
                    Forecasting the Spreading Trajectory of the COVID-19 Pandemic 
 
                                             Baolian Cheng and Yi-Ming Wang  
               Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA 
 
Abstract 
Predictively forecasting future developments for the spread of the COVID-19 pandemic is 
extremely challenging. A recently published logistic mathematic model has achieved good 
predictions for infections weeks ahead. In this short communication, we summarize the Logistic 
spread model, which describes the dynamics of the pandemic evolution and the impacts of 
people social behavior in fighting against the pandemic. The new pandemic model has two 
parameters (i.e., transmission rate g and social distancing d) to be calibrated to the data from the 
pandemic regions in the early stage of the outbreak while the social distancing is put in place. 
The model is capable to make early predictions about the spreading trajectory in the communities 
of any size (countries, states, counties and cities) including the total infections, the date of peak 
daily infections and the date of the infections reaching a plateau if the testing is sufficient. The 
results are in good agreement with data and have important applications for ongoing outbreaks 
and similar infectious disease pandemics in the future.  
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Introduction 
The highly contagious and asymptomatic transmission nature of the novel coronavirus has led to 
the explosive spreading of the COVID-19 pandemic [1-3] and has drastically affected the world 
economy. Unlike past flu seasons in the past, without any intervention, the infection of COVID-
19 will follow a natural exponential growth path in time until most of the population is infected 
[4]. Social distancing plays a critical role in reducing the spread of the pandemic and flattens the 
infection curve. Many flu-based pandemic models [5-9] have been used to model the COVID-19 
pandemic and severely missed predicting the rate of spread and peak time of new infections 
during the first wave in 2020 due to the lack of a social distancing requirement. The recently 
published logistic spread model [10, 11] addresses this issue and has been successfully applied to 
various of pandemic regions from cities to counties to states or countries of any size. The model 
predicts the number of total infections, daily infection rate, time of peak new daily infections, 
and time of infection to reach the 96% of the total infections of the pandemic weeks ahead, and 
the predictions are in good agreement with the observed data. The results provide possible 
guidance for policy makers on when and how to reopen the economy for pandemic regions. 
 
Model 
A new logistic model [10, 11] is recently published to describe the spread of the COVID-19 
pandemic under the regulation of social distancing. The model provides analytic solutions for the 
trajectory of the pandemic spread (daily and cumulative infections and the time of peak daily 
infections) weeks in advance. The total infected population P(t) at a given time in the model is 
described by function,   
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P(t) =
P!

[d	 +	(1 − d)e{#$(&#&!)}]
 

 
where P0 is the number of infected people at time t0, g is the community transmission rate, and d 
is the social distancing level. Parameter d has values between dmin (no isolation or social 
distancing) and 1 (complete isolation or infinite social distancing) depending on people's social 
behavior. The minimum value of d is determined by dmin = P0/[(1-h)Pmax], here h represents the 
fraction of the population who are naturally immune to the virus, and Pmax is the total population 
of the community. The time derivative of P(t), dP(t)/dt, describes the daily new infections. In the 
model, increased social distancing with time would reduce the daily infection rate. On the other 
hand, relaxing social distancing over time will increase the daily infections. The parameters g 
and d are calibrated to data from a given community at the time when social distancing was put 
into effect.  
 
The meaning of social distancing in the model is extended to include physical isolation, 
sheltering in place, staying at home, wearing face masks in public, washing hands, and restricting 
group-gathering size and frequency. If no social distancing is implemented, d = dmin ≈ 0, then, 
P(t)= P0 eg(t-t0) and dP/dt= g P0 eg(t-t0), both the total and daily infections grow exponentially with 
time until the number of susceptible individuals is depleted, or nearly all people, (1-h) Pmax, have 
been infected. But if all the infected people are clearly traced, identified, and completely isolated, 
d=1, then, P(t)=P0 and dP/dt =0, there would be no spread at all and hence no pandemic.  
 
Results 
The new Logistic model has been applied to numbers of countries and states as well as counties 
in the United States [10, 11, 13, 14] during the first wave in 2020. The model successfully 
predicts the peak time of daily infections, the infection doubling time, daily infection rate and the 
cumulative infections in time. As examples, Fig. 1 and Fig. 2, respectively, display the model 
predictions for the daily and total infections in time in the South Korea and the Germany 
compared with the real observed infection data [16, 17] during the first wave.  
 

  
    Fig. 1. Model predictions for the daily infections (left) and total infections (right) in time vs. 
real infection data in the South Korea. The initial time t0=02/23/2020, P0=602, g=0.325 and 
d=0.0778.  
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  Fig. 2. Model predictions for the daily infections (left) and total infections (right) in time vs. 
real infection data in the Germany. The initial time t0=03/13/2020, P0=3675, g=0.2 and d=0.075.   
 
The results show that the model predictions are in good agreement with data, particularly for 
countries with excellent testing capability. The accuracy of the model predictions strongly 
depends on the testing capacity or the positivity rate (number of positive cases divided by the 
number of people tested) in the pandemic regions [10]. The positivity rates in the South Korea 
and Germany were 1% and 1.8%, respectively, during the first wave. The results indicate that the 
agreement between model predictions and observed data increases as the positive rate decreases. 
A good agreement between the model predictions and data for weeks ahead for a pandemic 
region requires an excellent testing capability and a positivity rate under 1% [10].  
 
The results show that both the total number of infections over the course of the pandemic and the 
daily new infections during the course are sensitive to people's social behavior as shown in Fig. 
3. These numbers increase dramatically when social distancing is relaxed, and the peak time in 
daily infections is delayed. Reducing social distancing not only increases the length of time until 
life returns to ``normal'' but also places more lives at risk. This result differs from other studies, 
which capture the delaying effect of social distancing on the peak number of infections but not 
the effects on the total and daily number of infections [18, 19]. Stochastic phenomena will 
emerge due to changes of human behavior. Model predictions are significantly improved by 
using time dependent social distancing [11]. A model with a stochastic social distancing will be 
presented in a future paper. 
 

 
Fig.3 Total number of infections (left) and number of daily new cases (right) changing over time 
under four social-distancing scenarios. The red line represents the spread trajectory under 
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constant social distancing at the level when restrictions were put in place. The blue line 
corresponds to social distancing decreasing at a relaxation rate b=1.35 % per day and relaxation 
period t=11 days. The black dashed line corresponds to b=0.9% and t=24 days. The cyan line 
corresponds to b=0.35% and t=7 days. All cases assume a community spread rate g=0.17. 
 
Conclusion 
The newly developed logistic pandemic model has correctly captured the two dynamic phases of 
the spread of COVID-19, i.e., a natural exponential growth phase that occurs in the absence of 
intervention and a regulated growth phase that reflects enforcement of social distancing. The 
two-parameter model is capable to make early predictions about the spreading trajectory in 
communities of any size including the total infections, the date of peak daily infections and the 
date of infections reaching a plateau if the testing capability is sufficient. The model has been 
applied to a number of pandemic centers (during the first wave). The model predictions are in 
good agreement with the data. The model can place an upper limit for the total number of 
infections and daily new infections in a pandemic region for weeks into the future, providing the 
vital information and lead time needed to prepare for and mitigate the pandemic and future 
waves. 
 
The study shows that the community transmission rate is not uniform across the United States, it 
depends on the geography and demographics of the infection regions. The uncertainty of the 
model predictions depends on the quality of data and testing capacity of the pandemic region. 
The study indicates that most of the US states have been under testing and the data near the peak 
of daily infections have been significantly saturated by the inability of testing at the time.  It is 
found that effectively controlling and predicting the spread of the COVID-19 pandemic requires 
a testing at < 1% positivity rate so as to actively tracing and isolating the infections.  
 
The model shows that social distancing has a significant impact in reducing the pandemic spread. 
Strict social distancing will not only slow the virus spread rate but also significantly reduce the 
number of total infections, daily infection rates, peak of daily infections, and the duration of the 
pandemic. Under strict social distancing, the rise and fall of the pandemic are nearly symmetric 
to the peak time, and the total duration of the pandemic would be around 60 days. If everyone 
wears a face mask in public, there would not be a need to shut down the economy even if there 
was a second or third waves of COVID-19. Relaxed social distancing will result in a prolonged 
pandemic and many more infections and deaths. Recent statistics show that the deaths from flu 
season in 2020 was significantly less than any other previous years because of the wearing of 
face masks during the COVID-19 pandemic. This fact supports the evidence of the effectiveness 
of wearing face masks.  
 
The model exhibits that with the presence of COVID vaccines, the fraction of the population 
who are immune to the virus (h) increases significantly, so does parameter dmin. Thus, the 
pandemic spread will soon be significantly reduced and controlled. Given a percentage of the 
infected population in a pandemic region, the model could provide a lower limit for the required 
percentage of vaccinated population in the region so as to control the pandemic. Finally, the vast 
amount of COVID-19 data collected during the pandemic would provide great opportunities to 
develop advanced pandemic forecast model and make reliable predictions for weeks ahead using 
science guided deep learning algorithms, which would have profund applications in the 
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implementation of effective policies for ongoing outbreaks and similar infectious disease 
pandemic in the future. 
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