.9%)	2,297 (1.0%)
Other	15,682 (1.5%)	9,667 (0.4%)	1,170 (0.5%)
White	728,265 (68%)	585,255 (26%)	78,363 (34%)
Not available	136,918 (13%)	1,533,206 (68%)	138,302 (60%)
Incidence at home address, per 100,000 population	355 (215 - 546)	348 (207 - 524)	375 (226 - 581)
Not available	4,124	6,444	493
Deprivation index at home address (lower = more deprived, of 32,844 areas)	14,465 (11,374 - 18,704)	14,465 (11,304 - 18,649)	14,593 (11,744 - 19,165)
Not available	4,124	6,444	493
Case symptomatic	969,942 (91%)		
Days from symptom onset to test in case where symptomatic	2 (1 - 3)		
Contact type			
Events/activities		137,805 (6.1%)	8,919 (3.9%)
Household		1,718,674 (77%)	196,508 (85%)
Household visitor		189,637 (8.5%)	16,426 (7.1%)
Outdoors		8,002 (0.4%)	317 (0.1%)
Work/education		188,451 (8.4%)	9,327 (4.0%)
Days from case diagnosis to contact notification		2 (2- 3)	2 (1- 3)
Days from index case test to contact's test where tested		2 (1 - 4)	3 (2 - 5)

331

Table 1. Demographics and characteristics of the study population. ¹Frequency (%) or median (IQR).

Variable		Univariable			Multivariable		
	·	OR	95% CI	p-value	OR	95% CI	p-value
Incidence contact's home address, per 100,000 population*	50 (baseline)	1.00		<0.001	Interaction with SGTF,		TF,
	100	1.10	1.09 - 1.11				
	200	1.25	1.24 - 1.26				
	400	1.25	1.24 - 1.26				
	600	1.42	1.41 - 1.43				
Deprivation score at contact's home	7000 (baseline)	1.00		<0.001	1.00		<0.001
address (lower =	14000	1.11	1.10 - 1.11		1.07	0.92 - 1.24	
more deprived)*	21000	1.26	1.25 - 1.27		1.16	1.00 - 1.35	
	28000	1.25	1.20 - 1.25		1.14	0.98 - 1.33	
Case Ct value (lower = higher	10 (baseline)	1.00		<0.001	Interaction with SGTF,		TF, 3
viral load)*	15	0.81	0.80 - 0.81			C	
	20	0.57	0.57 - 0.57				
	25	0.44	0.43 - 0.44				
	30	0.28	0.28 - 0.29				
S gene target failure (SGTF)	Wildtype (baseline)	1.00			Multiple	interactions, se rows	e other
	S gene variant	1.52	1.50 - 1.53	<0.001			
Case sex	Female	1.00			Interaction with age, see Figure S8		ge,
	Male	1.04	1.03 - 1.04	<0.001		-	
	Not specified	0.73	0.71 - 0.75	<0.001			
Case age*	30 years (baseline)	1.00		<0.001	Interact contact ty type and	ions between SG pe, SGTF and ag age, see Figures	GTF and e, contact s 2 and 4
	10 years	0.71	0.70 - 0.72		,	5. 6.	
	50 years	1.34	1.33 - 1.34				
	70 years	1.40	1.38 - 1.41				

Contact event	Household	1.00			
	(baseline)				
	Activities and events	0.57	0.55 - 0.58	<0.001	
	Household visitor	0.76	0.75 - 0.77	<0.001	
	Work or education	0.43	0.42 - 0.44	<0.001	
	Outside	0.35	0.31 - 0.39	<0.001	
Case ethnicity	White (baseline)	1.00			Interactions between ethnicity and SGTF, ethnicity and contact type, ethnicity and age, see Figures S9 and
	Asian	0.74	0.73 - 0.75	<0.001	S10
	Black	0.67	0.65 - 0.69	<0.001	
	Mixed	0.81	0.79 - 0.83	<0.001	
	Other	0.78	0.75 - 0.81	<0.001	
	Not available	0.76	0.75 - 0.77	<0.001	

Table 2. Univariable and multivariable associations with the proportion of contacts testing PCR

335 **positive**. The lower rates of PCR-positivity seen in cases without a documented sex possibly reflect

incomplete contact tracing or poor data quality preventing appropriate linkage of these cases.

*Incidence, deprivation score, index case Ct value and case age are all fitted as non-linear effects

338 with 5 default-spaced knots, example values are shown, and univariable relationships plotted in

339 Figures S3-S6. Multivariable results are presented with continuous variables set to their median

340 value and categorical variables set to baseline, figures illustrating relationships with interactions are

341 listed. See Figure S11 for the multivariable relationship for deprivation score.

343 References

344

Williamson EJ, Walker AJ, Bhaskaran K, *et al.* Factors associated with COVID-19-related death using
OpenSAFELY. *Nature* 2020; **584**: 430–6.

- 2 Nussbaumer-Streit B, Mayr V, Dobrescu AI, *et al.* Quarantine alone or in combination with other
 public health measures to control COVID-19: a rapid review. *Cochrane Db Syst Rev* 2020.
- 349 DOI:10.1002/14651858.cd013574.pub2.
- 3 Davies NG, Abbott S, Barnard RC, *et al.* Estimated transmissibility and impact of SARS-CoV-2
 lineage B.1.1.7 in England. *Science* 2021; : eabg3055.
- 4 Dagan N, Barda N, Kepten E, *et al.* BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass
 Vaccination Setting. *New Engl J Med* 2021. DOI:10.1056/nejmoa2101765.

354 5 Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in Lombardy,
355 Italy. *Jama* 2020; **323**: 1545–6.

- 356 6 Coronavirus latest: California to issue stay-at-home orders if ICU capacity runs low as it
- happened. undefined. https://www.ft.com/content/eb9a5ae9-d209-39ee-a743-5259039de9c0
 (accessed Jan 17, 2021).
- 359 7 How do measures for isolation, quarantine, and contact tracing differ among countries? Cross-
- 360 Country Analysis. undefined. https://analysis.covid19healthsystem.org/index.php/2020/05/19/how-
- 361 do-measures-for-isolation-quarantine-and-contact-tracing-differ-among-countries/ (accessed Jan 17,
 362 2021).
- 363 8 Brooks SK, Webster RK, Smith LE, *et al.* The psychological impact of quarantine and how to reduce
 364 it: rapid review of the evidence. *Lancet* 2020; **395**: 912–20.
- 365 9 Leon DA, Shkolnikov VM, Smeeth L, Magnus P, Pechholdová M, Jarvis Cl. COVID-19: a need for real366 time monitoring of weekly excess deaths. *Lancet* 2020; **395**: e81.
- 367 10 Woolf SH, Chapman DA, Sabo RT, Weinberger DM, Hill L. Excess Deaths From COVID-19 and
 368 Other Causes, March-April 2020. *Jama* 2020; **324**: 510–3.
- 369 11 Office for National Statistics. Deaths registered in England and Wales, provisional: week ending 6370 November 2020. undefined.
- 371 https://www.ons.gov.uk/releases/deathsregisteredinenglandandwalesprovisionalweekending6nove
- 372 mber2020 (accessed Jan 17, 2021).
- 373 12 Bi Q, Wu Y, Mei S, et al. Epidemiology and transmission of COVID-19 in 391 cases and 1286 of
- their close contacts in Shenzhen, China: a retrospective cohort study. *Lancet Infect Dis* 2020; **20**:
 911–9.

- 13 Luo L, Liu D, Liao X, et al. Contact Settings and Risk for Transmission in 3410 Close Contacts of
- Patients With COVID-19 in Guangzhou, China: A Prospective Cohort Study. Ann Intern Med 2020; **173**: 879–87.
- 14 Sun K, Wang W, Gao L, *et al.* Transmission heterogeneities, kinetics, and controllability of SARSCoV-2. *Science* 2021; **371**: eabe2424.
- 15 Wölfel R, Corman VM, Guggemos W, *et al.* Virological assessment of hospitalized patients with
 COVID-2019. *Nature* 2020; **581**: 465–9.
- 16 Pekosz A, Cooper CK, Parvu V, *et al*. Antigen-based testing but not real-time PCR correlates with
 SARS-CoV-2 virus culture. *medRxiv* DOI:10.1101/2020.10.02.20205708.
- 17 Public Health England. Investigation of novel SARS-CoV-2 Variants of Concern. Technical briefing
 documents on novel SARS-CoV-2 variant.
- 387 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file
- 388 /959426/Variant_of_Concern_VOC_202012_01_Technical_Briefing_5.pdf (accessed March 23,
- 389 2021).
- 18 Peto T, Team UC-19 LFO. COVID-19: Rapid Antigen detection for SARS-CoV-2 by lateral flow assay:
 a national systematic evaluation for mass-testing. *medRxiv* DOI:10.1101/2021.01.13.21249563.
- 392 19 Madewell ZJ, Yang Y, Longini IM, Halloran ME, Dean NE. Household Transmission of SARS-CoV-2.
 393 *Jama Netw Open* 2020; **3**: e2031756.
- 20 College I. Report 38: SARS-CoV-2 setting-specific transmission rates: a systematic review and
 meta-analysis. undefined. https://www.imperial.ac.uk/media/imperial-college/medicine/mrc gida/2020-11-27-COVID19-Report-38.pdf.
- 21 Marks M, Millat-Martinez P, Ouchi D, *et al.* Transmission of COVID-19 in 282 clusters in Catalonia,
 Spain: a cohort study. *medRxiv* DOI:10.1101/2020.10.27.20220277.
- 22 Pouwels KB, House T, Pritchard E, *et al.* Community prevalence of SARS-CoV-2 in England from
 April to November, 2020: results from the ONS Coronavirus Infection Survey. *Lancet Public Heal*2021; 6: e30–8.
- 402 23 Buitrago-Garcia D, Egli-Gany D, Counotte MJ, *et al.* Occurrence and transmission potential of 403 asymptomatic and presymptomatic SARS-CoV-2 infections: A living systematic review and meta-404 analysis. *Plos Med* 2020; **17**: e1003346.
- 405 24 Kissler SM, Fauver JR, Mack C, *et al.* SARS-CoV-2 viral dynamics in acute infections. *medRxiv*406 DOI:10.1101/2020.10.21.20217042.
- 25 Smith LE, Potts HWW, Amlot R, Fear NT, Michie S, Rubin J. Adherence to the test, trace and
 isolate system: results from a time series of 21 nationally representative surveys in the UK (the

409 COVID-19 Rapid Survey of Adherence to Interventions and Responses [CORSAIR] study). *medRxiv*410 DOI:10.1101/2020.09.15.20191957.

414 Transparency Declarations

415 Declaration of interests

- 416 DWE declares lecture fees from Gilead, outside the submitted work. LYWL declares speaker fees
- 417 from the Merck group and Servier, outside the submitted work. No other author has a conflict of
- 418 interest to declare.

419 Funding Statement

- 420 This study was funded by the UK Government's Department of Health and Social Care. This work was
- 421 supported by the National Institute for Health Research Health Protection Research Unit (NIHR
- 422 HPRU) in Healthcare Associated Infections and Antimicrobial Resistance at Oxford University in
- 423 partnership with Public Health England (PHE) (NIHR200915), and the NIHR Biomedical Research
- 424 Centre, Oxford. The views expressed in this publication are those of the authors and not necessarily
- 425 those of the NHS, the National Institute for Health Research, the Department of Health or Public
- 426 Health England. DWE is a Robertson Foundation Fellow and an NIHR Oxford BRC Senior Fellow. ASW
- 427 is an NIHR Senior Investigator. LYWL is supported by the NIHR Oxford BRC.

428 Role of the funding source

- 429 The funder of the study provided access to the data and facilitated data linkage. The funder had no
- 430 role in study design, data analysis, data interpretation, or writing of the report. The corresponding
- 431 author had full access to all the data in the study and had final responsibility for the decision to
- 432 submit for publication.