Predicting the Ophthalmic Surgical Backlog as a Result of the COVID-19 Pandemic: A population-based study and microsimulation model to inform surgical recovery plans

Tina Felfeli, MD, PhD(c)1-4*; Raphael Ximenes, PhD4,5*; David MJ Naimark, MD, MSc, FRCPC3,4,6; Philip L Hooper, MD, FRCS7; Robert J Campbell, MD, MSc, FRCS5,9; Sherif R El-Defrawy, MD, PhD, FRCS1,2,10; Beate Sander RN, MEdDev, MBA, PhD3,4,9,11; and the COVID-19 Mod Collab

*Contributed equally and are joint first authors

Affiliations:
1 Department of Ophthalmology and Vision Sciences, University of Toronto, Ontario, Canada
2 Vision Science Research Program, Krembil Research Institute, Toronto Western Hospital, University Health Network, Ontario, Canada
3 Institute of Health Policy, Management and Evaluation, University of Toronto, Ontario, Canada
4 Toronto Health Economics and Technology Assessment (THETA) Collaborative, University Health Network, Ontario, Canada
5 Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
6 Sunnybrook Health Sciences Centre, Ontario, Canada
7 Ivey Eye Institute, Western University, Ontario, Canada
8 Department of Ophthalmology, Queen's University, Ontario, Canada
9 ICES
10 Kensington Vision and Research Centre, Kensington Eye Institute, University of Toronto, Ontario, Canada
11 Public Health Ontario, Toronto, Canada

Corresponding authors and addresses for reprints:
1. Dr. Tina Felfeli
 Department of Ophthalmology and Vision Sciences, University of Toronto
 340 College Street, Suite 400, Toronto, ON M5T 3A9, Canada
 t: 647 678 1634 f: 416 978 4590 e: tina.felfeli@mail.utoronto.ca

2. Dr. Beate Sander
 THETA, University Health Network, Toronto General Hospital
 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
 t: 416 634 8020 f: 416 340 3459 e: beate.sander@uhnresearch.ca

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Funding/Support:
1. Tina Felfeli has received grants from the Canada Graduate Scholarships, the Vision Science Research Program, and Postgraduate Medical Education Research Awards as part of postsecondary research funding.

2. This research was supported by COVID-19 Rapid Research Funding (C-291-2431272-SANDER) through the Ontario Ministry of Health, Ontario Together grant. This research was also supported, in part, by a Canada Research Chair in Economics of Infectious Diseases held by Beate Sander (CRC-950-232429).

The funding organizations had no role in the design or conduct of this research.

Conflict of Interest: No conflicting relationship exists for any author.

Meeting Presentation: This study was presented at the following virtual meetings:
1. Institute of Health Policy, Management and Evaluation (IHPME) Annual Research Meeting held on November 20, 2020 in Canada

2. Health Technology Research Annual Meeting held on February 5, 2021 in Brazil

Running Head: COVID-19 Pandemic Surgical Backlog

Included with Submission: Tables 1-2, Figures 1-3, Supplemental Tables 1-2, Supplemental Figures 1-2

Keywords: ophthalmology; surgery; infectious disease; modeling; simulation; COVID-19
Abstract

Background: Jurisdictions worldwide ramped down ophthalmic surgeries to mitigate the effects of coronavirus disease 2019 (COVID-19), creating a global surgical backlog. We sought to predict the long-term impact of COVID-19 on ophthalmology surgical care delivery.

Methods: This is a population-based study and a microsimulation model for predicting future outcomes. Provincial administrative data from January 2019 to November 2020 was used to estimate the decline in surgical volumes during the COVID-19 pandemic. For the post-pandemic recovery phase, we estimated the resources required to clear the backlog of patients accumulated on the waitlist since the pandemic.

Results: A total of 56,923 patients were on the waitlist in the province of Ontario awaiting non-emergency ophthalmic surgery as of March 15, 2020. The number of non-emergency surgeries performed in the province decreased by 45-98% between March to May 2020 compared to the same months in 2019. By 2 years and 3 years, the overall estimated number of patients awaiting surgery grew by 129% and 150%, respectively. The mean wait time for patients for all subspecialty surgeries increased to 198.49 days (SD 81.38) in March 2021 compared to 94.41 days (SD 97.42) in 2019. The provincial monthly additional resources required to clear the backlog by March 2023 was estimated to be 26% (3,538 additional surgeries).

Discussion: The magnitude of the ophthalmic surgical backlog from COVID-19 has important implications for the recovery phase. The estimates from the surgical database and microsimulation modelling can be adapted to other jurisdictions to assist with recovery planning.
Introduction

The global spread of coronavirus disease 2019 (COVID-19) has led to major disruption of elective or non-urgent surgical procedures globally. Across 190 countries, it is estimated that more than 28 million surgeries were postponed in the immediate months following the COVID-19 shutdowns. Starting March 15, 2020 in Ontario, Canadian hospitals began ramping down the number of scheduled surgeries and procedures, including ophthalmic surgeries. Large backlogs of patients accrued as a consequence of the lockdown and may lead to deteriorating quality of life as well as development of irreversible vision impairment. Most recently, the increase in turnover times arising from additional donning and doffing of personal protective equipment and cleaning protocols for COVID-19 has also decreased the number of surgeries performed daily. With the recommencement of elective activities, patients are likely to be prioritised by clinical urgency, which may further lengthen delays for patients with non-imminently vision-threatening but progressive eye conditions. For example, delays in care have been shown to have unintended consequences for outcomes of retinal detachments and neovascular age-related macular degeneration.

Predicting the long-term backlog created for ophthalmic surgeries as a result of the COVID-19 pandemic will provide guidance for health care systems to adequately prepare for the ongoing pandemic and post-pandemic recovery phase. Microsimulation modelling offers the ability to track individual patients as they traverse the hospital system and run hypothetical scenarios to assess the impact of the reductions in ophthalmic surgeries on wait times and consequences of delayed surgeries while taking into account the interactions between prioritization of surgeries performed based on urgency, specialty availability of resources and incidence case growth. With the implementation of the provincial Wait Time Strategy database from Ontario Health, all wait times for patients are comprehensively captured for the Ontario population of 14.7 million. The Wait Time Information System database provides a unique opportunity to study the impact of the COVID-19 pandemic on the wait-time information and ophthalmic disease severity for various subspecialty surgeries including vitreoretinal, glaucoma, cornea, cataract, oculoplastics, and strabismus surgery.

Herein, we present the first ophthalmology microsimulation model informed by multiple province-wide databases, which aims to project the long-term impact of COVID-19 on ophthalmology surgical volumes, wait times and post-pandemic recovery phase in Ontario, Canada. A better understanding of the magnitude of the surgical backlog from COVID-19 and time to recovery will serve as a framework for modelling surgical backlog recovery planning for other jurisdictions.

Methods

An individual-level, discrete-time, microsimulation model was developed to simulate adult patients (18 years and older) waiting for ophthalmic surgery at the start of the COVID-19 pandemic. The primary outcomes of the study were the number of patients awaiting ophthalmic surgery per month and the time to surgery (number of days on the wait list) based on the subspecialty surgery type and level of urgency. In addition, the escalation in resources required to clear the backlog during the post-pandemic
recovery phase was estimated. Waiver of ethics review for use of de-identified population-level data for the model was permitted by the University of Toronto Institutional Review Board for Human Subjects Research and the study procedures adhered to the tenets of the Declaration of Helsinki.

Data Sources

Provincial administrative data from January 1, 2019 to November 1, 2020 was used from the Province of Ontario Wait Time Information System database to parameterize the model. Ontario Health (Cancer Care Ontario) is authorized to collect population-level data for the purpose of monitoring allocation of resources and delivery of services. The database captures patients from five health regions (West, Central, Toronto, East and North)\(^\text{14}\) who are on the wait list queue for non-emergency surgical procedures as of the first day of each month as well as the number of new cases added to the wait list and number of completed surgeries performed. Additionally, the database captures the wait time in days (mean and standard deviation) for patients on the wait list. All surgical cases in Ontario are standardized into priority levels 1 to 4 (with 1 being the most urgent) with associated maximum surgical wait time targets. These priority level definitions for wait times reflect the need to accelerate care that minimizes impact of disability on patients and are accepted by the federal, provincial, and territorial ministers of health (Supplemental Table 1).\(^\text{12}\) Given the urgency of Priority 1 cases, they are not added to a waitlist and thus not captured in the Ontario Wait Time Information System database.

Facility-level data from March 1, 2018 to August 1, 2020 for four Toronto Central Local Health Integration Network academic hospitals (Kensington Vision and Research Centre, Mount Sinai Hospital, Sunnybrook Health Sciences Centre and Toronto Western Hospital) was used to capture the details on number of patients and wait times for emergency cases (Priority 1) undergoing surgery. Lastly, guidelines from the quality-based procedures for subspecialty surgery from the Ministry of Health and Long-Term Care\(^\text{15}\) and The Vision Task Force, the literature and expert opinion from ophthalmology specialists were consulted to determine an order of priority based on urgency for vitreoretinal surgery,\(^\text{16}\) glaucoma, cornea,\(^\text{17}\) cataract surgery,\(^\text{15}\) oculoplastics and adult strabismus surgery. For example, urgent vitreoretinal surgical cases were given a higher priority than urgent oculoplastics cases with an acceptable wait time of less than a week prior to deterioration based on the current literature on decline in functional outcomes of macula sparing and involving retinal detachments.\(^\text{18–21}\) A summary of the parameters used in the model for each of the subspecialties and urgency levels is outlined in Supplemental Table 2.

Model Structure and Assumptions

The time-steps of the microsimulation model were each one day long. The subspecialties included in the model were cataract surgery (cataract and combination cataract and other procedures), retina (vitrectomy and other vitreoretinal surgery), glaucoma surgery (glaucoma filter/seton and other glaucoma surgeries), corneal surgery (corneal transplant and other cornea surgery), oculoplastics and adult strabismus surgery. On initiation of simulations, individuals representing the existing waitlist as of March 15, 2020 based on real data entered the model. On each subsequent day, estimates of new
urgent and semi-urgent/non-urgent cases informed by real data from 2019-2020 entered the model and were added to the surgical waitlist (Figure 1).

On each day, a fixed number of procedures were scheduled informed by the number of procedures available per month in the Province based on estimates from real data. The surgeries occurred seven days of the week to account for urgent surgeries on weekends. Patients with the highest urgency (Priority 1) underwent subspecialty surgery, followed by semi-urgent groups (Priority 2 and 3) and then non-urgent (Priority Level 4) if the necessary resources were available. Within each urgency level (the urgent, semi-urgent and non-urgent classifications), the prioritization for allocation of surgery was further broken down to multiple levels (1A, 1B, 2, 3, 4A and 4B) based on length of wait time. Patients remained on the waitlist until the next available resource for surgery became available. Following each surgical intervention, patients were assigned a probability for full recovery with ‘No Further Surgical Management’ required. The remaining patients in the ‘Additional Surgery Required’ category underwent pre-specified 2-step surgery (e.g., silicone oil removal and intraocular lens insertion for patients left aphakic following initial surgery) or repeat surgery for those with a suboptimal surgical outcome following the initial surgery (e.g., intraocular lens repositioning). To limit model complexity, we assumed that each person could have a maximum three surgeries. Patients moved up through the urgency prioritization levels based on time on the wait list to account for deterioration of vision status with long delays in surgical repair.

Backlog Trajectory

Simulations started on March 15, 2020 with an end date on March 1, 2023. Outcomes were accrued over a time horizon of 3 years (35.5 months). For the pandemic phase (base case) representing the backlog created as a result of the COVID-19 pandemic shutdowns in the province, the number of available resources for January 2019 to November 2020 from the Wait Time Information System database was used. In order to reflect hospital resource constraints for ophthalmic surgery, the model was set up with specific constraints that allowed surgeries to only occur if the necessary resources were available. The number of new patients awaiting surgery was calculated based on historical numbers from 2019 in the Wait Time Information System database up to November 1, 2020. Following November 1, 2020, the number of new patients added to the wait list and the surgical resources was based the disease incidence, previous annual growth of waitlist and Government of Ontario population projections (1.3% increase 2021 and 1.4% increase 2022).22

Model Validation and Sensitivity Analysis

The estimates of wait time obtained from the model for March to November 2019 were compared with the historical data from Wait Time Information System database for the same time period. This was done to ensure that the model could adequately predict future wait times for patients awaiting surgery. A comparison of the projected wait times from the model for the months of March to November 2019 demonstrated no significant differences in the findings between the model and historical data from the
Wait Time Information System database (124.40 [SD 70.77] vs. 122.28 [134.61]). These findings support the accuracy of the model in projecting the backlog as a result of the pandemic for 2021-2023.

Additional Scenarios

For the post-pandemic recovery phase, we estimated the resources required to clear the backlog of patients accumulated on the waitlist since the pandemic on March 15, 2020 for different time horizons. The modelling included two time periods of one and two years since the pandemic.

An additional scenario beyond November 1, 2020 was modelled to estimate the backlog size and wait times in the setting of persistent impact of COVID-19 on ophthalmology surgical volumes in 2021. In the COVID second-wave scenario, a 10% decline in the overall available resources was modelled from January to August 2021 with a return to 100% resources in September 2021 to March 2023, while maintaining the same number of new patients added to the waitlist and the surgical resources per month.

Analysis

To account for the variability and uncertainty in the inputs, each scenario model was run 50 times with approximately 240,000 patients over each year. The outcomes for all trials were calculated as a mean and standard deviation (SD). Bayesian analysis was used to analyze all data parameters. All modelling and analyses were conducted using TreeAge Pro 2021 (TreeAge Software, Williamstown, Mass). The mean output from the microsimulation was visualized using the R Statistical Program (version 4.0.4).

Results

Real Data

As of March 15, 2020, there were 56,923 patients on the waitlist in the province of Ontario awaiting non-emergency ophthalmic surgery. On average, the monthly number of semi-urgent and non-urgent cases for January 2019-February 2020 added to the waitlist and undergoing surgery were 14,176 and 13,659, respectively. A summary of the monthly waitlist queue, surgical throughputs, newly added cases, and wait times for ophthalmic surgery in Ontario for January 2019-February 2020 are presented in Table 1. The number of non-emergency surgeries performed in the province decreased by 45%, 98% and 97% in March, April and May 2020, respectively, compared to the same months in 2019. Figure 2 depicts the comparison of the surgical throughput during the pandemic phase compared to historical data from 2019. The decline in surgical throughput was most notable for non-urgent surgeries compared to semi-urgent surgeries (semi-urgent, 76% decline versus non-urgent, 99% decline in May 2020 from May 2019). By the month of June 2020, the wait time for all ophthalmic surgeries increased from June 2019 (86.5 [SD 95.9] vs 129.6 [SD 105]).
Model Estimates and Projections

The total number of patients awaiting surgery at exactly 1 year following the pandemic increased by 112% (62,503 additional cases) in February 2021 compared to February 2020. The number of patients awaiting vitreoretinal, glaucoma, cornea, cataract, oculoplastics and strabismus surgeries grew by 134%, 172%, 143%, 109%, 97% and 252%, respectively at 1 year following the pandemic. By 2 years and 3 years, the overall number of patients awaiting surgery grew by 129% and 150%, respectively from February 2020. Provincial estimates of the backlog size by surgical subspecialty type over 3 years following the pandemic are presented in Figure 3. Overall, the growth in the backlog as a result of the number of patients awaiting surgery was driven by the volume of non-urgent cases (Supplemental Figure 1).

The mean wait time for patients for all subspecialty surgeries increased to 198.49 days (SD 81.38) in March 2021 compared to 94.41 days (SD 97.42) in 2019 (Table 2). The estimated time to surgery for the initial patients on the wait list at the start of the pandemic was 197.28 (SD 95.09) days. Of the 56,047 patients on the waitlist for semi-urgent and non-urgent surgery at the start of the pandemic, the results suggested that 99% had surgery within 12 months (Supplemental Figure 2).

Regarding backlog clearance, the increase in provincial monthly resources required to clear all surgery types by March 2023 was estimated to be 26% (3,538 additional surgeries per month, Recovery Plan A) if starting in March 2021 and 34% (4,626 additional surgeries per month, Recovery Plan B) if starting in September. Comparatively, recovery to the pracademic waitlist over a shorter period of time until March 2022 would require an increase of 44% (5,987 additional surgeries per month, Recovery Plan C) if starting in March and 87% (11,838 additional surgeries per month, Recovery Plan D) if starting in September (Figure 2).

For the COVID-19 second-wave scenario, the mean wait times for the proposed scenario of 10% decline in surgical volumes was 239.46 (SD 123.30) days. The total number of patients on the waitlist awaiting surgery in March 2023 increased by 165% (92,627 additional cases).

Discussion

This study aimed to predict the impact of the COVID-19 pandemic on the backlog for ophthalmic surgeries in Ontario, Canada. Following March 15, 2020, the pandemic shutdowns resulted in 97% reduction of surgical volumes and an associated increase in the number of patients awaiting surgery. Similar drastic reductions by 77-90% of the usual volume of surgeries performed have been noted at other tertiary ophthalmic surgical centres in North America and Europe. Despite the gradual recovery in surgical activity, without any increases in resources to support the backlog of surgical cases, incoming new urgent cases will lead to further delays in surgeries for semi-urgent and non-urgent cases. In addition to modelling the projected backlog as a result of the pandemic, we forecast different pandemic scenarios including a second wave as well as potential recovery planning scenarios for an increase in resources to explicitly quantify these effects. Our model estimates ophthalmology resource use and
availability based on priority level for each subspecialty surgery, while taking into account the increasing urgency over time due to the deterioration expected with delayed access to care. The validity of our study is strengthened by incorporating historical data from the Wait Time Information System database and the local health care resources estimates of potential capacity as well as the use of evidence-based guidelines on established prioritization for subspecialty surgery.

One of the important considerations of delay to surgery is the deterioration in vision outcomes in patients while awaiting surgery. For the patients on the wait list at the time of the pandemic, on average there was a delay of 197 days until surgery. Although with the increase in the number of surgical procedures performed during the post-pandemic recovery phase, there will be a progressive plateau of the number of cases awaiting surgery on the wait list. It is important to note that non-urgent and semi-urgent cases exceeding the acceptable wait times for surgery may progressively deteriorate and become urgent. For example, the cases awaiting sub-specialty surgery for retina had an average of 48 days of wait time immediately following the pandemic, with a substantial increase to 111 and 121 days at 1 year and 2 years, respectively following the pandemic. These progressive increases in wait time for non-urgent and semi-urgent cases such as elective epiretinal membrane peel or macular hole repair may lead to consequent vision loss and/or more challenging surgical repairs. Within the realm of other common procedures, recent studies have also reported an average delay of 5.34 weeks as a result of COVID-19 lockdowns for patients requiring intravitreal injections. The reported implications of this delay were more profound vision loss in patients with diabetic macular edema, proliferative diabetic retinopathy and retinal vein occlusion.

Amongst all subspecialty ophthalmology surgery, the largest growth in backlog was noted in cataract surgery and vitreoretinal surgery, merely due to the high volume of cases added to the wait list each month at 12,697 and 671, respectively. Aside from the effects of the pandemic, there is an increasing need for higher volumes of cataract surgeries performed with the growth and aging of the population. Hatch et al projected a minimum of 128% increase in surgical volumes or approximately a 4.3 million additional cataract surgeries required per year for 2036 in North America. The delay in semi-urgent and non-urgent procedures such as cataract surgery, not only have implications on quality of life, but have also been shown to be associated with increased falls in patients awaiting surgery. The psychological and physical trauma associated with increased wait times have also been noted by studies on other surgical subspecialty care. With the consideration of implications of delay in surgery and economic benefits, several have advocated for bilateral surgeries and combined procedures such as phacovitrectomy.

In addition to the delay to surgery while on the wait list, there is an inherent delay in presentation to specialized surgical care. These delays are shown to be further exacerbated by the COVID-19 pandemic and patient hesitation to seeking care in the ophthalmology setting. In this model, the number of adult patients awaiting surgical intervention for strabismus grew notably by 252% within one year. Adult strabismus surgery is rarely considered to be of urgent priority compared to other ophthalmic subspecialty surgery. Nonetheless, this patient population already experiences delays in presentation with approximately 20 years from time of onset to seeking surgical intervention.
further delays for strabismus surgery as a result of the COVID-19-induced surgical backlog will result in social, psychological, and economic burden for patients.

With the rapidly evolving nature of the pandemic and unpredictable impact on the healthcare system, it is paramount that decision-makers and government representatives continue using models as tools for evidence generation in support of the policy decision-making processes. Previous models by our group, have guided decisions regarding the estimation of COVID-19-induced depletion of hospital resources as well as policies for transmission risk in schools versus community-based settings. Other models on COVID-19 elective vascular surgical delays have estimated an 8 month recovery period to achieve a steady state in the number of patients awaiting surgery. Additionally, we have estimated incremental growth in waitlist for all cardiac procedures during the COVID-19 pandemic and the implications for the provision of cardiovascular care. Wang et al, estimated an additional 719 hours of weekly operating room time to clear the backlog created as a result of the pandemic for surgical specialties such as ophthalmology, gynecology, general surgery, orthopedics and urology. This model, however, did not investigate ophthalmology in detail and underscored the impact of continued delay on vision outcomes of patients and consideration of interfacility transfer of cases to hospitals with available capacity.

The projections of required resources for the future are essential for introducing policies such as implementation of operating room hours on weekends and extended hours on weekdays. Our projected model estimates suggest that a planned increase in provincial monthly resources of at least 44% will be required to return to the pre-pandemic surgical backlog by March 2022, while also caring for the normal flux of surgical patients. To ensure that this ramp-up in resources is achieved, measures will be needed to fully utilize a typical 8-hour day or a 40-hour week with an additional 2 hours added to 2 working weekdays as well as one full weekend workday for surgical cases. Alternatively, the ramp-up may be reduced to a monthly increase of 26% over a longer recovery period until March 2023. This is equivalent to an extra 2 hours of operating time on weekdays. This recovery planning could be dramatically enhanced if hospitals were to share the burden of cases across the province. Other considerations such as the operational directives regarding patient transport, operating room preparation, personnel dressing and environmental sanitation should be established in place to improve efficiency of the surgeries performed.

In addition to analyzing the backlog caused by the first wave, this model can be used for other scenarios, with new interruptions in ophthalmic surgeries. Our findings suggested that there would be a 165% increase in the overall backlog with only a 10% ramp-down in overall surgical volumes in the case of a second-wave of COVID-19 in 2021. With the concerns of additional lockdowns in the future, it is important to note the competing resource allocation for various other procedures and surgical specialties. Several other surgical specialty services have attempted to mitigate the aggregate burden of mortality in patients awaiting life-saving diagnostics and procedures. As such, more long-term approaches such as increased accessibility to anesthesia assistants and operating room nursing staff as well as additional operating room space will ensure ramp-ups in surgical volumes are quickly re-enacted, and that the health care system could rapidly adjust to increasing demands due to the pandemic and beyond.
It is important to note that this model relies on forecasting COVID-19 cases based on historical data, current evidence-based guidelines and assumptions of patterns in surgical practice. Our assumptions regarding provincial-wide prioritization of urgent cases and probabilities for surgical anatomical success based on the current literature, may have led to underestimation of the number of patients remaining on the waitlist each month. We used a conservative probability for deterioration while waiting for surgery, which also did not take into consideration the quality-of-life implications for patients. It was also assumed that there were no constraints on resources for any urgent surgeries. Actual data about the number of patients awaiting surgery beyond March 2020 was not available at the time of modelling due to the reductions in number of patients seeking healthcare during the pandemic. Therefore, historical data was used to forecast the expected number of patients presenting for each subspecialty surgery in April 2020 and onwards. Although we aimed to capture the population growth rates of 1.3-1.4% when estimating the number of patients presenting for each subspecialty surgery based on historical data, we did not take into consideration other factors such as aging population and evolving changes in the healthcare needs over time. It is expected that predictions over longer time horizons will be progressively less robust in their reliability. In addition, we did not explicitly consider the regional differences within the province for the epidemic growth and resources. This model also assumed that all reported historical surgical volumes were appropriately indicated for surgery, which may not always hold true and vary over time depending on variations in practice patterns.45

One of the major strengths of the microsimulation model is the use of comprehensive databases that accurately captured the impact of the pandemic on surgical centres. Furthermore, we had access to detailed information on cases from several facilities. Modeling is a validated and useful tool for providing evidence to support policymakers and decision-making throughout a pandemic.10 Our validation results provided strong support that the current model estimates are comparable to historical data. The complex dynamic navigation of patients and interaction between resource availability and demand from the population for the future is most accurately estimated using microsimulations such as in this model. This is the first ophthalmology surgery microsimulation model to consider the prioritization of patients based on wait time and take into consideration and impact of delayed surgery on surgical priority based on the unique characteristics of each of the surgical subspecialties.

Conclusions

The findings from this microsimulation model informed by historical provincial data of surgical volumes depicts the projected wait time for surgery and growing wait list for ophthalmology subspecialty surgery following the COVID-19 pandemic. The recovery plans proposed here for increasing the resources required for clearing the backlog will aid institutions in optimizing their response to the evolving ophthalmic surgical needs of the population.
18. Greven MA, Leng T, Silva RA, et al. Reductions in final visual acuity occur even within the first 3

All rights reserved. No reuse allowed without permission.

Figure Captions

Figure 1. Model schematic depicting patient flow for cases requiring subspecialty ophthalmic surgery. Two entry streams for patients including urgent cases and surgical wait list (consists of existing waitlist prior to the pandemic and daily referrals following declaration of the pandemic). The stop nodes (=) represent resource constraint for ophthalmic subspecialty surgery. For patients in semi-urgent and non-urgent classifications, there is a deterioration and increase in urgency priority (as indicated by the dashed line) for surgery as the maximum wait time is reached (highest priority given to ‘Level 1’). This was done to account for the risk of vision impairment associated with delays in surgical repair. Patients move to the ‘Outcomes’ health states following surgery only when resources become available. Those requiring additional surgical interventions will re-enter the model (as indicated by the dotted line).

Figure 2. Monthly surgical throughputs based on real data following the pandemic (solid blue line) compared to 2019 (solid grey line). The dashed lines demonstrate the model-estimated monthly increase in surgical resources required to clear the backlog created as a result of COVID-19 over a two-year period starting in March 2021 (Recovery Plan A) and September 2021 (Recovery Plan B). The dotted lines demonstrate the monthly increase in surgical resources required to clear the backlog over a one-year period starting in March 2021 (Recovery Plan C) and September 2021 (Recovery Plan D). These Recovery Plan results demonstrate the degree of escalation in resource availability required to return to the pre-pandemic wait list queue and wait times for ophthalmic surgery. Note that only the first half of the Recovery Plans are depicted in the graph.

Figure 3. Monthly model-estimated accumulation of patients awaiting surgery for all surgeries and subspecialty types including cataract surgery (A, cataract and combination cataract and other procedures), retina surgery (B, vitrectomy and other vitreoretinal surgery), glaucoma surgery (C, glaucoma filter/seton and other glaucoma surgeries), corneal surgery (D, corneal transplant and other cornea surgery), oculoplastics (E) and adult strabismus surgery (F) since March 2020, to March 2023. The simulations were run 50 times (variations in projected estimated represented by grey lines) for a total of 240,000 patients. Note that the y-axis scale for cataract surgery is different than other subspecialty groups. No., number.

Supplemental Figure 1. Total number of patients awaiting surgery based on urgency level (Urgent, Priority 1; Semi-Urgent, Priority 2 and 3; Non-Urgent, Priority Level 4). The simulations were run 50 times (variations in projected estimated represented by grey lines) for a total of 240,000 patients.

Supplemental Figure 2. Number of patients awaiting ophthalmic surgery amongst the cohort of patients on the wait list at the start of the pandemic on March 15, 2020. The simulations were run 50 times (variations in projected estimated represented by grey lines) for a total of 240,000 patients.
Table 1. Monthly real data wait list queue, surgical throughputs, newly added cases, and wait times for ophthalmic surgery in Ontario from January 2019 to February 2020 based on subspecialty and priority level. Data source: Wait Times Information System, Ontario Health (Cancer Care Ontario). P2–P4 indicates priority level 2 to 4.

<table>
<thead>
<tr>
<th>Subspecialty</th>
<th>All Urgencies*</th>
<th>Semi-urgent (P2-3)</th>
<th>Non-urgent (P4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cataract</td>
<td>58,380</td>
<td>4,688</td>
<td>53,692</td>
</tr>
<tr>
<td>Retina</td>
<td>54,030</td>
<td>3,983</td>
<td>50,047</td>
</tr>
<tr>
<td>Glaucoma</td>
<td>1,154</td>
<td>364</td>
<td>789</td>
</tr>
<tr>
<td>Cornea</td>
<td>592</td>
<td>190</td>
<td>402</td>
</tr>
<tr>
<td>Oculoplastics</td>
<td>833</td>
<td>45</td>
<td>788</td>
</tr>
<tr>
<td>Strabismus</td>
<td>1,247</td>
<td>66</td>
<td>1,181</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wait Time, days – mean (SD)</th>
<th>All Urgencies*</th>
<th>Semi-urgent (P2-3)</th>
<th>Non-urgent (P4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Urgencies*</td>
<td>89.58 (95.94)</td>
<td>62.77 (92.81)</td>
<td>92.64 (95.79)</td>
</tr>
<tr>
<td>Semi-urgent (P2-3)</td>
<td>93.07 (97.5)</td>
<td>80.61 (100.20)</td>
<td>94.09 (96.94)</td>
</tr>
<tr>
<td>Non-urgent (P4)</td>
<td>37.79 (58.87)</td>
<td>23.64 (46.04)</td>
<td>51.59 (64.33)</td>
</tr>
<tr>
<td>Cases Added per Month – No.</td>
<td>14,176</td>
<td>1,657</td>
<td>12,520</td>
</tr>
<tr>
<td>All Urgencies*</td>
<td>12,697</td>
<td>1,155</td>
<td>11,542</td>
</tr>
<tr>
<td>Semi-urgent (P2-3)</td>
<td>671</td>
<td>330</td>
<td>341</td>
</tr>
<tr>
<td>Non-urgent (P4)</td>
<td>230</td>
<td>100</td>
<td>130</td>
</tr>
<tr>
<td>Cases Completed per Month – No.</td>
<td>13,661</td>
<td>1,390</td>
<td>12,271</td>
</tr>
<tr>
<td>All Urgencies*</td>
<td>12,271</td>
<td>923</td>
<td>11,348</td>
</tr>
<tr>
<td>Semi-urgent (P2-3)</td>
<td>631</td>
<td>312</td>
<td>319</td>
</tr>
<tr>
<td>Non-urgent (P4)</td>
<td>220</td>
<td>91</td>
<td>129</td>
</tr>
</tbody>
</table>

*All urgencies includes semi-urgent and non-urgent cases. Urgent cases are not included as they are not adequately documented through Cancer Care Ontario.
Table 2. Real data wait times for patients awaiting semi-urgent and non-urgent subspecialty surgery for November 2019 and November 2020. Model-estimated projections for wait times up to 3 years after the pandemic. Scenarios were run 50 times for a total of 240,000 patients.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Cataract</th>
<th>Retina</th>
<th>Glaucoma</th>
<th>Cornea</th>
<th>Oculoplastics</th>
<th>Strabismus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subspecialties</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Data, Wait Time, days – mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 2019</td>
<td>94.41 (97.42)</td>
<td>94.42 (99.07)</td>
<td>37.72 (44.74)</td>
<td>48.59 (49.81)</td>
<td>96.39 (95.89)</td>
<td>77.22 (70.21)</td>
<td>102.13 (94.35)</td>
</tr>
<tr>
<td>November 2020</td>
<td>101.90 (137.23)</td>
<td>126.91 (135.72)</td>
<td>47.86 (80.62)</td>
<td>51.85 (78.68)</td>
<td>109.59 (114.02)</td>
<td>111.34 (125.96)</td>
<td>201.17 (190.71)</td>
</tr>
<tr>
<td>Projected Model Estimates, Wait Time, days – mean (SD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>November 2020 – March 2021</td>
<td>198.49 (81.38)</td>
<td>176.96 (101.48)</td>
<td>110.89 (68.26)</td>
<td>187.85 (67.57)</td>
<td>229.77 (78.33)</td>
<td>196.57 (69.45)</td>
<td>298.93 (64.75)</td>
</tr>
<tr>
<td>April 2021 – March 2022</td>
<td>220.86 (116.08)</td>
<td>225.71 (114.99)</td>
<td>121.13 (69.42)</td>
<td>206.43 (63.77)</td>
<td>278.80 (79.62)</td>
<td>232.52 (114.25)</td>
<td>526.01 (90.79)</td>
</tr>
<tr>
<td>April 2022 – March 2023</td>
<td>282.08 (91.36)</td>
<td>244.75 (121.19)</td>
<td>124.23 (69.29)</td>
<td>211.25 (61.63)</td>
<td>298.85 (81.59)</td>
<td>250.88 (120.11)</td>
<td>562.50 (75.56)</td>
</tr>
</tbody>
</table>
Supplemental Table 1. Provincial definitions of priority levels for subspecialty surgery types.

<table>
<thead>
<tr>
<th>Priority</th>
<th>Description</th>
</tr>
</thead>
</table>
| 1 | * Immediate – emergency surgery required
 Criteria for urgent cataract cases:
 Cataract:
 - Vision impairs activities of daily living and ability to live independently
 - Vision reduction leading to increased risk of accidental harm
 - Unable to continue driving
 - Unable to see faces
 - Unable to read price tags
 Prioritize based on:
 1. Whether the patient is monocular
 2. Extent of impediment to activities of daily living and living independently
 3. Extent of risk of accidents
 Cornea:
 - Painful bullous keratopathy
 - Advanced corneal edema with vision below 20/80
 - Intraocular disease reducing vision and limiting activities of daily living
 - Impending perforation/perforation
 Prioritize based on:
 1. Whether the patient is monocular
 2. Extent of improved outcome doing surgery
 3. Extent of improved outcome doing surgery now
 4. Risk to the eye if surgery not done now
 Glaucoma:
 - 2 of the following 3:
 - Significant risk of disease progression with further postponement of surgery
 - Advanced glaucoma with IOP above target with evidence of progression
 - IOP markedly elevated on MMT (at any stage of glaucoma)
 Prioritize based on:
 1. Whether the patient is monocular
 2. Severity of field loss/progression
 3. Severity of disc changes
 4. Level of IOP elevation over target
 Retina:
 - Surgery now will improve final visual outcome, and/or reduce the risk of endophthalmitis and/or reduce the risk of ocular inflammation
 Prioritize based on:
 1. Whether the patient is monocular
 2. Extent of improved outcome doing surgery now
 3. Risk to the eye if surgery not done now |
| 2 | * Moderate probability of disease progression. Low probability of disease occurrence or progression impacting morbidity or mortality. |
| 3 | * All patients who do not meet the criteria of Priority 2 or Priority 4. |
| 4 | * Minimal risk of disease progression impacting morbidity/mortality. |
Supplemental Table 2. Key model input data parameters. Data sources: Facility Level Data; Wait Times Information System, Ontario Health (Cancer Care Ontario); Expert Opinion; Published Guidelines; Literature

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cataract</th>
<th>Retina</th>
<th>Glaucoma</th>
<th>Cornea</th>
<th>Oculoplastics</th>
<th>Strabismus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob. of Urgency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urgent</td>
<td>0.01</td>
<td>0.15</td>
<td>0.04</td>
<td>0.02</td>
<td>0.01</td>
<td>0</td>
</tr>
<tr>
<td>Semi-urgent</td>
<td>0.24</td>
<td>0.12</td>
<td>0.04</td>
<td>0.05</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>Non-urgent</td>
<td>0.72</td>
<td>0.73</td>
<td>0.95</td>
<td>0.93</td>
<td>0.79</td>
<td>0.99</td>
</tr>
<tr>
<td>Prob. of Anatomical Success</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semi and Non-urgent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary Surgery</td>
<td>0.98</td>
<td>0.85</td>
<td>0.8</td>
<td>0.95</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Second Surgery</td>
<td>0.9</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Third Surgery</td>
<td>0.8</td>
<td>0.6</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Urgent</td>
<td>0.85</td>
<td>0.85</td>
<td>0.8</td>
<td>0.85</td>
<td>0.85</td>
<td>0.85</td>
</tr>
<tr>
<td>Prob. Two-step Surgery</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Target Wait Times</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urgent</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>30</td>
<td>183</td>
</tr>
<tr>
<td>Semi-urgent</td>
<td>84</td>
<td>14</td>
<td>30</td>
<td>84</td>
<td>60</td>
<td>365</td>
</tr>
<tr>
<td>Non-urgent</td>
<td>182</td>
<td>90</td>
<td>120</td>
<td>182</td>
<td>180</td>
<td>370</td>
</tr>
<tr>
<td>Time to Deteriorization *</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urgent</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>60</td>
<td>366</td>
</tr>
<tr>
<td>Semi-urgent</td>
<td>168</td>
<td>28</td>
<td>60</td>
<td>168</td>
<td>120</td>
<td>730</td>
</tr>
<tr>
<td>Non-urgent</td>
<td>364</td>
<td>180</td>
<td>240</td>
<td>364</td>
<td>360</td>
<td>740</td>
</tr>
</tbody>
</table>