
David Bell1*, Kristian Schultz Hansen2

1Independent Consultant, Issaquah, Washington, USA
2Department of Public Health and Centre for Health Economics and Policy, University of Copenhagen, Øster Farimagsgade 5A, 1014 Copenhagen K, Denmark.

*Corresponding author

David Bell, 125 Mt Quay Dr NW, Issaquah, WA 98027, USA, Email: bell00david@gmail.com, Ph: +1 206 953 8354

Transparency statement

The lead author affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that there are no discrepancies from the study as originally planned.

Word count: Abstract 282, Main text: 2000

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
List of abbreviations

Africa CDC Africa Centres for Disease Control and Prevention
AIDS Acquired Immune Deficiency Syndrome
DALYs Disability-Adjusted Life Years
HIV Human Immunodeficiency Virus
SARS-CoV-2 Severe Acute Respiratory Syndrome Corona Virus -2
WHO World Health Organization
ABSTRACT

Objectives: While the COVID-19 pandemic has had considerable global impact, recorded mortality in sub-Saharan Africa has been relatively low. Ensuring the public health response creates overall benefit is therefore critical. However, the highly age-dependent nature of COVID-19 mortality makes comparisons of disease burden challenging unless considered in terms of metrics that incorporate life years lost and time lived in adverse health. We therefore assessed the relative disease burdens of COVID-19 and the three major epidemic-causing pathogens; malaria, tuberculosis and HIV/AIDS, in sub-Saharan Africa.

Design: We compared estimates of 2020 disease burdens in sub-Saharan African populations in terms of mortality and Disability-Adjusted Life Years lost (DALYs) for COVID-19, malaria, tuberculosis and HIV/AIDS, applying known age-related mortality to UN estimates of sub-Saharan population age structure. We further compared exacerbations of these diseases predicted to occur through the COVID-19 public health response. Data was derived from public sources, predicted disease exacerbations from those published by international agencies.

Main outcome measures: Mortality and DALYs lost

Results: For sub-Saharan African populations north of South Africa, recorded COVID-19 DALYs lost in 2020 was 2.0%, 1.2% and 1.3% of those estimated for tuberculosis, HIV/AIDS and malaria respectively. The predicted exacerbations alone of each of these comparator diseases were greater than the estimated COVID-19 burden. Including South Africa and Lesotho, COVID-19 DALYs lost were ≤6% of each of these predicted disease burdens and dominated by them in all age groups below 70 years.

Conclusions: The analysis here suggests a relatively low impact from COVID-19. While all four epidemics continue, concentration on COVID-19 runs a high risk of increasing the overall health burden, further increasing global inequities in health and life expectancy, and needs to be guided by clear economic evaluation.
Introduction

COVID-19 has massively impacted life and society in sub-Saharan Africa, as elsewhere. Despite relatively low COVID-19 mortality rates in most countries of sub-Saharan Africa, aspects of the lockdown responses including business and school closures and restricted health service access introduced in the early days of the pandemic continue in various forms. In South Africa, infection with the virus itself has significantly impacted health, with 28469 deaths attributed by the end of 2020, but the younger aged populations to the north have recorded far lower mortality. Public health interventions must be tailored to address such variation. This requires realistic metrics for disease burden that take the characteristics of the population, and the individual impacted by disease, into account.

Metrics encompassing life years lost or disrupted are critical when comparing diseases that are strongly age-associated. A young child dying from pneumonia is clearly expected to lose more potential life years than an 80-year-old dying from the same. Malaria, with its mortality centred in these countries, imparts a disproportionate burden in disability adjusted life years (DALYs) lost, as most mortality occurs before age five. HIV/AIDS leads to long spells of severe ill-health and premature death primarily among young and middle-aged adults leading to significant life years lost and extended time lost due to less-than-optimal health. In contrast, COVID-19 is characterized by it’s strong association with advanced age, with a mean age of death similar to that for all-cause mortality in many countries. However, reporting of the burden of COVID-19 has generally centred on comparisons of mortality which ignore the influence of age. These mortality-based burden estimates can further mislead through the strong association of death from COVID-19 with pre-existing morbidities, which further reduce expected life years lost from most COVID-19-associated deaths. Time-based measures such as Disability-Adjusted Life Years (DALYs) that incorporate lost healthy life caused both by premature death and time lived in less-than-optimal health have potential to better represent the full disease impact – as opposed to mortality alone.

Low COVID-19-associated mortality among sub-Saharan African populations is at least partially predicted by their young age structure, while lifestyle factors may be protective through a lower prevalence of major co-morbidities, higher vitamin D levels and broad antigen exposure leading to non-specific T-cell prior immunity. Comparisons of lockdown severity suggest that more restrictive measures have had limited
additional impact on reducing COVID-19 mortality. However, as with many public health responses, lockdown responses are not without cost. Predicted exacerbations of high burden diseases including malaria, HIV/AIDS and tuberculosis impact particularly children and younger adults. Broader impacts of reduced food security and interruption of vaccination will have far-reaching health consequences, while loss of family income and reductions in national gross domestic product will impede the capacity to respond.

While lockdowns may be easing, proposals for continent-wide mass vaccination under the COVAX mechanism will raise new costs and divert resources, and the urgency of developing good public health policy that appropriately prioritizes relative burdens including COVID-19 management are no less urgent. We therefore compared the disease burdens of COVID-19 and the three pre-existing major infectious disease ‘epidemics’ of sub-Saharan African countries, with and without South Africa and Lesotho, to estimate the relative burden of COVID-19 in relation to these other epidemics.

Methods

The health indicators used for the analyses were the number of deaths and Disability-Adjusted Life Years (DALYs) lost by age groups caused by COVID-19 and three major diseases: malaria, HIV/AIDS and tuberculosis. Published data were the main sources of the presented analyses. For the calculation of DALYs lost caused by a disease at the population level, the estimates for number of deaths by age and the number of non-fatal episodes of ill-health by age in 2020 were required. Estimates with and without South Africa and Lesotho were included as these two countries have very different burdens of the four diseases, and differing demographics.

According to Africa CDC there had been 41,551 reported COVID-19 deaths in sub-Saharan Africa in the 2020 calendar year and 13,031 COVID-19 deaths if South Africa and Lesotho were excluded. These total number of reported COVID-19 deaths were allocated across age groups and also used to estimate the number of COVID-19 infections by applying the following method and assumptions. Using data on COVID-19 deaths and seroprevalence surveys from 45 mainly European countries, O’Driscoll et al (2020) estimated the infection fatality ratio by age. Assuming that these estimated infection fatality ratios also represented the sub-Saharan African situation and further assuming a constant share of infection across age groups, the number of infections and deaths were inferred for a sub-Saharan Africa population size according to United Nations
population estimate for 2020 and compatible with a total number of 41,551 (13,031) COVID-19 deaths (see Table S1 in the supplementary material). These estimated numbers of deaths and infections by age group were inserted in the standard DALY formula used for calculating the burden of disease and with no discounting of future life years and without the age weighting function. For the calculation of life years lost, the standard life expectancies by age from the Global Burden of Disease Study 2019 were used, and the reference life table was downloaded from the Institute of Health Metrics and Evaluation website. The non-fatal COVID-19 infections were assumed to be mild of a two-week duration and using a disability weight of 0.051 corresponding to the weight attached to a moderate to severe upper respiratory infection.

The number of deaths and DALYs lost for HIV/AIDS and tuberculosis by age group for 2019 were extracted from the Global Burden of Disease Study 2019 results. These estimates were updated to 2020 by assuming a growth from 2019 to 2020 corresponding to the annual population growth rate in sub-Saharan Africa. Population growth rates were estimated by age group using population estimates from 2015 and 2020. Cases of combined HIV/AIDS and tuberculosis are considered as HIV/AIDS only and not included in the tuberculosis burden calculations.

Total number of deaths and non-fatal illness episodes caused by malaria in sub-Saharan Africa were obtained from the WHO estimates for 2019, however, the published numbers were not available by age group. It was assumed that the deaths and illness spells followed the same distribution across age groups as malaria deaths as estimated by the Institute of Health Metrics and Evaluation. The number of malaria deaths and illness episodes by age in sub-Saharan Africa (with and without South Africa and Lesotho) were translated into DALYs lost applying the same method as described above including the assumption that a non-fatal malaria infection lasted two weeks and with a disability weight of 0.051.

Predicted exacerbations of the three comparator diseases accrued from 2020 lockdown responses were derived from modelling published by the World Health Organization, StopTB Partnership and The Global Fund.

Results
Recorded COVID-19 mortality constituted 3.4%, 2.6% and 3.4% of the mortality of tuberculosis, HIV/AIDS and malaria respectively in sub-Saharan Africa north of South Africa and Lesotho. As DALYs lost, the COVID-19 burden amounted to 2.0%, 1.2% and 1.3% of that estimated for the three comparator diseases respectively. Tuberculosis is never dominated by COVID-19 in any age-group, while HIV/AIDS is only dominated above 75 years of age and malaria equaled at 80 years (Figure 1).

Including South Africa and Lesotho, COVID-19 mortality and DALYs lost were 10.3%, 6.3% and 10.8%, and 6.0%, 2.9% and 4.0% of tuberculosis, HIV/AIDS and malaria respectively. All three comparator diseases individually dominated COVID-19 mortality and DALYs lost except in those >70 years where COVID-19 dominated HIV/AIDS, and >75 years where malaria was also dominated (Figure S1).

Accrued COVID-19 DALYs lost within 2020 were also lower than the lower-limit estimates of exacerbation of malaria, tuberculosis and HIV/AIDS (increase over baseline) predicted due to the COVID-19 public health response). If we assume significant under-reporting of COVID-19, arbitrarily multiplying by a factor of 10 only dominates the lower predicted exacerbations of malaria-burden, and remains below predicted burden increase tuberculosis and HIV/AIDS (Table 1).

Discussion

These comparisons emphasize the relatively low disease burden that COVID-19 is exerting on sub-Saharan African populations, with the pre-existing ‘epidemics’ of malaria, tuberculosis and HIV/AIDS dominating in life-years impacted by up to a factor of 100 in younger age groups. This use of DALYs lost to assess relative disease burden follows well-accepted practice, but is relatively unusual for assessment of COVID-19. It is unclear why this standard public health metric, or the related metric of Quality-Adjusted Life Years (QALYs), has not been widely applied to a disease with such a characteristic age-dependent impact. Appropriate assessment of burden is of extreme importance as decisions are made globally on resources to be allocated to vaccination as well as the imposition of recurrent lockdowns and other cost-bearing responses. Mass vaccination of the sub-Saharan African population against COVID-19, as is advocated in some quarters, will draw essential resources from interventions aimed at health problems with far greater burden through diversion of financial resources and personnel on the ground. Such a wide-scale vaccine intervention has never been attempted before and the implications for already over-stretched health services will be significant. To ensure
equity in health care, comprehensive economic evaluation comparing costs and effects of interventions against all four epidemics, including cost-effectiveness analysis, is urgently needed.

This data analysis has a number of limitations. COVID-19 mortality reporting in sub-Saharan Africa is doubtless incomplete, though low mortality is predicted by population age structure and lower prevalence of major comorbidities including obesity,5,7,32 while other lifestyle factors and prior immunity may also be protective.10,33-35 Given lack of strong local data on age-related mortality, we assumed that mortality rates reflect those found elsewhere.25 Lack of transmission appears an unlikely explanation for low recorded mortality as high seroprevalence has been recorded in various sub-Saharan African settings.36-40 While the higher mortality of COVID-19 in South Africa could be partially explained by higher reporting rates, South Africa also has higher rates of known mortality risk factors.41 Evidence of very high asymptomatic infection,43 and the level of community testing taking place (868823 tests for 333 deaths by 23 February 2021),42 suggests that the low recorded mortality in most countries reflects reality, in common with much of Asia.43

The relative burden of COVID-19 in 2020 is also subject to the first cases only being reported in March in most of these populations,43 compared with a full year for the comparator diseases. Twelve months of COVID-19 data will clearly present a higher burden, though as the total mortality rate is declining across the continent at time of writing,43 the bulk of COVID-19 burden may already have been accrued.

DALYs lost through COVID-19 morbidity as estimated in this paper do not take post-viral syndromes into account (e.g. ‘long-covid’). These have limited prevalence and may be lighter in younger (less severe illness) African populations, but this is still unclear and will add somewhat to COVID-19 burden. Conversely, the age-based nature of DALYs lost applied to COVID-19 does not take into account the high prevalence of life-shortening comorbidities associated with these cases,6 which will in turn lead to an over-estimation of the actual life years lost. Even assuming 90% under-estimation of COVID-19 mortality here, other single disease metrics still dominate COVID-19, as do most estimates of exacerbation of these through the COVID-19 public health response.

In comparing impact of COVID-19 and other health burdens, we considered just three diseases. The impact of broad malnutrition, and of reduced educational attainment (closed schools) and damage to local and national economies will have major long-term impacts on population and societal health.20-22,44 As a greater proportion of the population achieves post-infection immunity,36-38,42,45,46 COVID-19 burden is likely to further reduce, and the
cost-effectiveness of response interventions may then decrease further. It is therefore imperative that the cost-effectiveness analyses of further COVID-19 related interventions in these sub-Saharan African populations be tailored to local need, based on realistic metrics that reflect the relative impact of COVID-19, of other disease states, and of the proposed public health responses. Continued emphasis on COVID-19 responses including severe lockdowns or mass vaccination risk exacerbating other health priorities, increasing health inequities rather than reducing them.

Declaration of competing interests

No conflict of interest to declare.

Funding source:

None

Availability of data

All data is in the public domain, and calculations are freely available from the authors.

Dissemination statement

Dissemination to patients is not applicable.

Author contributions:

DB and KSH jointly conceived the study, contributed to the study design and conceptualization, and sourced the data. KSH performed the economic analyses, both authors participated in the drafting, revising and approval of the manuscript.
Declaration

The lead author (DB) affirms that the manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

Patient and public involvement

There was no direct patient or public involvement in this study. All data used was in the public domain.
References

16. Chaudhry R, Dranitsaris G, Mubashir T, Bartoszko J, Riazi S. A country level analysis measuring the impact of government actions, country preparedness and socioeconomic factors on

34. Tan CCS, Owen CJ, Tham CYL, Bertoletti A, van Dorp L, Balloux F. Pre-existing T cell-mediated cross-reactivity to SARS-CoV-2 cannot solely be explained by prior exposure to endemic human coronaviruses. bioRxiv 2020.12.08.415703; doi: https://doi.org/10.1101/2020.12.08.415703

45. Zuo J, A Dowell A, Pearce H, et al. Robust SARS-CoV-2-specific T-cell immunity is maintained at 6 months following primary infection. *bioRxiv* 2020.11.01.362319; doi: https://doi.org/10.1101/2020.11.01.362319

Table 1. Comparisons of recorded disease burden (DALYs lost) from COVID-19 in sub-Saharan Africa compared to predicted exacerbations for malaria, tuberculosis and HIV/AIDS from the impact of the COVID-219 public health response.

<table>
<thead>
<tr>
<th></th>
<th>DALYs lost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>COVID-19</td>
</tr>
<tr>
<td>Sub-Saharan Africa (SSA)</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>Exacerbation - low</td>
</tr>
<tr>
<td></td>
<td>Exacerbation - high</td>
</tr>
<tr>
<td>SSA excluding South Africa and Lesotho</td>
<td>Baseline</td>
</tr>
<tr>
<td></td>
<td>Exacerbation - low</td>
</tr>
<tr>
<td></td>
<td>Exacerbation - high</td>
</tr>
</tbody>
</table>
Figure 1. Comparison of disease burdens accrued in 2020 for sub-Saharan countries north of South Africa and Lesotho: Recorded Covid-19 mortality and predicted baseline mortality (pre-lockdown impact) for malaria, tuberculosis and HIV/AIDS by age (A1) and total (A2). Corresponding DALYs lost for each of these diseases by age (B1) and in total (B2).
Relative burdens of COVID-19 and the malaria, tuberculosis and HIV/AIDS epidemics in sub-Saharan Africa in 2020. SUPPLEMENTARY FILE

David Bell1*, Kristian Schultz Hansen2

1Independent Consultant, Issaquah, Washington, USA

2Department of Public Health and Centre for Health Economics and Policy, University of Copenhagen, Øster Farimagsgade 5A, 1014 Copenhagen K, Denmark.

*Corresponding author

David Bell, 125 Mt Quay Dr NW, Issaquah, WA 98027, USA, Email: bell00david@gmail.com, Ph: +1 206 953 8354
Supplementary information.

Table S1a. Estimated COVID-19 infections (individuals infected) and deaths by age in Sub-Saharan Africa excluding South Africa and Lesotho, 2020.

<table>
<thead>
<tr>
<th>Age group</th>
<th>United Nations population estimate 2020<sup>a</sup></th>
<th>Share of population infected (%)<sup>b</sup></th>
<th>Infection fatality ratio (%)<sup>c</sup></th>
<th>Estimated COVID-19 infections</th>
<th>Estimated COVID-19 deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>164,804,603</td>
<td>1.224</td>
<td>0.003</td>
<td>2,016,839</td>
<td>61</td>
</tr>
<tr>
<td>5-9</td>
<td>147,530,309</td>
<td>1.224</td>
<td>0.001</td>
<td>1,805,440</td>
<td>18</td>
</tr>
<tr>
<td>10-14</td>
<td>130,237,158</td>
<td>1.224</td>
<td>0.001</td>
<td>1,593,811</td>
<td>16</td>
</tr>
<tr>
<td>15-19</td>
<td>112,354,975</td>
<td>1.224</td>
<td>0.003</td>
<td>1,374,973</td>
<td>41</td>
</tr>
<tr>
<td>20-24</td>
<td>95,039,505</td>
<td>1.224</td>
<td>0.006</td>
<td>1,163,070</td>
<td>70</td>
</tr>
<tr>
<td>25-29</td>
<td>79,611,837</td>
<td>1.224</td>
<td>0.013</td>
<td>974,270</td>
<td>127</td>
</tr>
<tr>
<td>30-34</td>
<td>66,961,607</td>
<td>1.224</td>
<td>0.024</td>
<td>819,460</td>
<td>197</td>
</tr>
<tr>
<td>35-39</td>
<td>55,972,752</td>
<td>1.224</td>
<td>0.040</td>
<td>684,981</td>
<td>274</td>
</tr>
<tr>
<td>40-44</td>
<td>45,533,164</td>
<td>1.224</td>
<td>0.075</td>
<td>557,224</td>
<td>418</td>
</tr>
<tr>
<td>45-49</td>
<td>36,505,391</td>
<td>1.224</td>
<td>0.121</td>
<td>446,744</td>
<td>541</td>
</tr>
<tr>
<td>50-54</td>
<td>28,697,760</td>
<td>1.224</td>
<td>0.207</td>
<td>351,196</td>
<td>727</td>
</tr>
<tr>
<td>55-59</td>
<td>22,713,657</td>
<td>1.224</td>
<td>0.323</td>
<td>277,964</td>
<td>898</td>
</tr>
<tr>
<td>60-64</td>
<td>17,441,001</td>
<td>1.224</td>
<td>0.456</td>
<td>213,439</td>
<td>973</td>
</tr>
<tr>
<td>65-69</td>
<td>12,682,251</td>
<td>1.224</td>
<td>1.075</td>
<td>155,202</td>
<td>1,668</td>
</tr>
<tr>
<td>70-74</td>
<td>8,585,543</td>
<td>1.224</td>
<td>1.674</td>
<td>105,068</td>
<td>1,759</td>
</tr>
<tr>
<td>75-79</td>
<td>5,010,511</td>
<td>1.224</td>
<td>3.203</td>
<td>61,317</td>
<td>1,964</td>
</tr>
<tr>
<td>80+</td>
<td>3,232,639</td>
<td>1.224</td>
<td>8.292</td>
<td>39,560</td>
<td>3,280</td>
</tr>
<tr>
<td>Total</td>
<td>1,032,914,663</td>
<td></td>
<td></td>
<td>12,640,558</td>
<td>13,031</td>
</tr>
</tbody>
</table>

^a Reference (7).

^b Assumed population share compatible with 13,031 COVID-19 deaths in total.

^c Reference (25).
Table S1b. Estimated COVID-19 infections (individuals infected) and deaths by age in Sub-Saharan Africa, 2020.

<table>
<thead>
<tr>
<th>Age group</th>
<th>United Nations population estimate 2020a</th>
<th>Share of population infected (%)b</th>
<th>Infection fatality ratio (%)c</th>
<th>Estimated COVID-19 Infections</th>
<th>Estimated COVID-19 deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-4</td>
<td>170,823,061</td>
<td>3.509</td>
<td>0.003</td>
<td>5,993,482</td>
<td>180</td>
</tr>
<tr>
<td>5-9</td>
<td>153,576,204</td>
<td>3.509</td>
<td>0.001</td>
<td>5,388,361</td>
<td>54</td>
</tr>
<tr>
<td>10-14</td>
<td>135,944,992</td>
<td>3.509</td>
<td>0.001</td>
<td>4,769,753</td>
<td>48</td>
</tr>
<tr>
<td>15-19</td>
<td>117,485,136</td>
<td>3.509</td>
<td>0.003</td>
<td>4,122,073</td>
<td>124</td>
</tr>
<tr>
<td>20-24</td>
<td>100,167,519</td>
<td>3.509</td>
<td>0.006</td>
<td>3,514,468</td>
<td>211</td>
</tr>
<tr>
<td>25-29</td>
<td>85,020,504</td>
<td>3.509</td>
<td>0.013</td>
<td>2,983,022</td>
<td>388</td>
</tr>
<tr>
<td>30-34</td>
<td>72,510,463</td>
<td>3.509</td>
<td>0.024</td>
<td>2,544,095</td>
<td>611</td>
</tr>
<tr>
<td>35-39</td>
<td>60,906,502</td>
<td>3.509</td>
<td>0.040</td>
<td>2,136,960</td>
<td>855</td>
</tr>
<tr>
<td>40-44</td>
<td>49,462,677</td>
<td>3.509</td>
<td>0.075</td>
<td>1,735,443</td>
<td>1,302</td>
</tr>
<tr>
<td>45-49</td>
<td>39,829,404</td>
<td>3.509</td>
<td>0.121</td>
<td>1,397,451</td>
<td>1,691</td>
</tr>
<tr>
<td>50-54</td>
<td>31,464,591</td>
<td>3.509</td>
<td>0.207</td>
<td>1,103,964</td>
<td>2,285</td>
</tr>
<tr>
<td>55-59</td>
<td>24,999,129</td>
<td>3.509</td>
<td>0.323</td>
<td>877,117</td>
<td>2,833</td>
</tr>
<tr>
<td>60-64</td>
<td>19,290,886</td>
<td>3.509</td>
<td>0.456</td>
<td>676,838</td>
<td>3,086</td>
</tr>
<tr>
<td>65-69</td>
<td>14,093,620</td>
<td>3.509</td>
<td>1.075</td>
<td>494,487</td>
<td>5,316</td>
</tr>
<tr>
<td>70-74</td>
<td>9,510,448</td>
<td>3.509</td>
<td>1.674</td>
<td>333,683</td>
<td>5,586</td>
</tr>
<tr>
<td>75-79</td>
<td>5,609,970</td>
<td>3.509</td>
<td>3.203</td>
<td>196,831</td>
<td>6,304</td>
</tr>
<tr>
<td>80+</td>
<td>3,670,499</td>
<td>3.509</td>
<td>8.292</td>
<td>128,783</td>
<td>10,679</td>
</tr>
</tbody>
</table>

Total: 1,094,365,605

38,396,811

41,551

a Reference (7).

b Assumed population share compatible with 41,551 COVID-19 deaths in total.

c Reference (25).
Figure S1. Comparison of disease burdens accrued in 2020 for sub-Saharan countries (including South Africa and Lesotho): Recorded Covid-19 mortality and predicted baseline mortality (pre-lockdown impact) for malaria, tuberculosis and HIV/AIDS by age (A1) and total (A2). Corresponding DALYs lost for each of these diseases by age (B1) and in total (B2).