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Abstract 

The correlates of natural protective immunity to SARS-CoV-2 in the majority who experience 

asymptomatic infection or non-severe disease are not fully characterised, and remain important as new 

variants emerge. We addressed this question using blood transcriptomics, multiparameter flow 

cytometry and T cell receptor (TCR) sequencing spanning the time of incident infection. We identified a 

type 1 interferon (IFN) response common to other acute respiratory viruses, and a cell proliferation 

response that discriminated SARS-CoV-2 from other viruses. These responses peaked by the time the 

virus was first detected, and in some preceded virus detection. Cell proliferation was most evident in 

CD8 T cells and associated with rapid expansion of SARS-CoV-2 reactive TCRs. We found an equally 

rapid increase in immunoglobulin transcripts, but circulating virus-specific antibodies lagged by 1-2 

weeks. Our data support a protective role for rapid induction of type 1 IFN and CD8 T cell responses to 

SARS-CoV-2.  
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Introduction 

The host response in non-severe SARS-CoV-2 infection during the first epidemic wave, prior to 

vaccination, incorporates the mechanisms of effective host-defence in naïve populations. To date, our 

knowledge has been limited to immune responses after the detection of the virus or onset of symptoms, 

and to cross-sectional studies in which the time of infection was undefined. As a result, the temporal 

kinetics and relationships between the earliest immune responses to infection are not known. These 

early events, among the majority that experience asymptomatic infection or mild disease not requiring 

hospitalisation, may provide new insights into the determinants of immune protection in naïve 

populations that may also be relevant to emerging variants that escape vaccine mediated protection. 

We sought to address this question at systems level by genome-wide transcriptional profiling of weekly 

blood samples before, during and after incident SARS-CoV-2 infections during the first epidemic wave 

in London, and compared our findings with responses to other acute respiratory viruses using publicly 

available data from human challenge experiments. 

Results 

Type 1 interferon and cell proliferation responses from one week before to three weeks after 

detection of asymptomatic and mild SARS-CoV-2 infection. 

We undertook a nested case-control study derived from a cohort of 400 healthcare workers at one 

London hospital recruited from 23rd March 2020 to undergo weekly nasopharyngeal swab PCR tests 

and blood sampling when fit to attend work, as previously described1–5. In this cohort, we detected 45 

incident infections by PCR. Among these cases, we obtained 114 blood transcriptional profiles from 41 

individuals spanning three weeks before to three weeks after the first PCR positive result, including 12 

individuals for whom samples were available before the first positive PCR. We also profiled convalescent 

samples from 16/41 individuals 5-6 months later. We compared these data to blood transcriptional 

profiles obtained from baseline samples in 55 sequential uninfected controls who remained PCR and 

seronegative for SARS-CoV-2 during follow up (Supplementary Figure 1, Supplementary Table 1). None 

of the individuals who became infected required hospitalisation. Among 38 individuals for whom blood 

transcriptomic data were available at the time of first positive PCR, 29 had no contemporary symptoms 

attributable to SARS-CoV-2 infection. Genome-wide transcriptional profiles from those who experienced 

an infection showed greatest perturbation compared to uninfected controls at the time of the first positive 

PCR test, independent of symptoms (Figure 1a, Supplementary Figure 3). Their profiles were 
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significantly different from uninfected controls from the week before the first positive PCR to three weeks 

afterwards. Six month convalescent samples from a subset of these individuals were not significantly 

different to uninfected controls, indicating that the blood transcriptome had fully reverted to the baseline. 

To investigate the host response to infection, we identified differentially expressed transcripts by 

comparison of profiles from the time of first positive viral PCR, to those of uninfected controls (Figure 

1b). These were subjected to upstream regulator enrichment analysis to identify molecular pathways 

predicted to be activated at the level of cytokines, transmembrane receptors, kinases and transcription 

factors that may be responsible for differential gene expression (Supplementary File 1). We filtered 

groups of target genes associated with each upstream regulator to include only those that had 

significantly greater co-correlated expression than would be expected at random in our blood 

transcriptomes, in order to increase our confidence that these represent co-regulated genes in a given 

molecular pathway (Supplementary Figure 4). Among those that were retained, the associated upstream 

regulators formed two clusters resulting from overlapping associations with target genes (Figure 1c), 

reflecting two predominant biological pathways. These were type 1 interferon (IFN) responses and cell 

cycle activity, as surrogates for innate immune activation and cellular proliferation respectively 

(Supplementary Figure 5a). We collated the differentially expressed genes linked to the most statistically 

enriched upstream regulator in each of the two clusters as a transcriptional module, resulting in a Signal 

Transducer and Activator of Transcription (STAT)1-regulated module to represent type 1 IFN responses 

and a Cyclin D1 (CCND1)-regulated module to represent the cell proliferation response. The validity of 

the functional annotation for each of these modules was confirmed by investigating their correlation and 

covariance with independently derived transcriptional signatures for type 1 and type 2 IFN responses, 

and for cell proliferation. The STAT1 module correlated with both IFN response modules, but showed 

much greater covariance with the type 1 IFN signatures (Supplementary Figure 5b), consistent with our 

bioinformatic analysis of the functional pathway represented by this cluster of differentially expressed 

genes. Similarly, we found that the CCND1 regulated gene expression module showed good correlation 

and covariance with an independently derived cell proliferation module (Supplementary Figure 5c). Type 

1 IFN and cell proliferation responses both peaked with co-incident infection (Figure 2a-b), but significant 

increases in these responses were also evident in the week before the first positive PCR result. Type 1 

IFN responses remained significantly elevated for one week after the first positive PCR, whereas the 

cell proliferation response remained elevated for two weeks after the first positive PCR. The peak of 

each of these responses over this time course, discriminated infected individuals from non-infected 
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controls with area under the receiver operating characteristic curve (AUROC) of 0.87 (95% confidence 

interval 0.78-0.94) and 0.92 (0.87-0.98) for the STAT1 and CCND1-regulated modules respectively 

(Supplementary Figure 6a), giving a measure of the consistency of both these responses in infected 

individuals. Despite this and the overlap in the temporal profiles of these two responses, the enrichment 

of STAT1 and CCND1-regulated modules representing each response at the individual participant level, 

did not correlate, suggesting that they may be independently regulated or subject to idiosyncratic 

capacity for each of these responses at the level of individual participants (Figure 2c). The same 

observation was evident for differentially expressed genes combined as modules associated with each 

of the upstream regulators that reflected type 1 IFN or cell proliferation modules (Figure 2d). 

Cell proliferation responses distinguish SARS-CoV-2 infection from other acute respiratory 

viruses and are predominantly attributable to T cell responses. 

Next, we compared the type 1 IFN and cell proliferation response to incident SARS-CoV-2 infection with 

those of other acute respiratory viruses, by comparing the peak expression of the STAT1 and CCND1-

regulated modules in our cohort to that of publicly available longitudinal blood transcriptomic data 

derived from human challenge experiments with Respiratory Syncytial Virus (RSV), Human Rhinovirus 

(HRV) and Influenza viruses (Supplementary Figure 6b)6. Comparable enrichment of the type 1 IFN 

response was evident in each of these infections (Figure 2e), but the cell proliferation response was 

significantly greater to SARS-CoV-2 than the peak response to any of the other acute respiratory virus 

infections (Figure 2f). We tested the hypothesis that the cellular proliferation response may arise from 

rapid B cell or T cell expansion in response to infection by evaluating the correlation between the CCND1 

module and expression of validated cell-type specific signatures (Figure 3a). CCND1 module expression 

correlated with the transcriptional signature for T cells, but not B cells. The relationship between the cell 

proliferation response and T cell subsets was stronger for the CD8 T cell signature than for the CD4 T 

cell signature. To corroborate these findings, we undertook multiparameter flow cytometry of peripheral 

blood mononuclear cells (PBMC) obtained in a subset of participants with contemporaneous PCR 

positive infection and compared these to PBMC from uninfected controls (Supplementary Figure 7). 

Representation of the pooled multiparameter flow cytometry data by tSNE incorporating all T cells 

revealed new populations of CD4 and CD8 positive cells in samples from infected participants, which 

also exhibited the highest levels of Ki67 staining as a marker of cell proliferation (Figure 3b), and 

accompanied by HLA-DR expression as a marker of cell activation in exemplar cases (Figure 3c). In 

this subset of samples only Ki67 staining of CD8 T cells was statistically enriched in infected individuals 
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compared to controls (Figure 3d). Of all other lymphocyte subsets only NKT cells showed a significant 

increase in Ki67 positive staining (Supplementary Figure 8a), but comprised on average 3% of 

circulating lymphocytes compared to T cells that comprised approximately 40% (Supplementary Figure 

8b). 

Rapid clonal T cell expansion in response to SARS-CoV-2 infection associated with significant 

enrichment of SARS-CoV-2 reactive T cell receptors 

To further evaluate the rapid T cell response to SARS-CoV-2 infection, we undertook sequencing of 

TCR alpha and beta chains in longitudinal samples to reflect dynamic changes in the T cell clonal 

repertoire. An expanded clone will increase or decrease in frequency depending on the sampling time 

point before and after the peak response. Therefore, we identified expanded TCR sequences as being 

statistically enriched at one time point compared to at least one other time point, and summed the total 

number of expanded sequences for these TCRs at each time point per million of total TCR sequences 

(Supplementary Figure 9). These were compared to expanded sequences identified in the same way 

among a subset of six uninfected controls in whom we undertook TCR sequencing in samples from five 

successive weeks. By comparison to the pooled data from controls, a significant increase in expanded 

TCRs was evident in infected individuals by the time of the first positive PCR test up to a maximum 

abundance of >6% of total T cell sequences, and persisted for at least three weeks for both alpha and 

beta chains (Figure 4a, Supplementary Figure 10a). The abundance of expanded TCR sequences 

correlated significantly with the CCND1 but not STAT1 regulated module, consistent with the hypothesis 

that the proliferation response reflected expansion of T cell clones (Figure 4b-c). 

T cell clonal expansion was not explained by changes in MAIT cell or NKT cell-associated TCR 

sequences (Supplementary Figure 10b). Comparison with sequence data for known antigen reactive 

TCRs in VDJdb7 confirmed that expanded TCRs among infected individuals were most highly enriched 

for SARS-CoV-2 reactive T cells, compared to CMV or EBV reactive TCRs to represent non-specific 

bystander T cell proliferation (Figure 4d). Identifiable SARS-CoV-2 reactive TCR sequences available 

in VDJdb were evident in 11 individuals (Supplementary File 2). In all but two of these individuals, 

expanded SARS-CoV-2 reactive TCRs were present by the time of 1st positive PCR test (Figure 4e). 
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Circulating virus specific antibodies lad two weeks behind transient increase in immunoglobulin 

gene expression in response to SARS-CoV-2 infection.  

The finding that the CCND1-regulated module did not correlate with our B cell signature does not 

exclude a B cell response. Emergence of antibodies to SARS-CoV-2 has been reported as early as 

early as five days after symptom onset8. We found increased expression of immunoglobulin (Ig) constant 

heavy and light chain transcripts, which peaked at the time of first PCR virus detection but was evident 

from one week before to two weeks after first PCR detection (Figure 5a-b). The increase in Ig gene 

expression in blood was less sustained than TCR expansion, and returned to baseline by three weeks 

after the first positive PCR. In contrast, circulating antibodies to SARS-CoV-2 S1 spike protein that 

correlate with virus neutralisation were not detectable until one week after the incident infection (Figure 

5c) and continued to increase in this cohort for eight weeks3,4. 

Discussion 

To the best of our knowledge, we report the earliest in vivo immune responses to SARS-CoV-2 infection 

available to date, enabled by serial sampling of individuals at risk of infection during the peak of the first 

epidemic wave in London. The general paradigm for early antiviral host defence is dominated by 

induction of type 1 IFNs. Attenuated responses as a result of autoantibodies to type 1 IFNs, and genetic 

polymorphisms associated with reduced expression of a type 1 IFN receptor subunit or with reduced 

expression of the IFN-inducible oligoadenylate synthetase (OAS) gene cluster have all been associated 

with severe disease9,10. These provide strong evidence that type 1 IFN responses contribute to effective 

protection against SARS-CoV-2 infection. We show that type 1 IFN responses can precede PCR 

detection of the virus and therefore may exert their protective effects in the earliest phases of infection, 

independent of symptoms. We propose that such early detection of IFN-inducible genes in the blood 

transcriptome may arise from localised immune responses as a result of leukocyte trafficking through 

lymphoid tissues or the site of infection, and may provide greater sensitivity than detection of circulating 

IFNs. As we have previously reported, an additional translational application of this finding is the 

detection of IFN-inducible transcripts in blood, as a diagnostic biomarker of early viral infection that may 

precede PCR detection of the virus and symptoms11. 

Alongside type 1 IFN responses, we detected an early cell proliferation response in the blood 

transcriptome, which we primarily attribute to CD8, and to a lesser extent CD4 T cell proliferation by 

correlation with cell-type specific transcriptional modules, corroborated by flow cytometry to show 
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significant increase in Ki67 positive CD8 T cells and TCR sequencing to show expansion of T cell clones. 

Whilst type 1 IFN responses were evident in a range of other acute respiratory virus infections modelled 

in human challenge experiments6, the early T cell response to SARS-CoV-2 in our study was 

significantly greater than in other viral infections. By comparison with emerging databases of SARS-

CoV-2 specific TCRs in VDJdb, we were able to show that expanded T cell clones were most enriched 

for SARS-CoV-2 reactive cells, and that these were already evident by the time of first positive virus 

PCR. In individuals with COVID-19, T cell reactivity has been reported as early as 5-10 days after the 

onset of symptoms12. Importantly, in one report, T cell proliferative responses to SARS-CoV-2 were 

evident in 92% of family contacts of COVID-19 cases independently of serostatus13, and some people 

may have pre-existing cross-reactive T cells arising from previous seasonal coronavirus exposure13–18. 

These may be expected to contribute to early viral clearance, analogous to findings in infuenza19–21. If 

this were the primary driver of rapid T cell responses to SARS-CoV-2 infection, the fact that the early 

proliferative response discriminated infected and uninfected individuals with an AUROC of 0.92 would 

require pre-existing T cell priming to be a near ubiquitous feature of asymptomatic or non-severe 

infection. Consistent with this hypothesis, among the largest studies of pre-pandemic blood samples, 

heterologous T cell reactivity to SARS-CoV-2 peptides with proven similarity to those of pre-existing 

seasonal coronaviruses has been reported in 81%18. In this context, we hypothesise that the variation 

in T cell proliferative response and the lack of its correlation with type 1 IFN responses may be explained 

by differential levels of T cell priming in individual participants. We also identified a similarly rapid B cell 

response represented by transient enrichment of Ig gene expression in blood. We interpret this to 

represent the transit of activated antigen specific B cells from lymphoid tissues to the predominant site 

of antibody production in the bone marrow and spleen. Since protective anti-S1 antibodies only became 

detectable after a two-week lag, we hypothesise that the B cell response may have had a less important 

role in rapid viral clearance in asymptomatic and non-severe infection. 

Our study has some important limitations. The precise time of exposure to SARS-CoV-2 or transmission 

of infection was not possible to determine. This was offset by including longitudinal samples in 12 

subjects before detection of incident infection by PCR, providing enough statistical power to show that 

both type 1 IFN and cell proliferation responses were statistically enriched in the week before the first 

positive PCR result. We had limited access to PBMC to assess frequency, phenotypic and functional 

characteristics of SARS-CoV-2 reactive T cells. The accumulating database of SARS-CoV-2 specific 

TCR sequences allowed us to relate clonal T cell expansion with antigen-specificity. This only accounted 
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for an extremely small fraction of expanded sequences and does not exclude proliferation of bystander 

T cells. However, substantially lower levels of enrichment of CMV or EBV specific TCRs among 

expanded clones, and the lack of enrichment for IFN activity or other signatures of T cell activation in 

the blood transcriptome argue against generalised bystander T cell activation. Future re-analysis of the 

data (as more sequences across a wider range of HLA haplotypes are reported) will be necessary to 

evaluate whether the majority of expanded TCRs are ultimately found to recognise SARS-CoV-2. The 

focus on the blood compartment meant that we do not have direct measurements of responses at the 

site of host-pathogen interactions. Analysis of bulk RNA samples for transcriptional profiling and TCR 

sequencing restricted our ability to evaluate transcriptional heterogeneity at the cellular level, further 

characterise expanded T cell clones or undertake TCR analysis with paired alpha/beta chains. Most 

importantly, since less than 5% of infections lead to hospitalisation22, our study design precluded 

comparison of severe and non-severe outcomes that would require substantially greater sample size. 

Nonetheless, our data reflect immune responses in asymptomatic and non-severe infection, which 

incorporate correlates of effective host defence to natural infection in a naïve population, providing 

further evidence for the importance of early type 1 IFN and T cell responses. Human challenge 

experiments that control for variation in time and dose of exposure will offer the best opportunities to 

acquire the granular detail of early immune responses. Larger scale studies will be required to asses 

frequency of SARS-CoV-2 T cell reactivity in naïve populations, and determine whether early type 1 IFN 

or T cell responses predict outcomes. Although vaccine-roll out is likely to be the primary immunological 

strategy to control the pandemic23, understanding the determinants of effective natural immunity will 

remain a critical objective to enable risk stratification and novel vaccine design as the virus evolves. In 

particular, identification of the antigenic determinants of the earliest T cell responses in asymptomatic 

SARS-CoV-2 infection is a priority to inform development of potential universal coronavirus vaccines. 

Methods 

Ethical approval 

The study was approved by a UK Research Ethics Committee (South Central - Oxford A Research 

Ethics Committee, reference 20/SC/0149). All participants provided written informed consent. 

Study design 

We undertook a case control study nested within our COVIDsortium health care worker cohort. 

Participant screening, study design, sample collection, and sample processing have been described in 
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detail previously24–26 and the study is registered at ClinicalTrials.gov (NCT04318314). Briefly, healthcare 

workers were recruited at St Bartholomew’s Hospital, London, UK in the week of lockdown in the United 

Kingdom (between 23rd and 31st March 2020). Participants underwent weekly evaluation using a 

questionnaire and biological sample collection (including serological assays) for up to 16 weeks when 

fit to attend work at each visit, with further follow up samples collected at 6 months. Participants with 

available blood RNA samples who had PCR-confirmed SARS-CoV-2 infection (Roche cobas® 

diagnostic test platform) at any time point were included as ‘cases’. A subset of consecutively recruited 

participants without evidence of SARS-CoV-2 infection on nasopharyngeal swabs and who remained 

seronegative by both Euroimmun antiS1 spike protein and Roche anti-nucleocapsid protein throughout 

follow-up were included as uninfected controls. 

Blood RNA sequencing  

For ‘cases’, we included all available RNA samples, including convalescent samples at week 24 of 

follow-up for a subset of participants. For uninfected controls, we included baseline samples only. 

Genome wide mRNA sequencing was performed as previously described,27 resulting in a median of 26 

million (range, 19·8–32·4 million) 41 bp paired-end reads per sample. RNAseq data were mapped to 

the reference transcriptome (Ensembl Human GRCh38 release 100) using Kallisto.28 The transcript-

level output counts and transcripts per million (TPM) values were summed on gene level and annotated 

with Ensembl gene ID, gene name, and gene biotype using the R/Bioconductor packages tximport and 

BioMart.29,30 

Blood RNA sequencing data analysis 

Sample processing batch effects were evaluated by principle component analysis at genome wide level 

(Supplementary Figure 2a) and among the intersect of the 10% genes with least variable expression in 

each sample processing batch (Supplementary Figure 2b). A batch effect evident in the least variant 

gene expression analysis was corrected using the ComBat function in the sva package in R, allocating 

samples with PC2 score <0 and >0 (in Supplementary Figure 2b) to separate batches31. PCA of the 

least low variance gene expression after batch correction showed no further separation of samples by 

processing batch (Supplementary Figure 2c). Molecular degree of perturbation (MDP) was calculated 

as previously described32. Briefly, transcripts were included if more than one sample had a TPM count 

above the limit of detection, and the standard deviation (SD) of TPM among uninfected controls was>0.5. 

The TPM values for each individual data set were then transformed to a Z score using the mean and 
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SD for each transcript among uninfected controls used as a standard reference. The MDP of each 

sample/data set was then represented as the sum of all Z scores>2 divided by the total number of 

transcripts. Differential gene expression between data sets from individuals with co-incident infection 

and non-infection controls was identified using a Mann-Whitney test with false discovery rate <0.05 and 

absolute fold difference >1.5 (or Log2 0.585). Analysis of upstream transcriptional regulation of the 

differentially expressed genes was performed using Ingenuity Pathway Analysis (Qiagen, Venlo, The 

Netherlands) and visualised as network diagram using the Force Atlas 2 algorithm in Gephi v0.9.233. 

We depicted all statistically over-represented molecules (false discovery rate <0.05), predicted to be 

upstream of >2 target genes, and annotated with one of the following molecular functions: cytokine, 

transmembrane receptor, kinase and transcriptional regulator, representing the canonical components 

of molecular pathways responsible for transcriptional reprogramming in immune responses. The 

biological pathways represented by the upstream regulators were identified by Reactome pathway 

enrichment analysis using XGR34 as previously described35,36. For visualization, 20 pathway groups 

were identified by hierarchical clustering of Jaccard indices to quantify similarity between the gene 

compositions of each pathway. For each group, the pathway with the largest total number of genes was 

then selected to provide a representative annotation. 

Transcriptional modules  

To identify co-regulated gene networks used as transcriptional modules, we calculated the average 

correlation coefficient for pairwise correlations of the expression levels of each group of target genes 

associated with predicted upstream regulators in our transcriptomic data set, and compared this to the 

distribution of average correlation coefficients obtained from random selection of equivalent sized 

groups of genes repeated 100 times. Groups of target genes with average correlation coefficients that 

exceeded the mean of the distribution of equivalent sized randomly selected groups by ≥2 SD (z-score 

≥2) with false discovery rate <0.05 were identified as transcriptional modules representing the functional 

activity of the associated upstream regulator (Supplementary Figure 3). Independently derived Type 1 

and Type 2 interferon inducible modules and cell-type specific transcriptional modules were described 

previously35,37,38. To derive an independent cell proliferation module, PBMC were isolated from BCG-

vaccinated individuals and stimulated in vitro with 100 ng/ml purified protein derivative (PPD) for 6 days 

to drive proliferation of antigen specific T cells. Stimulated and unstimulated PBMC were subjected to 

transcriptional profiling, differential gene expression and Reactome pathway enrichment analysis as 

previously described37,39. Differentially enriched transcripts annotated to the “Cell Cycle” Reactome 
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pathway (Supplementary table 3) were used to derive a transcriptional signature for T cell proliferation. 

The expression of each module was represented by the geometric the mean Log2 TPM value of its 

constituent genes. 

Data from human challenge studies 

Publicly available data from previously published human viral challenge studies were downloaded from 

GEO (GSE73072). We calculated module scores for the STAT1 and CCND1 modules as the mean 

expression across all constituent genes, using log2-transformed microarray data. Only participants who 

developed evidence of infection following inoculation were included, as per the original study 

definitions6. The peak enrichment of STAT1 and CCND1-regulated modules for each infected individual 

was calculated was represented by the highest log2 TPM ratio to the mean of uninfected controls, across 

the time course of each data set (Supplementary Figure 6). 

Flow cytometry of peripheral blood mononuclear cells 

PBMC were isolated from heparinised blood by density centrifugation using Ficoll-Hypaque Plus (GE 

Healthcare). PBMC were frozen in 10% DMSO (Sigma-Aldrich) in Isopropanol containers (-1C/minute) 

at 5 x 106 PBMC/ml in cryovials. Thawing was performed by gentle agitation at 37C with rapid dilution 

in RPMI containing 10% fetal bovine serum (FBS; Sigma-Aldrich). For multiparametric flow cytometry 

cells were plated in 96-well round-bottomed plates (0.5-1 x 106 per sample) and washed once in PBS 

(Phosphate buffered saline; Thermo Fisher Scientific) then stained with Blue fixable live/Dead dye 

(Thermo Fisher Scientific) for 20 mins at 4C in PBS. Cells were washed again in PBS, and incubated 

with saturating concentrations of monoclonal antibodies (mAbs) against markers to be stained on the 

cell surface, diluted in 50% Brilliant violet buffer (BD biosciences) and 50% PBS for 30 min at 4C unless 

stated. After surface Ab staining (Supplementary table 2) cells were resuspended in fix/perm buffer 

(ebiosciences, Foxp3 / Transcription Factor staining buffer kit, fix perm concentrate diluted 1:3 in 

fix/perm diluent) for 45-60 mins at 4C. Cells were then washed in 1x perm buffer (10x perm buffer 

Foxp3 / Transcription Factor staining buffer kit diluted to 1X in ddH2O) and saturating concentrations of 

intranuclear targets (Ki67) were stained in 1X perm buffer for 30-45 mins 4C. Cells were washed twice 

in PBS then analyzed by flow cytometry.  

Samples were acquired in PBS on LSR II flow cytometer (BD biosciences) and were analyzed using 

FlowJo (version 10.7.1 for mac, Tree Star). Single stain controls were prepared with cells or anti-mouse 
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IgG beads (BD biosciences). Fluorescence minus one (FMOs) were used for gating (See supplementary 

figure 7). For tSNE (Figure 3b) an equal number (2223 cells) of CD4 and CD8 T cells from each of the 

7 control and 9 PCR+ samples were concatenated and tSNE was calculated on single cells expression 

values for the following markers: CD4, CD8, HLA-DR, Ki67, CD45RA, CCR7 (Iterations 1000, perplexity 

30, eta 4979; KNN algorithm, Exact. Gradient algorithm, Barnes-Hut). 

T cell receptor sequencing and analysis 

The α and β chains of the TCR repertoire were sequenced from all time points for which RNA was 

available within the first 4 weeks of the study.for all participants who were PCR+ at any time point, and 

for six randomly selected individuals who remained PCR- and seronegative throughout the study.  The 

pipeline introduces unique molecular identifiers attached to individual cDNA molecules which allows 

correction for sequencing error PCR bias, and provides a quantitative and reproducible method of library 

preparation. Full details for both the experimental TCRseq library preparation and the subsequent TCR 

annotation (V, J and CDR3 annotation) using Decombinator V4 have been described previously40–42 

The Decombinator software is freely available at https://github.com/innate2adaptive/Decombinator. 

Expanded TCRs were defined as any TCR which changed significantly between any two time points 

(Supplementary Figure 8). The boundaries (shown as blue dotted lines) were defined as the maximum 

TCR abundance which might be observed at time 2, given its abundance at time 1, assuming Poisson 

distribution of counts with p < 0.0001, to give a false discovery rate of <1 in 1000. TCR abundances are 

normalised for total number of TCRs sequenced in each sample, and expressed as counts/million. MAIT 

TCRs were defined as any TCR alpha containing TRAV1-2 paired with TRAJ12, TRA20 or TRAJ33. 

iNKT TCRs were defined as TCRs containing TRAV24 paired with TRAJ18. The VDJdb database 

(https://vdjdb.cdr3.net/about) was searched for any TCR annotated for CMV, EBV or SARS-Cov-2. 

TCRs annotated for multiple antigens were excluded. This set of antigen-associated TCRs were then 

compared to our set of expanded TCRs defined as described above. 

Data sharing statement 

Applications for access to the individual participant de-identified data (including data dictionaries) and 

samples can be made to the access committee via an online application https://covid-

consortium.com/application-for-samples/. Each application will be reviewed, with decisions to approve 

or reject an application for access made on the basis of (i) accordance with participant consent and 

alignment to the study objectives (ii) evidence for the capability of the applicant to undertake the 
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specified research and (iii) availability of the requested samples. The use of all samples and data will 

be limited to the approved application for access and stipulated in the material and data transfer 

agreements between participating sites and investigators requesting access. 

Data and materials availability 

RNAseq data, TCR sequencing data and associated essential metadata will be made publicly available 

at time of peer-reviewed publication. 
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Figures 

Figure 1. Incident SARS-CoV-2 infection associated with perturbation of blood transcriptome 
reflecting type 1 interferon and cell proliferation responses. 

(A) Molecular degree of perturbation (MDP) in blood transcriptomes for each individual expressed as 
the mean of genome-wide standard deviations (Z scores) from the mean of non-infection controls (NIC), 
among NIC, individuals with incident infection stratified by weeks from first positive PCR and 
convalescent samples 5-6 months after incident infection. Individual data points shown with violin plots 
depicting median, IQR and frequency distributions. (*FDR<0.05 by Kruskal-Wallis Test for each group 
compared to NIC) (B) Differentially expressed genes in blood transcriptomes at time of first positive 
PCR compared to NICs. (C) Predicted upstream regulators (labelled nodes) stratified by molecular 
function for differentially expressed genes (black nodes). Size of the nodes for upstream regulators 
proportional -Log10 p-value. Nodes clustered using Force Atlas 2 algorithm. 
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Figure 2. Cell proliferation response discriminates SARS-CoV2 infection from other acute 
viruses and is not correlated to type 1 IFN response. 

(A) Expression of STAT1 module (representative of type 1 IFN response) and (B) CCND1 module 
(representative of cell proliferation response) in blood transcriptomic data stratified by time to first 
positive SARS-CoV-2 infection, compared to non-infection controls (NIC) and convalescent samples 5-
6 months after incident infection. Individual data points shown with violin plots depicting median, IQR 
and frequency distributions. (*FDR<0.05 by Kruskal-Wallis Test for each group compared to NIC). (C) 
Comparison of STAT1 and CCND1 module expression at time of first positive PCR (dashed lines 
represent the upper limit of the 95% confidence interval of median of NIC), and (D) co-correlation matrix 
between all type 1 IFN and cell proliferation modules at time of first positive PCR. (E) Comparison of 
STAT1 and (F) CCND1 module expression associated with co-incident SARS-CoV-2 infection 
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compared to peak expression of these modules in experimental human challenge infections using 
Respiratory Syncytial Virus (RSV), Human Rhinovirus (HRV) or Influenza virus (H3N2 and H1N1), 
stratified by different data sets indicated by year. (*FDR<0.05 by Kruskal-Wallis Test in SARS-CoV-2 
infection compared to all other groups).
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Figure 3. Cell proliferation response to SARS-CoV-2 infection in blood transcriptomic data is 
attributable to T cell proliferation. 

(A) Correlation of CCND1 module (representative of cell proliferation response) in all time points (-3 to 
+3 weeks) from individuals with SARS-CoV-2 infection with each of blood transcriptomic modules 
representative of B cells, pan-T cells, CD4 T cells and CD8 T cells (regression lines shown in red, p 
values for Spearman rank correlations). (B) Representative tSNE plots from one non-infected control 
and one individual with co-incident PCR positive SARS-CoV-2 infection derived from multiparametric 
flowcytometry data of CD4 and CD8 positive T cells. Contour plots are shown in the two left hand panels, 
followed by dot plots stratified by CD4/CD8 staining and relative Ki67 staining as a proliferation marker. 
Red circles highlight a population of Ki67 high CD4 and CD8 cells exclusive to the PCR+ group. (C) 
Representative flow cytometry data for HLA-DR and Ki67 staining in either CD4 T cells or CD8 T cells 
from one non-infected control and one individual with co-incident PCR positive SARS-CoV-2 infection. 
Numbers indicate % positive for each marker including double positives (D) Summary HLA-DR and Ki67 
staining data from seven uninfected controls and nine individuals with coincident infection in either CD4 
T cells or CD8 T cells. P value shown for Mann Whitney Test. 
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Figure 4. Cell proliferation response to co-incident SARS-CoV-2 infection associated with 

expansion of TCR clones enriched for SARS-CoV-2 reactive TCRs. 

(A) Enumeration of expanded TCR alpha chain abundance (per million total sequences) in non-infection 
controls and samples from infected individuals stratified by time from first positive PCR. Individual data 
points shown with violin plots depicting median, IQR and frequency distributions. (*FDR<0.05 by 
Kruskal-Wallis Test for each group compared to NIC). (B) Correlation of CCND1 module and (C) STAT1 
module with TCR alpha-chain sequences (Log2 per million sequences). Regression lines shown in red, 
with r and p values for Spearman rank correlations. (D) Number of antigen-specific TCR sequences 
(alpha and beta-chains) for SARS-CoV-2, cytomegalovirus (CMV) and Epstein-Barr Virus (EBV) among 
expanded TCR sequences in all time points (-3 to +3 weeks) from individuals with SARS-CoV-2 infection 
and among non-expanded TCRs from the same samples, giving the odds ratio (±95% confidence 
interval, Fisher’s exact test) for enrichment of antigen specific TCR sequences in each case. (E) 
Frequency heat map of individual (rows) SARS-CoV-2 reactive TCRs (alpha and beta-chains) identified 
among expanded TCR sequences in all time points (-3 to +3 weeks) from individuals with SARS-CoV-
2 infection. NA=no sample available; ND=not detected in sample).
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Figure 5. Enriched immunoglobulin gene expression and antibody response to incident SARS-

CoV-2 infection. 

(A) Heatmap of immunoglobulin constant heavy and light chain gene expression in blood per individual 
(columns) stratified by time to first positive SARS-CoV-2 infection, compared to non-infection controls 
(NIC) and convalescent (Conv) samples 5-6 months after incident infection, presented as standardised 
(Z) scores of transcripts per million (TPM) using mean and standard deviation of NIC. (B) Blood TPM of 
IGHG1 and (C) relative IgG anti-S1 antibody levels stratified by time to first positive SARS-CoV-2 
infection, compared to NIC and Conv samples. Individual data points shown with violin plots depicting 
median, IQR and frequency distributions. (*FDR<0.05 by Kruskal-Wallis Test for each group compared 
to NIC). 
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