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Abstract 

Lung cancer remains the most common cause of cancer death globally. 

Dysregulation of immune response and inflammatory signaling is known to play an 

important role in lung tumorigenesis, but the causal drivers of this process have yet 

to be elucidated. To identify circulating inflammatory and immune-related proteins 

that influence risk for lung cancer we related genetically predicted plasma levels for 

85 inflammation and immune proteins with susceptibility to lung cancer. Mendelian 

randomization (MR) analyses in 29,266 cases and 56,450 controls identified a 

candidate causal marker, IL-18, which conferred lower risk of lung cancer (OR per 

standard deviation increase: 0.85 [95% CI: 0.79-0.92]), in particular for 

adenocarcinoma (OR: 0.80 [95% CI: 0.72-0.89]). We subsequently validated this 

association using polygenic IL-18 predictions in the UK Biobank (HR highest vs. 

lowest quartile: 0.83 [95% CI: 0.72-0.95]) and using pre-diagnostic blood 

concentrations of IL-18 in 732 cases and 732 controls after controlling for the 

inhibitory role of IL-18BP (OR highest vs. lowest quartile: 0.63 [95% CI: 0.41-0.91]). 

Genetic colocalization suggested that IL-18 may act on lung cancer risk locally via 

lung tissue expression, and joint MR and tumor microenvironment analyses highlight 

CD8 T cells and NK cells as potential mediators. In addition to risk, IL-18 expression 

in adenocarcinoma tumor tissue was found to be associated with all-cause mortality 

in 480 TCGA samples after controlling for IL-18BP (HR per SD: 0.87 [95% CI: 0.78, 

0.98]), which is in line with recent studies showing anti-tumor effects of IL-18. Our 

comprehensive genomic triangulation study thus highlights the potential for IL-18 as 

an aetiological biomarker and targetable for immune-oncology therapies. 
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Introduction 

Lung cancer is the third most highly incident cancer and the leading cause of cancer 

death globally1. While tobacco exposure accounts for most lung cancer diagnoses2, 

a majority of lung cancers in western countries are now diagnosed among former 

and never smokers3. Identifying novel aetiological and modifiable risk factors that aid 

the prevention of lung cancer is therefore important and should be prioritised. 

The role of inflammation in lung cancer aetiology, such as IL-64,5, IL-85 and the IL-1 

beta pathway6, presents an attractive potential target for chemoprevention due to 

their role in tissue remodelling and homeostasis7, cell proliferation8, and 

angiogenesis9. However, despite consistent observational evidence for the role of 

specific inflammation and immune-related proteins4,5,10, the confounding role of 

smoking and other biases not well-remedied through traditional epidemiology have 

precluded the identification of an aetiological role for inflammation in lung cancer 

aetiology. 

Modern molecular epidemiology may overcome such concerns by integrating 

evidence from multiple, independent, lines of evidence drawn from study designs 

with differing sources of bias, such as Mendelian Randomisation (MR), well-

designed prospective studies, and patient tumor characteristics – an approach 

commonly referred to as triangulation11,12. MR leverages common genetic variation 

to instrument the association of an exposure (such as inflammatory protein levels) 

with an outcome (lung cancer). The random segregation of alleles at conception 

requires that genetic variation be assigned prior to disease onset and substantially 
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reduces the influence of biases that plague classical epidemiology. Nonetheless, MR 

remains sensitive to a number of assumptions, such as horizontal pleiotropy where a 

genetic instrument may associate with the outcome via both an exposure of interest 

and an alternative exposure like smoking. In the case of proteins, such bias may be 

alleviated by using genetic variation located adjacent to its coding gene that 

influence circulating concentrations by affecting transcription or translation13. Where 

analyses also preclude confounding by linkage disequilibrium (LD), MR represents a 

strong complementary source of evidence for the discovery of novel aetiological 

factors. For instance, a protein associated with lung cancer risk using MR and a well-

designed prospective epidemiological study, with additional support from tumour 

characteristics (e.g. gene expression, gene-specific mutation etc), would provide 

compelling evidence for a role in aetiology not likely explained by a single source of 

confounding, such as tobacco exposure. 

We aimed to identify novel inflammation and immune-related proteins in lung cancer 

aetiology. Following an initial MR-based discovery analysis, we sought to triangulate 

promising protein-risk signals using polygenic protein predictions in an independent 

large prospective cohort, direct pre-diagnostic measurements from a case-control 

study, and molecular and immune cell characteristics from patient tumor samples. 

Methods 

Overall study design 

An overview of the study design is shown in Figure 1. Our objective was to identify 

aetiological inflammation and immune-related proteins for lung cancer risk using 

complementary sources of data. Based on genetic instruments identified in a protein 

GWAS of 30,913 individuals, we initially conducted an exploratory two-sample MR 

using a large GWAS to identify candidate proteins. Proteins with support from MR 
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after sensitivity and colocalization analyses, were evaluated in relation to the tumor 

immune microenvironment to assess potential pathways using both MR and 

estimated tumor immune characteristics among lung cancer patients. Subsequently, 

we sought additional support for the importance of promising proteins with lung 

cancer using polygenic predicted protein concentrations in the UK Biobank, direct 

measurements in pre-diagnostic blood from a case-control study nested in six large 

population cohorts, and tumor gene expression for promising proteins with patient 

prognosis in the Cancer Genome Atlas14 (TCGA). STROBE-MR15 and STROBE16 

reporting guidelines were followed. 

Identification of promising lung cancer proteins 

- Mendelian randomization Risk Analyses 

 Study populations and data sources 

Summary statistics for the association of SNPs with protein concentrations were 

obtained from a recent protein GWAS in 30,931 subjects of European descent from 

14 studies within the SCALLOP consortium of the Cardiovascular-I panel from Olink 

Proteomics17. SNP-lung cancer risk associations were extracted from a recent meta-

analysis of the International Lung Cancer Consortium (ILCCO) combining results 

from a large-scale lung cancer GWAS with 29,266 cases and 56,450 controls of 

European descent18. All studies received ethical approval from their respective 

review committees/boards and all participants provided written informed consent. 

Main Statistical analysis 

Of the 90 proteins assayed in 30,931 individuals with genome-wide genotyping data, 

85 circulating proteins had SNPs associated at genome-wide significance (P<5x10-

8), of which 74 had cis-protein quantitative trait (pQTL)s located within 1mb of the 

protein-coding gene. Only SNPs that were independent (linkage disequilibrium, r2 > 
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0.01) from other SNPs for a given protein, and with no significant heterogeneity of 

SNP effects across the 14 studies contributing to GWAS meta-analysis were 

included in further analyses. After data harmonization, 85 proteins with 366 unique 

SNPs, including 129 cis-pQTL, were included in analyses. There was no overlap of 

participants between the protein and lung cancer GWAS samples.  

In MR analysis to describe the association between proteins and risk for lung cancer, 

for proteins with one available robust pQTL SNP available we used Wald estimates 

(βcancer/βprotein), and for proteins with multiple pQTL SNPs per-SNP Wald estimates 

were combined using the inverse-variance weighted approach (IVW). A false 

discovery rate (FDR) of 5% was applied to define a p-value threshold corrected for 

multiple testing to identify promising risk proteins for downstream analyses.  

We performed quantitative and qualitative sensitivity analyses to evaluate potential 

violations of MR assumptions. For proteins with FDR significant Wald/IVW estimates, 

we ran weighted-median19, MR-PRESSO20, and MR-Egger21 sensitivity analyses that 

provide estimates more robust to bias from horizontal pleiotropy and can quantify net 

directional pleiotropy (using the MR-Egger intercept). Heterogeneity of the SNP 

estimates—an indication of horizontal pleiotropy—was evaluated using Cochran’s 

and Rücker’s Q22. Subsequently, we consulted all phenotypes in the OpenGWAS23 

catalogue to identify potential horizontal pleiotropy for pQTL instruments used in 

main MR analyses. As an additional assessment of pleiotropy, we conducted a 

proteome-wide association analysis across 4,979 proteins (multiple testing 

correction, p<1e-5) for the cis and trans pQTL used to estimate risk associations for 

proteins otherwise passing sensitivity analyses. These analyses were in 8,350 

participants using linear regression adjusted for age, sex, center, and the first ten 

genetic principal components (data not shown) within the Fenland study24. 
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Cis-pQTL MR and Colocalization analyses 

For proteins passing these MR sensitivity analyses and with available cis-pQTL (i.e. 

SNPs in or within 1Mb of the protein-coding gene), a separate MR analysis was 

conducted using the Wald ratio to estimate risk. Further, we performed 

colocalization25,26 analyses to evaluate confounding due to linkage disequilibrium 

using a 75kb region up- and downstream of a given cis-pQTL. Bidirectional MR was 

used to estimate potential lung cancer effects on protein concentrations as a 

sensitivity analysis to assess the correct orientation of MR estimates.  

Triangulating evidence for promising lung cancer proteins 

Protein-Tumor Immune Analyses 

To evaluate the influence on the tumor immune landscape for the promising lung 

cancer proteins identified through MR, we conducted analyses using both MR and 

individual level patient tumor characteristics based on patients within TCGA. To 

conduct MR analyses, summary statistics for each of the cis and trans pQTL used in 

the main risk analyses were extracted for tumor immune characteristics from a 

recent pan-cancer GWAS that included ~9,000 cancer patients from 30 cancer 

subtypes from TCGA27. All MR methods applied were as described above. Analyses 

in individual-level data for the association of lung tissue gene expression for 

promising proteins with tumor immune characteristics were conducted on data 

obtained using TCGA project 2731 via dbGAP. 480 adenocarcinoma and 420 

squamous cell carcinoma patient samples remained after filtering on annotations and 

removing duplicated samples (Supplementary Methods). Linear regression adjusted 
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for age at diagnosis, sex, smoking status, and tumor stage were used to estimate the 

association of gene expression with tumor immune characteristics. 

 Protein PRS and Lung Cancer Risk 

We used polygenic predictions (PRS) calculated using the LDPred algorithm28 to 

estimate the association for promising proteins with lung cancer risk using individual-

level data from the UK Biobank. PRS typically explain a greater proportion of the 

variance for protein concentrations than GWAS significant hits. Therefore, they may 

be better powered to discover associations with the caveat that they cannot be 

understood as causal estimates, but rather as a complementary analysis to MR in 

independent individual-level samples. The UK Biobank is a large ongoing 

prospective cohort, from 2006, with more than 500,000 participants described in 

Bycroft et al.29 and accessed under project number 15825 (Supplementary 

Methods). Cox regression was used to estimate the association of genetically 

predicted protein concentrations with lung cancer risk in UK Biobank. All models 

were adjusted for age, genotyping array, and the first five principal components of 

ancestry, and stratified by sex. Sensitivity analyses were also stratified by smoking 

status.  

Pre-diagnostic Protein Concentrations and Lung Cancer Risk 

To evaluate the association between directly measured blood protein levels and lung 

cancer risk, we used data on circulating concentrations of 85 proteins using the Olink 

platform in 732 lung cancer cases and 732 matched controls based on smoking 

status that were available within a parallel lung cancer early detection project (U19 

CA203654). Conditional logistic regression models were used to estimate the 

association of proteins with lung cancer risk adjusting for age, body-mass index, and 

additional smoking characteristics (cigarettes per day and years smoked) and 
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stratified by histology (Supplementary Methods). Test for trend of protein association 

with risk was across median concentration by quartiles. 

 

 

Protein Tumor Expression and All-Cause Mortality Risk 

The association of tumor gene expression in lung cancer patients with all-cause 

mortality in TCGA was estimated using Cox-regression to time from diagnosis to 

death as an underlying time variable. Models were additionally adjusted for age at 

diagnosis and stratified by sex, smoking status, and tumor-stage. Statistical analyses 

were performed using R (TwoSampleMR30, Coloc25; hyprcoloc26, The R project31). 

Results 

Identification of promising lung cancer proteins 

- Mendelian randomization Risk Analyses 

In the initial MR analyses of 85 proteins for lung cancer risk, at an FDR threshold of 

5%, we discovered an association with lung cancer risk for interleukin 18 (IL-18, 

NSNP=6 [5 trans and 1 cis], variance explained:4.3%, Figure 2). This association 

remained after pleiotropy-robust analyses: weighted median and MR-PRESSO and 

was directionally concordant using MR-Egger regression (eTable2). As specified a 

priori, IL-18 was therefore the only protein further investigated. A genetically 

predicted increment in blood IL-18 concentration (SD units) was associated with a 

reduced risk of lung cancer (ORIVW:0.85, 95%CI:0.79-0.92, NSNP=6; eTable1). The 

association between IL-18 and lung cancer risk appeared more prominent for 

patients diagnosed with adenocarcinoma (ORIVW:0.80, 95%CI:0.72-0.89, NSNP = 6; 

eTable2, Figure 3). No association was observed with other histological subtypes 

(eTable2). Additional sensitivity analyses revealed no evidence of horizontal 
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pleiotropy.  MR-Egger (eTable 3), Cochran’s or Rücker’s Q heterogeneity statistics 

(eTable 4) and openGWAS results (eTable 5) are shown in Supplementary 

Materials. Bidirectional MR analysis did not indicate an influence of lung cancer on 

circulating IL-18 levels (eTable 6). The only pleiotropic association between the IL-18 

cis-SNP, rs5744249, was seen with heel bone mineral density (eTable 5). However, 

there was a low probability for a colocalized signal for IL-18 and heel bone mineral 

density at a locus around rs5744249 (7.8-35%) implying this may be due to 

confounding by LD. For trans IL-18 SNPs, proteome-wide association analyses 

pleiotropy was observed only for rs385076 and rs17229943 with Heme-Oxygenase 1 

(results not shown); main results were materially unaltered when these SNPs were 

excluded (ORIVW:0.84, 95%CI:0.76-0.93, NSNP = 4).  Notably, no significant pleiotropy 

for IL-18 instruments was observed for its well-documented inhibitory protein, IL18-

BP32, which may imply the IL18 MR risk estimates are not influenced by genetically 

elevated IL18-BP. 

The cis-pQTL for IL-18 is located upstream of the second exon adjacent to a 

promoter region. MR analyses using only this cis-pQTL supported our primary IL-18 

MR results overall (ORWald:0.87, 95%CI:0.79-0.94, NSNP = 1; eTable2), and 

suggested a stronger association in adenocarcinoma (ORWald:0.79, 95%CI:0.69-0.91, 

NSNP = 1; eTable2).  

Colocalization analyses 

Little evidence was found to support colocalization for lung cancer overall (11%), 

small cell (1.7%), or squamous cell carcinoma (1.3%). However, there was moderate 

support for colocalization between IL-18 protein levels and risk for adenocarcinoma 

(colocalization probability 64%). To investigate further whether an association of IL-

18 with adenocarcinoma acts via expression of IL-18 in lung tissue we additionally 
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performed colocalization for IL-18 cis pQTL with IL-18 cis eQTL in normal lung tissue 

(99.8%); for IL-18 cis eQTL with adenocarcinoma risk (61.2%); and finally, a 

multivariable colocalization for cis pQTL and eQTL, and adenocarcinoma risk 

(89.8%, Figure 4 & Supplementary Figure 1). Although full summary statistics were 

unavailable for IL-18 tumor eQTL, there was considerable overlap for tumor and 

normal tissue significant eQTL in the lung. Together these results imply a shared 

genetic signal for IL-18 protein concentrations and IL-18 lung tissue expression with 

adenocarcinoma risk. 

- Triangulating evidence for promising lung cancer proteins 

Effect of IL-18 on the Tumor Microenvironment  

From amongst immune traits available in TCGA, IL-18 levels have well-documented 

associations with Th1 cells33,34, CD8 T cells32, NK cells32, macrophages35, and 

Interferon Gamma Response36. We observed MR associations of genetically 

predicted IL-18 levels using the six pQTL instruments used in main risk analyses 

with an increase in pan-cancer tumor cells, including Th1 cells (p=0.004), CD8 T 

cells (p=0.01), NK cells (p=0.026), and macrophages (p=0.003). No clear association 

was observed for pan-cancer interferon gamma response (eTable6). Significant cis-

pQTL (rs5744249) associations were observed for IL-18 with pan-cancer Th1 cells 

(p=0.03) and macrophages (p=0.005, eTable7). However, no strong evidence was 

observed in favor of colocalization between IL-18 levels and these characteristics 

(Th1 cell:34.4%, macrophages:10.2%).  

Higher IL-18 gene expression in tumor tissue samples from 480 adenocarcinoma 

patients in TCGA was associated with a significantly greater tumor tissue CD8 T cell 

(beta per SD:0.11 [95%CI:0.02-0.21], p=0.02) and NK cell count (beta per SD:0.13 

[95%CI:0.03-0.23], p=0.01), and IFN-γ pathway activation (beta per SD:0.24 
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[95%CI:0.15-0.34], p<0.001) after adjustment for age at diagnosis, gender, smoking 

status, and tumor stage. No significant association for IL-18 was observed with Th1 

cell count (beta per SD:0.04 [95%CI:-0.06-0.14], p=0.4).  

 IL-18 PRS and Risk in UK Biobank 

Polygenic predicted IL-18 (LDPred Score, variance explained:24%) was available for 

326,583 UK Biobank participants that had no overlap with either the IL-18 protein or 

lung cancer GWAS, of whom 1,605 had been diagnosed with incident lung cancer. 

For cases, the mean follow-up time from baseline to diagnosis was 4.1 years 

(IQR:0.03-5.86 years)(eTable10). Cox regression identified an inverse association 

for higher genetically predicted IL-18 and risk for lung cancer (Hazards Ratio [HR] 

highest vs. lowest fourth:0.83 [95%CI:0.72-0.95], Ptrend=0.009; HR per SD:0.95 

[95%CI:0.90-0.99], eTable13).  

Pre-diagnostic IL-18 and Risk 

Data from 732 cases and 732 matched controls identified within six prospective 

cohorts were included in the analysis. For cases, the mean time between pre-

diagnostic blood collection and diagnosis was 1.6 years (IQR:0.8-2.4 years) 

(eTable11).  

Base model conditional logistic regressions showed a positive association for direct 

pre-diagnostic blood measurements of IL-18 with lung cancer risk (OR highest vs. 

lowest fourth:1.39 [95%CI:1.02-1.90], Ptrend=0.04, eTable13). However, this 

association was attenuated after subsequent adjustment for smoking behaviors 

(cigarettes per day, years smoked, time since quitting) (OR highest vs. lowest fourth: 

1.28 [95% CI: 0.92, 1.78], Ptrend = 0.14, eTable13).  

It is well known that IL18BP is a natural IL-18 inhibitor, affecting maturation and 

concentration of bioactive IL-18, which determines IL-18-stimulated immune 
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responses via the IFN-γ pathway32. Therefore, we expect IL-18 to have a biological 

effect only when it is at a concentration greater than IL-18BP. This would ideally be 

modelled by a simple ratio, however, log2 relative quantification of proteins, as is 

available using the Olink platform, with differing natural abundancies do not allow for 

this ratio to be interpretable. Accordingly, we modeled the inhibitory effect of IL-18BP 

on IL-18 using an interaction term between IL-18BP and IL-18 with main effects 

retained in the model. This revealed an inverse association for IL-18 with lung cancer 

risk from smoking adjusted models in accordance with the MR analysis (OR highest 

vs. lowest fourth:0.63 [95%CI:0.41-0.96], Ptrend=0.03; OR per SD:0.91 [95%CI:0.83-

0.98], eTable13, Figure3). No significant association was observed for IL-18 with 

lung cancer by histological subtype (eTable13). 

IL-18 tumor expression and all-cause mortality in lung cancer patients 

Similar to prospective analyses, there was no significant association for IL-18 

expression with all-cause mortality after adjustment for age, gender, smoking status, 

and stage (HR per SD:1.05 [95%CI:0.91-1.21], p=0.5). Given that tumor expression 

data exist on a raw RNA count scale, a simple IL-18/IL-18BP ratio was employed to 

identify participants with likely bioactive tumor expression of IL-18. Similarly in the 

prospective risk analysis, Cox models found an inverse association between IL-

18/IL-18BP with all-cause mortality among lung cancer patients (HR per SD: 0.87 

[95% CI: 0.78-0.98], p=0.01, Figure 3). 

Discussion  

We sought to identify novel inflammation-related proteins with a role in lung cancer 

aetiology by integrating results from large-scale GWAS, prospective cohorts, and 

tumor genomic analyses. The initial MR analysis queried 85 proteins and identified 

an inverse relation between IL-18 and lung cancer risk, and downstream analyses 
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provided concordant evidence indicative of a protective role of IL-18 in lung cancer 

aetiology. 

Specifically, we carried out an initial discovery analysis using MR to identify putative 

causal biomarkers, which revealed an estimated 15% reduction in lung cancer risk 

per standard deviation increase in IL-18 plasma levels. We also provide evidence 

that this association may act on risk locally via expression in lung tissue and 

potentially mediated by influencing the abundance of CD8 T cells and NK cells in the 

tumor microenvironment. The lung cancer susceptibility signal was validated in two 

prospective studies and one case-series using both genetically predicted and directly 

measured IL-18 levels. Polygenically predicted IL-18 in UK Biobank found a 17% 

lower risk for lung cancer among individuals with high IL-18. Similarly, direct IL-18 

measurements in pre-diagnostic bloods were associated with a 37% reduced risk for 

lung cancer after accounting for the well-documented IL-18 inhibitory effects of IL-

18BP. Lastly, we identified a 13% lower risk for all-cause mortality for higher IL-18 

lung tumor tissue expression in adenocarcinoma patients after accounting for IL-

18BP. These independent lines of evidence clearly indicate that IL-18 has an 

important role in mediating lung carcinogenesis. 

IL-18 is a member of the IL-1 family, a group of 11 pro- and anti-inflammatory 

cytokines that are activated by NLRP337, NLRP138 and NLRC4 inflammasomes39. IL-

18 drives MYD88 signaling32, which has been found to stimulate macrophages40, 

Th1 cells33,34, CD8 T cells and NK cells32, and drives interferon-gamma response36. 

We replicated the association of IL-18 with these immune characteristics using 

independent MR and tumor gene expression analyses finding evidence for an 

association for IL-18 expression with these immune cells local to lung tumor tissue. 

Colocalization of IL-18 pQTL with risk for lung cancer and lung tissue IL-18 
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expression was largely explained by the minor allele for the lead cis-pQTL/eQTL 

(rs5744249, 52%). Interestingly, we are believed to have introgressed this IL-18 

elevating allele from Neandertals41 , and so the protective effect of IL-18 may reflect 

immune response inherited from early homonid interbreeding42. 

Therapeutically recombinant IL-18 (rIL-18) has a synergistic role with immune 

checkpoint inhibitors43 and may up-regulate immune pathways for tumorigenesis and 

progression44. However, even though rIL-18 is well-tolerated by patients in clinical 

trials45, it has been difficult to demonstrate the clinical utility of rIL-18. This has been 

attributed primarily to the negative regulatory role of IL-18BP in the bioactivity of 

circulating IL-1846. Indeed, a recent study that found IL-18 engineered as insensitive 

to IL-18BP has strong and consistent effects on T cell and NK cell activation in 

mouse tumors and acted to inhibit tumor progression32. It is therefore a strength of 

this study that no significant pleiotropy for IL-18 instruments was observed with IL-

18BP implying our genetic MR discovery analyses was not affected by genetically 

higher IL-18BP. Further, based on the negative regulatory effect for IL-18BP on IL-

18, it is in line with our current understanding of IL-18 function that an inverse 

association with lung cancer risk using direct measurements and all-cause mortality 

using tumor tissue expression was only observed after accounting for the inhibitory 

effect of IL-18BP. 

Nonetheless, our study design was not without limitation. Firstly, pre-diagnostic 

blood measurements for IL-18 were among former and current smoking cases with a 

relatively short time between recruitment and diagnosis (max:3 years), which cannot 

protect against reverse-causation and precludes generalizing findings to never 

smokers. Further, the lack of treatment information available in TCGA did not allow 

us to explore the interplay between IL-18 tumor expression and survival by modern 
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treatments known to act on potential IL-1 pathways, such as PD-L1 inhibitors. 

However, a re-analysis of CANTOS trial data found no association for the promising 

IL-1 beta antagonist Canakinumab for the reduction of IL-1847, which may imply IL-

18 acts on risk for lung cancer via an alternative pathway to IL-1 beta.  

In summary, we report multiple lines of evidence supporting a protective role of IL-18 

in lung cancer aetiology. IL-18 may act to inhibit tumorigenesis via CD8 T and NK 

cell count local to lung tissue which is in line with the current understanding for IL-18 

function. Altogether, these results highlight the potential for IL-18 as an aetiological 

biomarker for lung cancer and potential target for immune-oncology therapies. 
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Figure 1. Overall study design. The objective of this study was to identify support 
for inflammation and immune-related proteins involved in the aetiology of lung 
cancer using a Mendelian randomization (MR) discovery subsequently triangulated 
using complementary evidence from independent source of data. In the MR 
discovery we find strong statistical support for the association of IL-18 with risk for 
lung cancer. Additionally, colocalization analyses may suggest that the association 
for IL-18 and lung cancer my act via expression in lung tissue. Following the MR 
discovery, we sought support for IL-18 and lung cancer risk using polygenic genetic 
IL-18 predictions in the UK Biobank, pre-diagnostic blood measurement in a large 
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prospective nested case-control, and patient tumor characteristics and all-cause 
mortality. In these data we found broad support for IL-18 and lung cancer risk and 
patient mortality, albeit only after taking into account the inhibitory effect of IL-18BP 
for blood and tumor measurements. Additional MR and individual-level analyses for 
the association of IL-18 with tumor immune characteristics highlight CD8 T cells and 
NK cells as potential intermediate phenotypes. 
 
Figure 2. Volcano plot for the association of 85 inflammation and immune-related 
proteins with risk for lung cancer overall and by histological subtype. P values and 
odds ratios are based on Wald estimates for proteins with one SNP instrument or the 
inverse-variance weighted approach where multiple SNP instruments were available. 
 
Figure 3. Summary of risk analyses for the association of IL-18 with risk for lung 
cancer from MR and all triangulation analyses: IL-18 PRS (by quartile) in UK 
Biobank using Cox-regression, pre-diagnostic IL-18 blood concentrations (by quartile 
with interaction for IL-18BP concentrations) using conditional logistic regression in a 
prospective nested case-control study, and IL-18 tumor expression (per SD) using 
Cox-regression in adenocarcinoma patients in the Cancer Genome Atlas. 
 
Figure 4. Colocalization plot for the association of SNPs with IL-18 levels and risk for 
lung adenocarcinoma within a 75kb region up and downstream of the IL-18 cis-pQTL 
(rs5744249). Functional annotations of IL-18 cis-eQTL SNPs in healthy and 
adenocarcinoma tumor tissue are colored as a function of their linkage disequilibrium 
with rs5744249. These plots highlight the consistent association of SNPs that are 
associated with lower IL-18 levels at this locus with higher risk for lung 
adenocarcinoma, which is more prominent among significant IL-18 cis-eQTL. 
 
 
Supplementary Figure 1. Proportion of the posterior believe for the colocalization of 
IL-18 protein levels, IL-18 healthy lung tissue expression, and risk for lung 
adenocarcinoma for each SNP in a 75kb window up and downstream of sentinel IL-
18 cis-pQTL, rs5744249.  
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