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To respond to pandemics such as COVID-19, policy makers have re-
lied on interventions that target specific population groups or activi-
ties. Such targeting is potentially contentious, so rigorously quantify-
ing its benefits and downsides is critical for designing effective and
equitable pandemic control policies. We propose a flexible model-
ing framework and a set of associated algorithms that compute opti-
mally targeted, time-dependent interventions that coordinate across
two dimensions of heterogeneity: population group characteristics
and the specific activities that individuals engage in during the nor-
mal course of a day. We showcase a complete implementation in
a case study focused on the ile-de-France region of France, based
on commonly available hospitalization, community mobility, social
contacts and economic data. We find that optimized dual-targeted
policies have a simple and explainable structure, imposing less con-
finement on group-activity pairs that generate a relatively high eco-
nomic value prorated by activity-specific social contacts. When com-
pared to confinements based on uniform or less granular targeting,
dual-targeted policies generate substantial complementarities that
lead to Pareto improvements, reducing the number of deaths and the
economic losses overall and reducing the time in confinement for
each population group. Since dual-targeted policies could lead to in-
creased discrepancies in the confinements faced by distinct groups,
we also quantify the impact of requirements that explicitly limit such
disparities, and find that satisfactory intermediate trade-offs may be
achievable through limited targeting.

Pandemic management | Confinement | Targeted interventions | Opti-
mization | COVID-19 |

he COVID-19 pandemic has forced policy makers world-

wide to deploy a suite of measures aimed at curtailing
the spread, including testing, mask wearing, vaccination, and
large-scale confinement and social distancing. In determining
such measures, a key recognition has been that individuals
are heterogeneous in several important dimensions, such as
their health outcomes when infected or their daily activities
leading to new infections but also creating economic value.
Targeting interventions to explicitly account for such hetero-
geneity could be an important lever to mitigate a pandemic’s
health and economic impact, but could also lead to potentially
contentious and discriminatory measures. This work is aimed
at developing a rigorous framework to quantify the benefits
and downsides of such targeted interventions, and applying it
to the COVID-19 pandemic as a real-world case study.

One targeting mechanism studied in the literature and also
implemented by policy makers has been to tailor interven-
tions to population groups defined either by age (1-4), age
and economic sector (5), geography (6, 7) or clinical risk (8).
By enforcing stricter confinements for higher risk groups (e.g.,
older populations when considering mortality risk or younger
populations when considering the risk of new infections), such

targeted policies have been shown to generate potentially signif-
icant improvements in health outcomes, and even in economic
value if optimally tailored (1). However, they could also lead
to potentially contentious measures that discriminate based
on age or other protected features, giving rise to important
ethical and even legal challenges. Such targeted interventions
have been implemented during the COVID-19 pandemic in
several settings — e.g., with stricter confinements applied to
older population groups in Finland (9), Ireland (10), Israel
(11) and Moscow (12) or curfews applied to children and youth
in Bosnia and Herzegovina (13) and Turkey (14) — but some
of the measures were deemed ageist and unconstitutional and
were eventually overturned (11, 13).

A different targeting dimension extensively employed in
practice has been to tailor confinements to specific activities
conducted during a typical day. Restrictions of varying degrees
on workplace presence, schools, recreation venues, retail ac-
tivity or outdoor leisure have become commonplace measures
during the COVID-19 pandemic. This has been driven by the
recognition that certain activities may be responsible for a
much larger number of new infections, as social contacts vary
significantly depending on whether individuals are engaged in
work, schooling, leisure, transport, or other activities (15). In
the academic literature, existing studies have only compared
a discrete set of candidate scenarios that confine certain activ-
ities (16, 17), but without any rigorous quantification of the
best activity-targeted policy.
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Explicitly considering this dimension of targeting in ad-
dition to population groups has the potential to generate
significant improvements, both by reducing the economic and
health burden, but also by potentially overturning the pre-
vailing insight that specific age groups should uniformly face
stricter confinements. For instance, high risk groups could
remain unrestricted in certain activities, as long as they are
protected by confining other groups away from these same
activities. Examples of such interventions that target both
age groups and activities have been seen in practice, e.g., by
setting aside dedicated hours when only the senior population
is allowed to shop at supermarkets (18) or by restricting only
higher age groups from in-person work activities (11).

Given the potential but also the contentiousness of targeted
interventions, it seems critical to quantify the relative merits
of a policy that (i) targets both age-based population groups
and activities, and (ii) identifies optimal interventions. Several
natural research questions emerge: How large are the health
and economic benefits of dual targeting? Would dual target-
ing lead to significant synergies, and if so why? Could dual
targeting reduce the time in confinement for every population
group systematically? More broadly, what is the relationship
between the effectiveness and the level of targeting that an
intervention enacts across distinct population groups?

Answers to these questions carry important policy impli-
cations, but to the best of our knowledge no study to date
has provided a rigorous framework that generates quantifiable
answers as important analytical and data-related challenges
stand in the way. First, embedding complex controls into the
highly non-linear and time-dependent dynamics of epidemic
models makes optimization extremely challenging, which is
why existing proposals rely on either simulating a small num-
ber of candidate interventions (16, 17) or picking the best
option from a restricted class of policies for which exhaustive
search is computationally feasible (such as trigger policies
based on hospital admissions, 19). In contrast, we develop a
structured optimization framework for the underlying control
problem, together with a specialized algorithm to efficiently
solve it. Second, calibrating this model requires aligning dis-
parate epidemiological and socio-economic data, at the level
of granularity required by the targeting. We showcase a proof
of concept for our framework through a case study calibrated
on Ile-de-France data — a region of France encompassing Paris
with a population of approximately 12 million. The implemen-
tation is publicly available at http://insead.arnia.ro.

Materials and Methods

Our framework relies on a flexible model that captures several im-
portant real-world considerations. We extend a multi-group SEIR
model to capture controls that target based on (i) age groups, and
(ii) types of activities that individuals engage in. Different policy
interventions can be embedded: we include time-dependent con-
finements as well as testing and quarantining in our study, but
vaccinations can also be easily accommodated. The controls modu-
late the rate of social contacts and the economic value generated,
and the objective of the control problem is to minimize a combi-
nation of emotional and economic losses caused by deaths, illness,
and activity restrictions. The model captures important resource
constraints (such as hospital, ICU, and testing capacities), and
allows explicitly controlling the amount of targeting through “lim-
ited disparity” constraints that limit the difference in the extent of
confinement imposed on distinct population groups.
Epidemiological Model and Controls. We rely on a modified
version of the discretized SEIR (Susceptible-Exposed-Infectious-

Recovered) epidemiological model with multiple population groups
that interact with each other. In our case study we use nine groups
determined by age, with the youngest group capturing individuals
with age 0-9 and the oldest capturing individuals with age 80 or
above. Time is discrete, indexed by t = 0,1,...,T and measured in
days. We assume that no infections are possible beyond time T'.

For a population group g in time period ¢, the compartmental
model includes states Sg(t) (susceptible to be infected), Eg4(t) (ex-
posed but not yet infectious), I4(¢) (infectious but not confirmed
through testing and thus not quarantined), I{(t) (infectious and
confirmed through testing and thus quarantined; this state is further
sub-divided based on the severity of symptoms), Rg(¢) (recovered
but not confirmed as having had the virus), Rg(t) (recovered and
confirmed as having had the virus), and Dy/(t) (deceased). We also
reserve separate states for individuals who are hospitalized due to
being infected in either general hospital wards or in intensive care
units (ICU). We denote the entire vector of states at time 0 <t < T
by X¢. See SI Section 2 for details.

Individuals interact in activities belonging to the set A =
{work, transport, leisure, school, home, other}. These interactions gen-
erate social contacts which drive the rate of new infections.

We control the SEIR dynamics by adjusting the confinement
intensity in each group-activity pair over time: we let £2(t) € [0, 1]
denote the activity level allowed for group g and activity a at time
t, expressed as a fraction of the activity level under a normal course
of life (i.e., no confinement). In our study, we take Egome(t) =1,
meaning that the number of social contacts at home is unchanged
irrespective of the confinement policy followed.* We denote the
vector of all activity levels for group g at t by £4(¢), and we also
refer to £4(t) as confinement decisions when no confusion can arise.

We propose a parametric model to map activity levels to social
contacts. We use cg ,(£g,£y) to denote the mean number of total
daily contacts between an individual in group g and individuals in
group h across all activities when their activity levels are £4, ¢},
respectively. Varying the activity levels changes the social contacts
according to cg,p, (€g,£n) = ZaE.A Cone (€g)>1 - (£5)>2, where e
denote the mean number of daily contacts in activity a under normal
course (i.e., without confinement), and a1, a2 € R are parameters.
We retrieve values for C’; », from the data tool (20), which is based on

the French social contactysurvey data in (15), and we estimate a1, oo
from health outcome data (21) and Google mobility data (22).
Social mixing leads to new infections, proportional to

Ih(t)
oc Sg(t) - ( g Cgﬁ@g@)lh@))m) [1]
heg

where Ng(t) := Sg(t) + E4(t) + I4(t) + Rg(t) captures all living
individuals in group g who are not confirmed to have had the disease.

Besides confinements, we also model targeted viral testing de-
cisions, which capture how much of a finite capacity of tests to
allocate to each age group. We model random mass testing, where
a test detects infectious individuals with probability equal to the
fraction of infectious individuals in the group’s population. Infected
individuals in group g who are detected are placed in the quar-
antined SEIR state Ig (t), where they can no longer infect others.
Testing is discussed in more detail in SI Section 2.

When the total patient inflow into the hospital or ICU exceeds
the remaining available beds, we assume that policy makers turn
away patients from each group g according to a proportional rule,
admitting patients proportionally to the demand from that group
up to available bed capacity, and turning away remaining patients.

In compact notation, we use u; to denote the vector of all

decisions at time ¢ € {0,...,T — 1}, and we use the function
AXy
Fy (X, up) i= 2
(X, ut) AL (2]

to capture the dynamics of the SEIR states.

Objective. Our objective captures losses of both economic and
emotional nature that are directly attributable to the pandemic.
For economic losses, we capture lost value stemming from two

*The number of social contacts at home arguably increases when other activities are restricted, but
these contacts would likely be with the same individuals and would not constitute independent trials
that could result in infections, as in a typical SEIR model. We therefore assume the contacts in the
home activity are unchanged, but our model could easily accommodate other assumptions.

T Our framework allows implementing any turn-away rule or even optimizing over these decisions.
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sources: (a) confinement and quarantine, and (b) deceased individ-
uals who no longer generate economic output. To model (a), we
assign a daily economic value v4(€) to each individual in group g
that depends on the activity levels £ across all groups and activ-
ities. For the working age groups, vy (£) comes from wages from
employment and is a linear function of group ¢’s activity level in
work (Z‘g"rk) and of the average activity levels in leisure, other and
transport for the entire population (equally weighted). This reflects
that the value generated in some industries, like retail, is impacted
by confinements across all these three activities. For the school
age groups, vg(£) captures future wages from employment due to
schooling and depends only on the group’s activity level in school
(Esgcm"'). For (b), we determine the wages that an individual would
have earned based on their current age until retirement age under
the prevailing wage curve, and denote the resulting amount of lost
wages with vgfe. The overall aggregate economic loss, which we

denote by Economic Loss(ug.p_1), is:t

T—1
V=) (v (60 - Ny (0) 4+ 0, (1) REO) + > o)™ Dy (T,

t=0 geg 9geG

where V' captures the economic value that would have been gener-
ated without the pandemic (defined precisely in SI Section 2).

We capture emotional losses by associating a (non-pecuniary)
cost x to each death, which results in an aggregate loss of:

Emotional Loss(uo.7—1) := X - E Dy (T). (3]
g€g

Our framework can capture a multitude of policy preferences by
considering a wide range of x values, from completely prioritizing
economic losses (x = 0) to completely prioritizing deaths (x — 00).
Optimization Problem. The optimization problem we solve is
to find control policies (for confinement and testing) that minimize
the sum of economic and emotional losses. Formally, we solve:

ming,,_, [Economic Loss(ug.r—1) + Emotional Loss(ug.7—1)] [4]

subject to constraints that (i) the state trajectory follows the SEIR
dynamics, and (ii) the controls and states do not exceed the available
capacities of ICU beds, hospital beds, and tests. The model and its
dynamics are presented in detail in SI Section 2.

Re-Optimization with Linearized Dynamics — ROLD. The
problem above is computationally challenging: the term in Eq. (1)
that captures new infections by multiplying Sq(t) and Ip,(t) (as
is typical in all SEIR models) implies that states depend on the
control policy in a highly non-convex fashion, which makes the
problem difficult to solve to optimality even for small time horizons.
To tackle this problem, we rely on ideas from model predictive
control to design an approximate algorithm that remains tractable
for realistic time horizons and problem sizes. The algorithm is based
on linearizing the true SEIR dynamic, solving a tractable convex
optimization problem to determine a control policy, and applying
this policy in the current period. In particular, at each time step k:

1. Given the current state X and a nominal control sequence
Ug.7—1 for all remaining periods, we calculate a nominal system

trajectory Xg.r under the true dynamic in Eq. (2). (The
nominal control is set to a solution obtained by gradient descent
at k = 0, and to the algorithm’s own output for periods k > 0.)

2. We linearize the state dynamics around (X t,Ut) at all future
periods t € {k,...,T — 1}:
Fi (X, ut) ~ Ft(Xmﬁz) + VXFt(Xmﬁt)(Xt - Xt)
+ VuFy (Xt ae) (ue — ae),

where V x Ft and V. F; denote the Jacobians with respect to
Xt and u¢, respectively, and we similarly linearize the objective
in Eq. (4). This leads to a linear optimization problem over
decisions wp,...,up_1.

3. We solve the linear program to obtain uj ,._,.

4. The true states are updated using the decision uj at period k.

*For a time series of vectors VL,
nation of vectors v; through v ;.

, Un, We use v;.; := [v;, ..., v;] to denote the concate-

Resolving at each time k is aimed to prevent the linearization errors
from growing too large. To further ensure this, we also iteratively
update the linearization within each period k: each iteration is only
allowed to take a small step towards the optimum within a trust
region of an e-ball around @x.7_1, and the updated control is used
as a seed for the next iteration. A detailed description of ROLD
can be found in SI Section 3.

Additional modeling features. The framework we described is
very flexible, and allows easily embedding constraints to capture
several considerations, such as ensuring that the policies are only
allowed a specific limited level of targeting in either age-groups
or activities, that they can only be re-evaluated with a certain
frequency (e.g., every two weeks), that confinements in a certain
activity reduce the maximum level possible in another activity (e.g.,
school closures reducing the maximum activity level in work), etc.
We refer to SI Section 2 for details.

Parametrization and Model Calibration. We adopt the con-
fidence regions for SEIR parameters reported in (23) for the Tle-de-
France region, which we complement with Google mobility data to
approximate the mean effective lockdowns for all activities during
the horizon of interest. Based on these, we simulate our SEIR
model to generate several potential sample paths, which we use
in conjunction with real data on hospital and ICU utilization and
deaths to generate a fitting error metric. Lastly, we estimate values
of all parameters of interest by minimizing the sample-average-
approximation of the error metric. We calibrate our economic
model using data from France (and where available Tle-de-France)
on full time equivalent wages and employment rates, and sentiment
surveys on business activity levels during confinement. We provide
all the details for calibration and parameter specification in the
SI, where we also report results from sensitivity and robustness
analyses on the fitted parameters.

Experimental Setup. All results reported in the main paper
are obtained under a testing capacity of zero, so only confinement
decisions are optimized and compared (SI Section 7 discusses the
additional benefits of targeting the viral testing strategy.) We use
a horizon of T' = 90 days, and we allow the confinement decisions
to change every two weeks. We use a capacity of 2900 beds for ICU
in Ile-de-France, and infinite beds for general hospital wards. The
details of the experimental setup are provided in SI Section 6.

To quantify the benefits of targeting, we consider several ROLD
policies that differ in the level of targeting allowed, which we com-
pare over a wide range of values for x, from 0 to 1000x the annual
GDP per capita in FranceS. For each x value, we calculate all the
ROLD policies of interest, and we record separately the economic
losses and the number of deaths generated by each policy.

Results

‘We use this framework to address our main research questions.
How large are the gains from dual targeting? To isolate
the benefits of each type of targeting, we compare four versions
of ROLD that differ in the level of targeting allowed: no
targeting whatsoever (“NO-TARGET”), targeting age groups
only (“AGE”), activities only (“ACT”), or both (“AGE-ACT”,
or simply “ROLD” when no confusion can arise). Figure la
records each policy’s performance in several problem instances
parameterized by the emotional cost of death x. A striking
feature is that each of the targeted policies actually Pareto-
dominates the NO-TARGET policy, and the improvements
are significant: i.e., relative to NO-TARGET and for same
number of deaths, economic losses are reduced by EUR 0-2.9B
(0%-35.9%) in AGE, by EUR 0.4B-2.1B (4.5%-49.8%) in ACT,
and by EUR 3.3B-5.3B (35.7%-80.0%) in AGE-ACT. This
Pareto-dominance is unexpected, since it is not a property
that we explicitly ask for in our optimization procedure, and
it underlines that any form of targeting can lead to significant
improvements in terms of both health and economic outcomes.

Swe quantify the emotional cost of death x as a multiple of the annual GDP per capita in France,
and use the shorthand notation n X to denote a value of n times this annual GDP per capita.
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When comparing the different types of targeting, note that
neither AGE nor ACT Pareto-dominate each other, and in fact
neither policy dominates in terms of the total loss objective
(see SI Figure S3). In contrast and quite crucially, AGE-ACT
Pareto-dominates all other policies, and moreover leads to
super-additive improvements in almost all cases: for the same
number of deaths, AGE-ACT reduces economic losses by more
than AGE and ACT added together (SI Figure S4). This
suggests that substantial complementarities may be unlocked
through the ability to target both age groups and activities,
which may not be available under less granular targeting.

To confirm the significance of these gains, we also compare
ROLD AGE-ACT with various practical benchmark policies in
Figure 1b. Benchmarks ICU-t, Hybrid-t AND, and Hybrid-t
OR mimic implementations in the U.S. Austin area (19) and,
respectively, France (24). These policies switch between a
stricter and a relaxed confinement level based on conditions
related to hospital occupancy and the rate of new infections
(details are provided in SI Section 5). Additionally, we also
consider two extreme benchmarks corresponding to enforcing a
“full confinement” (FC) or remaining “fully open” (FO); these
can be expected to perform well when completely prioritizing
one of the two metrics of interest, with FC minimizing the
number of deaths as FO ensuring low economic losses.

ROLD Pareto-dominates all these benchmarks, decreasing
economic losses by EUR 5.3B-16.9B (71.0%-82.6%) relative to
Hybrid-t AND, by EUR 7.1B-11.6B (62.2%-82.8%) relative to
Hybrid-t OR, and by EUR 5.4B-11.6B (62.2%-78.0%) relative
to ICU-t for the same number of deaths. Additionally, ROLD
meets or exceeds the performance of the two extreme policies:
for a sufficiently large x, ROLD exactly recovers the FC policy,
resulting in 890 deaths and economic losses of EUR 27.6B; for
a sufficiently low x, ROLD actually Pareto-dominates the FO
policy, reducing the number of deaths by 16,688 (76.7%) and
reducing economic losses by EUR 1.6B (65.3%). The latter
result, which may seem surprising, is driven by the natural
premise captured in our model that deaths and illness also
generate economic loss because of lost productivity; thus, a
smart sequence of confinement decisions can actually improve
the economic loss relative to FO. Among all the policies we
tested, ROLD AGE-ACT was the only one capable of Pareto-
dominating the FO benchmark, which confirms that dual
targeting is critical and powerful.

The Pareto-dominance of ROLD AGE-ACT implies its

dominance in terms of the total loss objective, as confirmed in
SI Figure S3. Figure S5 in SI confirms the robustness of these
results under more problem instances.
How do gains arise from dual targeting? To address
this question, we examine the structure of the optimal ROLD
AGE-ACT confinement decisions. We focus our discussion on
the value x = 50x, which is in the mid-range of estimates
used in the economics literature on COVID-19 (25) and is
representative of the overall behavior we observe across all
experiments (SI Section 7 has a more detailed discussion of
how the policies vary with problem parameters). Figure 2a
visualizes the optimized confinement policy.

Generally, the ROLD policy maintains high activity levels
for those groups with a high ratio of marginal economic value

to total social contacts in the activity, i.e., ‘“;9,5&“ / Zheg Chy
g
henceforth referred to as “econ-to-contacts-ratio”. For example,

in work, ROLD completely opens up the 40-69 y.o. groups,

while confining the 20-39 y.o. groups during the first two
weeks and the 10-19 y.o. groups for the first ten weeks. This is
explainable since the 40-69 y.o. age groups produce the highest
econ-to-contacts-ratio in work, while the younger groups have
progressively lower ratios. Similarly, ROLD prioritizes activity
in transport, then other, then leisure, in accordance with the
relative econ-to-contacts-ratio of these activities.

To confirm the robustness of this insight, we also conduct
a more thorough study where we compute optimal ROLD
policies for several problem instances with a horizon of 7" = 90
days, and then train regression decision trees to predict the
optimal ROLD activity levels as a function of several features
(see SI Section 7 for details). The results are captured in
Figure 2b and Figure S10 in the SI. These simple trees can
predict the optimal ROLD activity levels quite well (with root
MSE values in the range 0.10-0.22), and they confirm our core
insight that the econ-to-contacts ratio seems to be the most
salient feature when targeting confinements, with higher ratios
leading to higher activity levels in all activities considered.
The trees also confirm that time and the emotional cost of
death x play an important role: the optimal ROLD policy
tends to enforce stricter confinements in each activity in earlier
periods and subsequently relax these through time, and the
confinements become stricter for higher values of x.

To understand how complementarities arise in this context,
note that the ability to separately target age groups and
activities allows the ROLD policy to fully exploit the fact that
distinct age groups may be responsible for the largest econ-
to-contacts ratio in different activities. As an example, the
20-69 y.o. groups have the highest ratio in work, whereas the
0-19 y.o. and 704 y.o. groups have the highest ratio in leisure.
Accordingly, we see that ROLD coordinates confinements to
account for this: groups 20-69 y.o. remain more open in work
but face confinement in leisure for the first ten weeks, whereas
the 10-19 y.o. group is confined in work for a long period
while remaining open in leisure; and the 70+ y.o. groups are
completely open in leisure. These complementary confinement
schedules allow ROLD to reduce both the number of deaths
and economic losses, with the important added benefit that
they do not require completely confining any age group.

Can dual targeting reduce time in confinement for
each age group? We calculate the fraction of time spent
by each age group in confinement under each ROLD policy,
averaged over the activities relevant to that age-group (see SI
Section 7 for a formal definition). The results are visualized
in Figure 3, which depicts boxplots for the fractions of time in
confinement across all problem instances parameterized by x.

We find that the dual-targeted AGE-ACT policy is able
to reduce the confinement time quite systematically for every
age group, relative to all other policies. Specifically, it results
in the lowest confinement time for every age group in 70%
of all problem instances when compared with NO-TARGET,
in 60% of instances when compared with AGE, in 83% of
instances when compared with ACT, and in 50% of instances
when compared with all other policies. Moreover, the fraction
of confinement time achieved by AGE-ACT is within 5% (in
absolute terms) from the lowest confinement time achieved by
any policy for every age group, in 76% of all instances; within
10% in 80% of the instances; and within 14% in all instances.
Thus, even when the dual-targeted policy confines certain age
groups more, it does not do so by much. These outcomes are
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Fig. 1. The total number of deaths and the economic losses generated by ROLD policies with different levels of targeting and by the benchmark policies. Panel (a) compares
the four versions of ROLD that differ in the level of targeting allowed. Panel (b) compares the ROLD policy that targets age groups and activities with the benchmark policies.
Each marker corresponds to a different problem instance parametrized by the emotional cost of death x. We include 128 distinct values of x from 0 to 990 x, and panel (b) also

includes a very large value (x = 106 x).
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Fig. 2. The optimized ROLD AGE-ACT policies for problem instances with a 90-day optimization horizon starting on October 21, 2020. Figure (a) corresponds to a problem
instance where the emotional cost of death x is 50 x. The seven panels depict the time evolution for the occupation of hospital and ICU beds (top panel), the number of actively
infectious individuals and the cumulative number of deceased individuals in the population (panel 2), and the confinement policy imposed by ROLD in each age group and
activity (panels 3-7). In panels 3-7, the values correspond to the activity levels allowed for the respective age group, and are color-coded so that darker shades capture a stricter
confinement. Figure (b) depicts decision trees approximating the optimized ROLD confinement decisions for work, leisure and other (trained with 27,720 samples). Each node
in the tree records several pieces of information: a logical condition based on which all the training samples in the node are split, with the upper sub-tree corresponding to the
logical condition being true (e.g., “econ-to-contacts-ratio < 176.9” for the root node in the work tree), the number of training samples falling in the node (“samples”), and the
average activity level for all the samples in the node. The nodes are color-coded based on the activity level, with darker colors corresponding to stricter confinement.

quite unexpected as they are not something that the ROLD
framework explicitly optimizes for, but rather a by-product of
a dual-targeted confinement policy that minimizes the total
economic and emotional loss objective in Eq. (4).7

9 That each group should spend less time in confinement can be seen as a reasonable fairness
requirement, e.g., consistent with Rawlsian justice (26). In this sense, allowing ROLD increased

It is worth noting that although ROLD AGE-ACT reduces
confinements for every population group compared to less
targeted policies, it does not do so uniformly, and it can
sometimes lead to a larger discrepancy in the confinements

levels of explicit discrimination has the potential to improve both efficiency and fairness — some-
thing that has been noted before in the algorithmic fairness literature (27).
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faced by different age groups: those aged 10-59 are generally
more confined than those aged 0-9 or 60+.
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Fig. 3. Average time in confinement for the ROLD policies with different targeting
types. Each boxplot depicts the fraction of time the age group spends in confinement
under the respective policy averaged over the activities relevant to that age-group, for
different problem instances parameterized by the emotional cost of death x.

The impact of limited disparity requirements. That
targeted policies confine some age groups more than others
could be perceived as evidence of disparate or unfair treat-
ment, so it is important to quantify how an intervention’s
effectiveness is impacted when requiring less differentiation
across age groups. To examine this, we embed a set of “limited
disparity” constraints in ROLD that allow the activity levels
of distinct age groups to differ by at most A in absolute terms,
in each activity and at any point of time (see definition in
ST Section 7). A value A = 0 thus corresponds to a strictly
non-discriminatory policy, whereas a larger value of A allows
more targeting, with A = 1 corresponding to a fully-targeted
policy. For every value of A, we record the total loss incurred
by a ROLD policy with the limited disparity constraints and
calculate the increase in total loss relative to a fully targeted
ROLD policy. We repeat the experiment for different problem
instances parametrized by x, and Figure 4 depicts boxplots of
all the relative increases in total loss, as a function of A.

The results suggest that limited disparity requirements
may be costly: on average, completely eliminating disparity
in confinements would increase the total losses by EUR 1.2B
(21.6%) and produce an additional 506 deaths (16.6%) and
an extra EUR 0.5B of economic losses (18.9%) compared to
a fully targeted policy. In certain instances, the increase in
total loss could be as high as 63%. The high losses persist
even when some limited discrepancy is allowed, dropping at
an initially slow rate as A increases from 0 and eventually
at a slightly faster rate as it approaches 1. This suggests
that to fully leverage the benefits of targeting, a high level of
disparity must be accepted, but reasonable trade-offs could
also be achieved with some intermediate disparity.

Discussion

Our case study suggests that an optimized intervention that
targets both population groups and activities carries significant
promise for alleviating a pandemic’s health, economic and even
psychological burden, but also points to certain challenges in
designing and implementing such finely targeted interventions
that require care in a real-world setting.

Why consider optimized dual-targeted interventions?
The first reason are the significantly better health and economic
outcomes: for the same or a lower number of deaths, targeted
confinements based on age groups and activities can reduce
economic losses more than any of the simpler interventions that
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Fig. 4. The impact of limited disparity requirements. The plot shows the relative
(%) increase in total loss generated by a ROLD policy, compared to a fully targeted
policy, as a function of the disparity parameter A that measures the maximum allowed
difference in activity levels for distinct age groups. The experiments are run using
several values of x, which are used to generate each of the boxplots. Eleven values
of A are tested, ranging from 0 to 1.

uniformly confine population groups or activities. Furthermore,
the super-additive gains imply that significant synergies can
be generated through finer targeting, with the ability to target
along activities improving the effectiveness of targeting along
age groups, and vice-versa.

The second reason is the intuitive nature of the optimized
targeted confinement policy, which is largely consistent with
a simple “bang-for-the-buck” rule: impose less confinement
on group-activity pairs that generate a relatively high eco-
nomic value prorated by (activity-specific) social contacts.
This simple intuition combined with the reliance on just a
few activity levels are appealing practical features, as they
provide increased transparency into how targeted confinement
decisions could be made. This is valuable in a real-world
implementation even if policy makers do not directly rely on
such metrics to justify their actions.!

The simple “bang-for-the-buck” intuition is also related
to the third benefit of dual targeting: the ability to impose
less restrictive confinements across all population groups. As
different age groups may be responsible for generating a larger
economic value prorated by social contacts in distinct activities,
a dual-targeted confinement policy may enable all age groups
to remain more active and engage in activity levels that more
closely resemble normal life compared to less differentiated
confinements. This could result in more socially acceptable
restrictions, and a more appealing policy intervention overall.

Lastly, we note that although dual targeting allows dis-
criminating based on age and can result in differences in
confinements across population groups, such interventions
are actually not far from many real-world policy implementa-
tions, which have been more or less explicit in their age-based
discrimination. Apart from the examples discussed in the
introduction, such dual-targeting can also arise implicitly in
interventions that only seem to target activities. As an ex-
ample, France is currently implementing a population-wide 6
p.m. to 6 a.m. curfew (28), while maintaining school and work
activities largely de-confined. This is effectively implementing
activity level restrictions similar to ROLD AGE-ACT: since
a typical member of the 20-65 y.o. group is engaged in work

I Policy makers may prefer to tie confinement decisions to certain observed outcomes, such as the
confirmed infections or hospitalizations for specific age group-activity pairs. Provided that social
contacts data are accurate, such observables will be strongly correlated with the raw social contact
data, so our insights regarding the econ-to-contacts ratios would also approximately transfer to,
e.g., ratios of the economic value prorated by the infections in specific age group-activity pairs.
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until the start of the curfew, their leisure and other activities
are implicitly limited; moreover, since most individuals aged
above 65 are not in active employment, they are not that
restricted in these last two activities by the curfew.

These examples show that some amount of targeting of
activities and age groups is already in place and is perhaps
unavoidable for effective pandemic management. Given this
state of affairs, our framework highlights the significant ben-
efits in explicitly and transparently modelling targeting and
identifying the interventions that rigorously optimize overall
societal welfare, given some allowable amount of differentiation
based on population groups.

Challenges and limitations. An immediate practical chal-
lenge is data availability. Estimating our model requires access
to data on (i) hospitalizations and deaths, (ii) community ac-
tivity levels over time, (iii) social contacts between different
population groups in each relevant activity under normal (no
confinement) conditions, and (iv) economic value generated by
each population group in each activity. Social contact matrices
by age group and activity may be available from surveys on
social behavior, which have been conducted in a number of
countries; however, further data collection might be required
to obtain these matrices for more refined population group
or activity definitions. Similarly, economic data is reported
by industry activities, but we are not aware of a dataset that
splits economic value into separate (group, activity) contribu-
tions. Disparate data sources may be difficult to align: for
example, social contact surveys (e.g., 15) and Google mobil-
ity reports use different activity categories. Responding to
these difficulties requires non-trivial fitting, as we explain in SI
Section 4, and highlights the value of collecting epidemiologi-
cal and socio-economic data in a coordinated and structured
fashion that allows minimizing fitting errors.

Availability of data also constrains our model’s structure in
several important ways. The first limitation is that social con-
tacts between age groups only depend on confinements in the
same activity, since the available social contacts dataset (15)
only reports interactions in the same activity. However, con-
tacts occur as individuals from different groups are engaged in
different activities (e.g., a professional in the services industry
interacts during work with individuals who may be engaged in
leisure activities). A more refined contact mixing model that
captures such interactions would be more appropriate for this
study, provided that relevant social contact data are available.

Another limitation is that our current economic model as-
sumes additive value across activities and age groups. This
choice ignores that complementary activities conducted by
different groups may be needed to generate output: for exam-
ple, the young age groups engaged in school produce value in
conjunction with educational staff engaged in work. Relatedly,
the available data is insufficient to precisely estimate the con-
tribution of leisure, transport and other activities in a group’s
economic output, which is why our model assigns additive
and equal economic value to all three. Our framework can be
amended to more accurately model the economic objectives,
should more detailed economic data be available.

Another challenge with targeted interventions is the per-
ception that they may lead to unfair outcomes, as certain
population groups face more confinement than others. Such
discrimination does arise in the optimized dual-targeted poli-
cies, and as discussed, our framework can partially address the

concerns through explicit constraints that limit the disparities
across groups. Our requirement that limited disparity should
hold for every time period and every activity is quite strict,
and a looser requirement based, e.g., on time-average confine-
ments could lead to smaller incremental losses. Alternatively,
it may be more meaningful to impose fairness requirements
based on the intervention’s outcomes, e.g., requiring that the
health or economic losses faced by different population groups
satisfy certain axiomatic fairness properties (26).

Lastly, although we focus on confinement policies, a di-
rection for future research is to investigate how these can be
optimally combined with other types of targeted interventions.
SI Section 7 reports experiments where we optimize a tar-
geted policy based on confinements and randomized testing
and quarantining. The framework is sufficiently flexible to
accommodate interventions such as contact tracing and also
vaccinations, although a careful implementation would require
work beyond the scope of this article.
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