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ABSTRACT:  15 

The COVID-19 pandemic has caused over 350 million cases and over five million deaths 16 

globally. From these numbers, over 10 million cases and over 200 thousand deaths have occurred 17 

on the African continent as of 22 January 2022. Prevention and surveillance remain the 18 

cornerstone of interventions to halt the further spread of COVID-19. Google Health Trends 19 

(GHT), a free Internet tool, may be valuable to help anticipate outbreaks, identify disease 20 

hotspots, or understand the patterns of disease surveillance.  21 

We collected COVID-19 case and death incidence for 54 African countries and obtained 22 

averages for four, five-month study periods in 2020-2021. Average case and death incidences 23 

were calculated during these four time periods to measure disease severity. We used GHT to 24 

characterize COVID-19 incidence across Africa, collecting numbers of searches from GHT 25 

related to COVID-19 using four terms: ‘coronavirus’, ‘coronavirus symptoms’, ‘COVID19’, and 26 

‘pandemic’. The terms were related to weekly COVID-19 case incidences for the entire study 27 

period via multiple linear regression analysis and weighted linear regression analysis. We also 28 

assembled 72 predictors assessing Internet accessibility, demographics, economics, health, and 29 

others, for each country, to summarize potential mechanisms linking GHT searches and COVID-30 

19 incidence.  31 

COVID-19 burden in Africa increased steadily during the study period as in the rest of the world. 32 

Important increases for COVID-19 death incidence were observed for Seychelles and Tunisia 33 

over the study period. Our study demonstrated a weak correlation between GHT and COVID-19 34 

incidence for most African countries. Several predictors were useful in explaining the pattern of 35 

GHT statistics and their relationship to COVID-19 including: log of average weekly cases, log of 36 
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 3 

cumulative total deaths, and log of fixed total number of broadband subscriptions in a country. 37 

Apparently, GHT may best be used for surveillance of diseases that are diagnosed more 38 

consistently. 39 

GHT-based surveillance for an ongoing epidemic might be useful in specific situations, such as 40 

when countries have significant levels of infection with low variability. Overall, GHT-based 41 

surveillance showed little applicability in the studied countries. Future studies might assess the 42 

algorithm in different epidemic contexts. 43 

KEYWORDS: COVID-19, Google Health Trends, Digital Epidemiology, Infodemiology  44 
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INTRODUCTION 45 

Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by the severe acute 46 

respiratory syndrome coronavirus-2 (SARS-CoV-2) discovered in China in 2019. People 47 

infected experience a range of symptoms including headache, fever, difficulty breathing, and loss 48 

of taste and smell, or may be completely asymptomatic [1]. Since its discovery, SARS-CoV-2 49 

has spread around the globe, with over 350 million confirmed cases as of 22 January 2022, 50 

according to John Hopkins University [2, 3]. The elderly (>65 years old), as well as those with 51 

pre-existing comorbidities, have the highest risk of mortality if infected [4]. COVID-19 spreads 52 

via respiratory particles, which allows it to infect others via contaminated aerosols and droplets 53 

suspended in the air in closed spaces [5]. Asymptomatic carriers account for a significant amount 54 

of secondary transmissions, with some reports showing that ~80% of infections may occur 55 

without symptoms, constituting the source of most secondary COVID-19 cases [1, 6, 7].  56 

After the large-scale Ebola outbreak in 2015, African leaders were aware that swift and 57 

decisive action was needed to avert broad spread of COVID-19 and prevent healthcare system 58 

collapse. This awareness led to wide adoption of mitigation and control efforts that circumvented 59 

an overwhelming first epidemic wave with a partially structured continental response [8]. 60 

Regardless, testing in Africa has been limited: about 75% of COVID-19 diagnoses came from 61 

tests conducted in only 10 countries [5, 8]. The emergence of new of SARS-CoV-2 variants (e.g., 62 

Beta, Delta, Omicron, etc.) has made it difficult to predict wave dynamics across the continent, 63 

echoing other regional contexts [9]. Finally, although vaccination campaigns have been 64 

promoted as the definitive solution to the pandemic [10], several countries have struggled with 65 

vaccine uptake [11]. Africa as a continent has received only about 6% of the roughly 9 billion 66 
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doses manufactured so far, even though about 17% of the world’s population lives there [12]. 67 

Further, uptake has been limited, as only 10% of Africans have been fully vaccinated [13, 14]. 68 

Factors determining this context, include disinformation via social media [15]; lack of syringes; 69 

lack of health workers to administer vaccines, especially in rural areas [13]; limited government 70 

planning; limited testing; and halting efforts at vaccine allocation [16].  71 

Given difficulties in obtaining accurate and timely data on case counts and other 72 

epidemiological metrics for COVID-19 worldwide [17, 18], the current pandemic represents an 73 

opportunity to use digital epidemiology tools to fill gaps in information. Infodemiology is an 74 

area of epidemiology that uses digital data to gain insight into disease dynamics [19, 20]. The 75 

digital data used for this method of surveillance vary widely and may or may have not been 76 

intended for epidemiological purposes, coming from unexpected sources such as restaurant 77 

receipts, Facebook posts, or Google search queries [21, 22, 23].  78 

Google developed two specific algorithms to address infectious diseases, Google Flu 79 

Trends (GFT) in 2009 and Google Dengue Trends (GDT) in 2011 [21], which, after inquiries 80 

into their usefulness, were shut down in 2015 [24]. Currently, Google maintains two portals by 81 

which to harvest search query data: Google Trends (GT) and Google Health Trends (GHT). GT 82 

inquiries yield a ranked score from 0 to 100 based on the highest frequency of searches for a 83 

term in a particular time period. GHT provides search counts from a relative proportion of a 84 

random sample of the overall Google search dataset for any particular term in a selected time 85 

interval [25]. Both of these portals have limitations, such as possibly excluding certain groups 86 

(e.g., the elderly, rural residents, low income populations), lack of detail on who is searching 87 

certain terms, and no insight into the underlying motivations of the searches [26].  88 
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Digital tools have been used in many instances to predict disease incidence [27, 28, 29] 89 

including COVID-19. Kurian et al. (2020) evaluated the applicability of GT in predicting 90 

COVID-19 cases in the United States (U.S.) in a state-by-state analysis [30]. They found that 91 

certain keywords had a strong correlation with COVID-19 cases, and concluded that GT may be 92 

a useful tool for predicting COVID-19 outbreaks. Brodeur et al. (2021) used GT to see how 93 

lockdowns affected well-being in the U.S. [31]. Once lockdowns were implemented, well-being 94 

likely decreased, as searches for certain terms such as ‘stress,’ ‘suicide,’ and ‘worry’ increased 95 

over the lockdown period. Ahmad et al. (2020) used gastrointestinal-related symptom search 96 

terms to determine whether GT could predict COVID-19 incidence, and found correlations 97 

between the search terms and increases of COVID-19 cases in multiple regions across the U.S. 98 

with a four-week lag [32].   99 

Here, we explored whether GHT search query data correlate with COVID-19 incidence at 100 

the country level in Africa, as a potential complementary source for more customary forms of 101 

COVID-19 surveillance. We decided to use GHT instead of GT given the semi-quantitative 102 

nature of the information recovered by GHT. We collected case and death data for 54 African 103 

countries, and used four COVID-19-related search terms (see below) for each country. We then 104 

assessed whether Internet access, demography, economic information, or health variables, could 105 

explain GHT usefulness. Lastly, we calculated a standardized volatility index to illuminate 106 

whether variability in the signal of case incidence led to less accurate predictions by GHT. 107 

METHODS 108 

COVID-19 incidence data 109 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2021.03.26.21254369doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254369


 7 

Daily COVID-19 new cases and death counts were obtained for all 54 African countries 110 

from 2 February 2020 to 25 September 2021. Country-level case data were obtained via the 111 

Johns Hopkins COVID-19 global time series on the pandemic [33]; data were constrained to lab-112 

confirmed cases only. We explored the progression of average daily COVID-19 case and death 113 

incidence per 100,000 people in Africa in four time periods, each roughly five months (~150 114 

days) long: (a) 2 February 2020 to 30 June, (b) 1 July to 30 November, (c) 1 December to 30 115 

April 2021, and (d) 1 May to 25 September 2021. We then converted daily new cases into 116 

weekly new cases for each of the countries to match the weekly GHT data up to 25 September 117 

2021, for a total of 86 observations. We calculated weekly incidence rates by dividing the 118 

number of cases per week by the total population per country in millions [34]. Country-level 119 

population data were collected from the forecasted midyear 2020 estimates from the U.S. Census 120 

Bureau [35].  121 

Google Health Trends data 122 

We downloaded data corresponding to four English terms from the GHT application 123 

programming interface (API): ‘coronavirus,’ ‘coronavirus symptoms,’ ‘COVID19,’ and 124 

‘pandemic’. Although the four terms are related conceptually, they have the potential to capture a 125 

broad spectrum of information related to the disease [25, 36]. A simple and specific model is 126 

required here to maximize the usefulness of limited GHT data, which is why we have chosen 127 

only four terms closely related to the disease to fit the models. We addressed potential language 128 

barriers by collecting data for the latter two terms in French and Portuguese. The former two 129 

search terms were spelled the same in French and Portuguese, aside from accents, so the English 130 

versions of those terms captured a majority of individuals searching those terms in those other 131 
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languages. We matched the relative search proportions of these words—which is the raw output 132 

provided by GHT [25]—with the weekly COVID-19 case incidence for the selected time period. 133 

Statistical analysis 134 

We used a multiple linear regression model fitted with the four GHT English search 135 

terms as predictors of COVID-19 incidence at the country level for each of the 54 African 136 

countries being evaluated. We then performed the same analysis, substituting the latter two terms 137 

for their equivalents in French or Portuguese if a country had one of these listed as an official or 138 

spoken language by Nations Online [37]. The primary outcome measure was the adjusted R2 139 

statistic, and we collected whichever adjusted R2 value was larger (in absolute value) from the 140 

models with all English or English and French/Portuguese terms. If one or more of the four terms 141 

chosen did not retrieve search counts from GHT, it was removed from the analysis for that 142 

country. At least two terms were included for each region. Multicollinearity may exist in our 143 

time series, but it will not affect prediction capabilities or goodness-of-fit [38]. Finally, to 144 

address possible autocorrelation and heteroskedasticity issues in our time series, we performed 145 

first-order differencing and ran the analyses again with a weighted least squares regression 146 

model, giving larger weight to those observations with lower variance. We collected the results 147 

from this weighted regression for a more conservative measure.  148 

Next, we used the adjusted R2 statistics collected from the 54 African countries as our 149 

dependent variable and explored whether different categories of predictors might explain the 150 

pattern obtained. This analysis was conducted for the adjusted R2 statistics collected from the 151 

basic fitted regression models and the weighted regression models separately. Predictors for the 152 

African countries included Internet access, demographic, economic, and health indicators (Table 153 
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1); data were gathered from the World Bank [39]. We explored logarithmic transformations of 154 

each of these predictors to determine whether normalization of the indicators led to stronger 155 

correlations. Finally, we included as a predictor a standardized volatility index calculated using 156 

the standardized normalized case incidence data of each country as follows:  157 

���������� � 1

 � 1�|�� � ����|

�

���

 

in which n is the total number of observations and Y is the normalized case incidence per 158 

country. The average of the absolute difference (i.e., volatility) summarizes the case signal 159 

reflecting if it is relatively constant or fluctuates broadly from week to week [25]. Overall, we 160 

explored a total of 72 potential explanatory variables (Table 1 and Supplementary Table 1). 161 

  162 
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Table 1. Predictors explored in the present study. Different categories were selected based on 163 

their perceived potential to explain patterns of Google Health Trends and COVID-19 regression 164 

models. We also evaluated the log of each predictor, giving for a total of 72 variables. *GDP = 165 

gross domestic product; HIV = human immunodeficiency virus. Raw values of the variables can 166 

be found in Supplementary Table 1.  167 

Category Indicator 
Internet access 1. Percentage of population with access to electricity. 
 2. Fixed total number of broadband subscriptions in a 

country. 
 3. Fixed broadband subscriptions per 100 people. 
 4. Fixed total number of telephone subscriptions in a 

country. 
 5. Fixed telephone subscriptions per 100 people. 
 6. Percentage of individuals using the Internet. 
 7. Total number of mobile cellular subscriptions in a 

country. 
 8. Mobile cellular subscriptions per 100 people. 
 9. Secure Internet servers per 1 million people. 
   
Demographics 10. Percentage of people 15 years and above that are 

literate. 
 11. Percentage of people using at least basic drinking 

water services. 
 12. Percentage of people using at least basic sanitation 

services. 
 13. Percentage of people using safely managed drinking 

water services. 
 14. Percentage of people using safely managed 

sanitation services. 
 15. Percentage of people with basic handwashing 

facilities. 
 16. Total population. 
 17. Population density as people per square km of land 

area. 
 18. Total urban population. 
 19. Percentage of urban population. 
  
Economics 20. Percentage of GDP* for current health expenditure. 
 21. GDP* (current $ U.S. value). 
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 11

 22. GDP* per capita (current $ U.S. value). 
  
Health 23. Average weekly cases over the studied period. 
 24. Community health workers per 1,000 people. 
 25. Cumulative total deaths over the study period. 
 26. Hospital beds per 1,000 people. 
 27. Total life expectancy (years) at birth. 
 28. Nurses and midwives per 1,000 people. 
 29. Physicians per 1,000 people. 
 30. Percentage of population 15-49 years with HIV. 
 31. Prevalence of moderate or severe food insecurity in 

the population. 
32. Prevalence of severe food insecurity in the 

population. 
 33. Percentage of people at risk of catastrophic 

expenditure for surgical care. 
 34. Percentage of people at risk of impoverishing 

expenditure for surgical care. 
 35. Smoking prevalence for people above 15 years. 
  
Miscellaneous 36. Volatility score for a country calculated using 

weekly incidence. 

 168 

Variables were analyzed individually using a pair-wise univariate linear regression and 169 

collectively in a stepwise regression, in which predictors were added and removed iteratively to 170 

obtain a subset of predictors that provided the best model outcome according to the Akaike 171 

Information Criterion (AIC). In addition, variables were analyzed using a least absolute 172 

shrinkage and selection operator (i.e., LASSO) regression for both untransformed and log-173 

adjusted data to avoid overfitting and produce simpler models. Countries with missing variable 174 

information were removed from the univariate regression including that particular variable 175 

(38/72; 53% of variables had at least one country removed, Supplementary Table 1), and only 176 

variables with information for every country were used in the stepwise and LASSO regressions. 177 

All analyses were done for both adjusted R2 values collected from the basic regression and the 178 
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 12

weighted regression. All analyses were performed in R [40]. Data and scripts to replicate the 179 

results of this study are available in a GitHub repository accompanying this publication 180 

(https://github.com/alxjfulk/GHT-and-COVID19-code). 181 

RESULTS 182 

Examining the distribution of first cases among the 54 African countries, we observed 183 

that dates of first reported COVID-19 cases were centered around March 2020. Egypt (EGY) 184 

reported the first case of COVID-19 on the continent on 14 February 2020, 15 days after the 185 

World Health Organization (WHO) declared the COVID-19 epidemic an emergency of 186 

international concern [41]. Comoros (COM) and Lesotho (LSO) were the last countries to report 187 

COVID-19 introductions, with first cases on 30 April and 13 May 2020, respectively (Figure 1).  188 
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 189 

Figure 1. Distribution of the day of the first COVID-19 reported case in 54 190 

African countries. The plot depicts the dates of the first reports of COVID-19 cases 191 

in the 54 studied African countries as reported by the Johns Hopkins global time 192 

series on the pandemic (CRC, 2020; Dong et al, 2020). The countries in this 193 

distribution are designated by their three-letter Alpha-3 codes: DZA: Algeria, AGO: 194 

Angola, BEN: Benin, BWA: Botswana, BFA: Burkina Faso, BDI: Burundi, CPV: 195 

Cabo Verde, CMR: Cameroon, CAF: Central African Republic, TCD: Chad, COM: 196 

Comoros, COD: Democratic Republic of the Congo, COG: Congo, CIV: Côte 197 

d'Ivoire, DJI: Djibouti, EGY: Egypt, GNQ: Equatorial Guinea, ERI: Eritrea, SWZ: 198 

Eswatini, ETH: Ethiopia, GAB: Gabon, GMB: Gambia, GHA: Ghana, GIN: Guinea, 199 

GNB: Guinea-Bissau, KEN: Kenya, LSO: Lesotho, LBR: Liberia, LBY: Libya, 200 

MDG: Madagascar, MWI: Malawi, MLI: Mali, MRT: Mauritania, MUS: Mauritius, 201 

MAR: Morocco, MOZ: Mozambique, NAM: Namibia, NER: Niger, NGA: Nigeria, 202 

RWA: Rwanda, STP: Sao Tome and Principe, SEN: Senegal, SYC: Seychelles, SLE: 203 

Sierra Leone, SOM: Somalia, ZAF: South Africa, SSD: South Sudan, SDN: Sudan, 204 

TZA: United Republic of Tanzania, TGO: Togo, TUN: Tunisia, UGA: Uganda, 205 

ZMB: Zambia, ZWE: Zimbabwe. 206 

 207 
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Countries with highest COVID-19 case incidences for the first time period include 208 

Djibouti (3.39 cases per 100,000 people), São Tome and Principe (2.25), and South Africa (1.79) 209 

(Fig. 2). During the second period, Cameroon (10.7), Libya (7.78), and South Africa (7.39) were 210 

most affected (Fig. 2). For the third and fourth periods, countries across the continent reported 211 

increased COVID-19 incidences, with Seychelles (third period = 39.1; fourth period = 109), 212 

Tunisia (third period = 12.0; fourth period = 22.8), Botswana (third period = 10.3; fourth period 213 

= 37.8), Namibia (third period = 8.55; fourth period = 20.3), and South Africa (third period = 214 

9.28; fourth period = 15.7) ranking top among the countries studied (Fig. 2). Tanzania had an 215 

incidence of 0 for the second and third time periods, which will be discussed below.  216 

COVID-19 death incidence was recorded for all the African countries in the second time 217 

period except for Eritrea, Seychelles, Comoros, Mauritius, Tanzania, and Burundi, although the 218 

latter four reported 5.51x10-3, 4.83x10-3, 2.39x10-4, and 5.62x10-5 death incidences per 100,000 219 

people during the first period, respectively. Further, South Africa (0.219 deaths per 100,000 220 

people) and Tunisia (0.179) were the countries reporting the highest death incidence in the 221 

second period. For the third period, highest death incidences were again reported in South Africa 222 

(0.385) and Tunisia (0.422); for the fourth period, highest incidences were recorded in Tunisia 223 

(0.808), Namibia (0.732), and Seychelles (0.584).  224 
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225 

Figure 2. Average case and death incidences of COVID-19 per 100,000 people 226 

over four five-month time periods in Africa. Eight plots show average case 227 

incidences (upper panels) and average death incidences (bottom panels) over four 228 

five-month time periods from 2 February 2020 to 25 September 2021. Scale is the 229 

same for all case/death incidence maps and is depicted in the left panels; numbers are 230 

individuals affected per 100,000 people. 231 

 232 

Few countries had no information for one or two of the chosen English terms (6/54; 233 

11.1%); only ‘coronavirus’ and ‘COVID19’ always recovered search query counts. Several 234 

countries that had French or Portuguese listed as an official language returned no information for 235 

either one or both language-specific terms (8/32; 25%, Supplementary Table 2). Overall, the 236 

adjusted R2 values collected to depict the relationship between GHT search queries and COVID-237 

19 weekly incidence were low, never above 0.4 for any of the countries in either the basic 238 

regression or the weighted regression (Fig 3). The largest adjusted R2 results from the basic 239 

regression were for Algeria (0.33), Ethiopia (0.20), and Kenya (0.19; Fig. 4). The countries with 240 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2022. ; https://doi.org/10.1101/2021.03.26.21254369doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254369


 16

the lowest adjusted R2 results from the basic regression included Burkina Faso (-0.028), Sierra 241 

Leone (-0.030), and Sudan (-0.031; Figs. 3, 4, and Supplementary Table 2). For the weighted 242 

regression analysis on the first-order differenced case incidence and GHT data, the countries that 243 

returned the largest adjusted R2 results were Guinea-Bissau (0.24), Lesotho (0.08), and Niger 244 

(0.07, Fig. 3), respectively. The lowest adjusted R2 results came from Zimbabwe, Egypt, and 245 

Mauritania each with an adjusted R2 value of -0.05 (rounded; see Supplementary Figures).  246 

Several of the 72 indicators were able to predict at least in part the pattern of adjusted R2 
247 

statistics obtained for the 54 African countries. Almost all univariate, linear analyses from the 248 

basic regression yielded adjusted R2 values of 0.25 or less, except for the log of average weekly 249 

cases (0.37), log of cumulative total deaths (0.30), and log of fixed total number of broadband 250 

subscriptions in a country (0.26, Supplementary Table 3). The only adjusted R2 value greater 251 

than 0.25 from the weighted regression analyses came from the number of community health 252 

workers per 1,000 people, but that variable only had data for 26 countries. The log of average 253 

weekly cases, the log of GDP, and the log of the volatility scores were also statistically 254 

significant, though they yielded low adjusted R2 values (R2 = 0.120, 0.057, and 0.080, 255 

respectively; p = 0.0059, 0.046, and 0.022, respectively). The stepwise regression analysis on the 256 

untransformed data showed that a model including percentage of GDP for current health 257 

expenditure, life expectancy (years) at birth, mobile cellular subscriptions per 100 people, total 258 

population, GDP per capita, percentage of people using the Internet, total urban population, total 259 

number of mobile cellular subscriptions in a country, average weekly cases over the studied 260 

period, and (notably) volatility score for a country calculated using weekly incidence yielded an 261 

adjusted R2 of 0.40. LASSO regression analysis revealed that a model with life expectancy 262 

(years) at birth showed an adjusted R2 of 0.13.  263 
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When going further with the analysis using the adjusted R2 values collected from the 264 

weighted regression model, the volatility score for a country calculated using weekly incidence 265 

was deemed most useful for both stepwise and LASSO regressions, though the latter method also 266 

returned percentage of the population with access to electricity (R2 = 0.051, and 0.063, 267 

respectively). Conversely, using logarithmically transformed variables, a stepwise regression 268 

model including average weekly cases over the studied period, percentage of GDP for current 269 

health expenditure, life expectancy (years) at birth, yielded an adjusted R2 value of 0.47. Using 270 

the adjusted R2 values collected from the weighted regression analyses, a model including 271 

average weekly cases over the time period studied was selected using the stepwise regression. 272 

LASSO regression analysis of logarithmic transformed variables indicated that a model 273 

including percentage of individuals with access to electricity, life expectancy (years), average 274 

weekly cases over the period studied, cumulative deaths, percentage of GDP for current 275 

healthcare expenditure, and total population gave the highest adjusted R2 of 0.45. Using the 276 

adjusted R2 collected from the weighted regression analyses, volatility score for a country 277 

calculated using weekly incidence and average weekly cases were returned (R2 = 0.13). The 278 

results of these models yielded adjusted R2 values larger than most of the univariate analyses 279 

(Supplementary Table 3); nevertheless, we are cautious in our interpretation of these results [25, 280 

42, 43]. 281 
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 282 

Figure 3: Results of multiple linear regression analysis between COVID-19 283 

incidence and Google Health Trends (GHT) search terms. The adjusted R2 of 284 

the basic (upper panel) and the weighted (bottom panel) regression analysis is 285 

depicted here to visually represent the countries from the highest to lowest 286 

performance. The countries in this figure are designated by their three-letter 287 

Alpha-3 codes as in Figure 1.  288 
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 289 

Figure 4. Best and worst performing countries from the basic regression 290 

analysis of Google Health Trends (GHT) data. When analyzing whether GHT 291 

correlated with case incidence (black line) via a multiple linear regression 292 

analysis (blue line), the three best performing countries were Algeria (DZA), 293 

Ethiopia (ETH), and Kenya (KEN), respectively (upper panels). The three worst 294 

performing countries were Burkina Faso (BFA), Sierra Leone (SLE), and Sudan 295 

(SDN), respectively (bottom panels). 296 

 297 

DISCUSSION 298 

Despite successful demonstrations of the GHT algorithm to aid infectious disease 299 

surveillance for influenza, dengue, and other diseases [26, 43, 44], our study demonstrates that, 300 

in the context of the COVID-19 epidemic, GHT appeared to be difficult to implement as a 301 

predictor of COVID-19 incidence and impact. Average weekly cases over the period studied was 302 

an important predictor when analyzing possible patterns in the adjusted R2 values collected from 303 

both the basic regression and weighted regression analyses. The volatility score for a country 304 

was also an important predictor of the applicability of GHT, as demonstrated in our univariate, 305 

stepwise, and LASSO models (Supplementary Table 3). Finally, indicators related to Internet 306 
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access (mobile cellular subscriptions per 100 people, total number of mobile cellular 307 

subscriptions in a country, percentage of individuals using the Internet, percentage of individuals 308 

with access to electricity), health (life expectancy (years) at birth), demographics (total 309 

population, total urban population), and economics (percentage of GDP for current health 310 

expenditure, GDP, GDP per capita) were selected heterogeneously with different modeling 311 

approaches (Supplementary table 3).  312 

The top three ranking countries based on adjusted R2 values in the basic regression 313 

(Algeria, Ethiopia, and Kenya) all seemed to have similar COVID-19 incidence signal type (Fig. 314 

4, upper panels). Cases begin at zero, spike, and subsequently drop to a lower, but still 315 

significant level of incidence, followed by additional waves, potentially reflecting an exhaustion 316 

of susceptible individuals or dynamics of new variants [45, 46]. Algeria, Ethiopia, and Kenya all 317 

had strong responses to initial outbreaks of COVID-19 and invested significantly in preventative 318 

measures against COVID-19 such as testing, vaccination, and healthcare [47, 48, 49]. These 319 

three countries also ranked within the top 10 when looking at the total number of mobile cellular 320 

subscriptions in a country and GDP (Supplementary table 1). On the other hand, Burkina Faso, 321 

Sierra Leone, and Sudan are lower-income countries, and have struggled to combat COVID-19 322 

[50, 51, 52]; according to World Bank data, they ranked lower than the top-ranking countries in 323 

terms of total number of mobile cellular subscriptions in a country (Supplementary table 1). 324 

Furthermore, four out of these six countries had an extremely low percentage of individuals 325 

using the Internet (< 20% as of 2017), which may indicate that the way Internet access is 326 

currently measured reflects GHT behavior poorly. Interestingly, the three countries with the 327 

worst GHT prediction (Fig. 4, lower panels) showed fewer cases and greater variability in their 328 

incidence signal compared to the best-performing countries. The combination of these results 329 
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may indicate that some consistent level of infection is required for keeping the interest of 330 

communities searching information through Google search engines. This gives GHT a chance to 331 

match cases, and it may perform better when a rapid growth of infection coincides with interest 332 

in the topic and Internet search volume for disease-specific terms is likely to be high, regardless 333 

of the level of penetration of Internet access. Finally, GHT seemed to perform best  in those 334 

countries that have infrastructure to support accurate case counts. 335 

As in the rest of the world, incidence of both COVID-19 cases and COVID-19 related 336 

deaths increased across Africa steadily during the study period. However, in the second and third 337 

periods of our study, Tanzania showed zero COVID-19 cases (Fig. 2). Upon closer examination, 338 

the country stopped reporting coronavirus cases and deaths in April of 2020, so any patterns that 339 

might be observed for Tanzania (0.012) are actually reflecting a lack of data [53]. While 340 

COVID-19 numbers are concerning on the continent, Africa has been observed to have a lower 341 

disease burden in comparison to other regions of the world [54-57, but see 58]. As of August 342 

2020, Africa had reported approximately 69.2 cases and 1.31 deaths per 100,000 people in nearly 343 

seven months since COVID-19 was declared a pandemic; For comparison, the U.S. at that point 344 

in time had seen roughly 1500 cases per 100,000 people, and Brazil confirmed roughly 47.0 345 

deaths per 100,000 people [2, 3]. 346 

Although infodemiology approaches represent the next frontier of infectious disease 347 

surveillance [19, 23], the present modeling effort demonstrates that search queries from GHT are 348 

difficult to correlate with incidence of disease in the context of an emerging epidemic. In contrast 349 

with diseases such as influenza or dengue that are studied consistently in a seasonal pattern or are 350 

endemic to multiple regions [25, 43, 59], COVID-19 represented an unprecedented case study 351 

that might render Google-based information mining ineffective for several reasons: (a) partial or 352 
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incomplete COVID-19 case detection and reporting [8, 60], (b) media-induced search behavior 353 

[61], or even (c) information fatigue [36]. Thus, we encourage caution regarding interpretation of 354 

COVID-19 modeling experiments based on Google search engines. For example, Ahmad et al. 355 

(2020) found a correlation between gastrointestinal search terms obtained through GT and 356 

COVID-19 cases and suggested that Internet searches may be useful in predicting COVID-19 357 

cases using a four-week lag in the U.S. [32]. This correlation, however, might be an artifact since 358 

none of the gastrointestinal terms is specific to COVID-19, and the only COVID-19 specific 359 

term—‘ageusia’—increased during the time that the pandemic was declared (i.e., 11 March) and 360 

decreased while cases started to increase (Figure 1 in [32]). The U.S. showed an increase in case 361 

numbers driven by increasing test capacity, thus, these case numbers were reflecting disease 362 

incidence inaccurately [62]. Thus, although our findings are based on the GHT algorithm, we are 363 

cautious about interpreting our results and those of others in characterizing COVID-19 via 364 

Google search engines. Similar to our findings, Asseo et al. (2020) found correlations between 365 

GT search queries related to smell and taste at the beginning of the pandemic in Italy and the 366 

U.S., which faded in succeeding epidemiological weeks [36]. More importantly, Asseo et al. 367 

(2020) also showed how correlation patterns fall apart when analyzing Google search queries 368 

and COVID-19 incidence in nonconsecutive weeks (e.g. 11-17 March vs. 1-7 April 2020 in 369 

[36]). 370 

Some limitations of the present research are as follows. Because of the timeframe of the 371 

study and the availability of GHT data as weekly counts, we had to convert daily cases to weekly 372 

cases, limiting our analysis to only 86 observations, decreasing the statistical power of our 373 

approach. Moreover, the four terms related with COVID-19 that were selected might not be as 374 

popular in the region as expected. Language might be an important although permeable barrier 375 
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[25, 27]. Still, in the present study the addition of French and Portuguese translations of search 376 

terms did not yield significantly higher adjusted R2 values (Supplementary Table 2). Finally, we 377 

lacked complete data for some of the predictors (e.g., prevalence of severe food insecurity in the 378 

population; Supplementary Table 3) which halts interpretation of several of the indicators used; 379 

however, those that were available for all the countries proved useful here as in other research 380 

studies (e.g., total population, signal volatility, disease incidence, etc) [25, 43].  381 

CONCLUSIONS 382 

Surveillance for an ongoing epidemic via GHT might be useful in specific situations in 383 

which accurate case counts can be retrieved and there is sustained level of disease incidence. 384 

Google instruments to recover population search counts—GT and GHT—are potentially 385 

powerful digital epidemiology tools that can lead to greater insight into disease dynamics, and 386 

should be studied and implemented depending on the particular context of an outbreak [25, 30, 387 

63-66]. Future directions to examine GHT on COVID-19 research include expansion of the 388 

analysis to a larger dataset both in time and space. Other refinements can be implemented, 389 

combining other forms of digital data (e.g., Twitter, Wikipedia) to determine if  addition of more 390 

information improves the predictive power of the model.  391 
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