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Abstract 

 

Objective In multiple sclerosis (MS), magnetic resonance imaging (MRI) measures at the 

whole brain or regional level are only modestly associated with disability, while network-based 

measures are emerging as promising prognostic markers. We sought to demonstrate whether 

data-driven network-based measures of regional grey matter (GM) volumes predict future 

disability in secondary progressive MS (SPMS). 

Methods We used cross-sectional structural MRI, and baseline and longitudinal data of 

Expanded Disability Status Scale [EDSS], 9-Hole Peg Test [9HPT], and Symbol Digit 

Modalities Test [SDMT], from a clinical trial in 988 people with progressive MS. We 

processed T1-weighted scans to obtain GM probability maps and applied spatial independent 

component analysis (ICA) to identify co-varying patterns of GM volume change. We used 

survival models to determine whether baseline GM network measures predict cognitive and 

motor worsening.  

Results We identified 15 networks of regionally co-varying GM features. Compared with 

whole brain GM, deep GM, and lesion volumes, ICA-components correlated more closely with 

clinical outcomes. A mainly basal ganglia component had the highest correlations at baseline 

with the SDMT and was associated with cognitive worsening (HR= 1.29, 95% CI [1.09-1.52], 

p< 0.005). Two ICA-components were associated with 9HPT worsening (HR=1.30, 95% CI 

[1.06:1.60], p<0.01; and HR= 1.21, 95%CI [1.01:1.45], p<0.05). Post-hoc analyses revealed 

that for 9HPT and SDMT survival models including network-based measures reported a higher 

discrimination power (respectively, C-index= 0.69, se= 0.03; C-index= 0.71, se= 0.02) 

compared to models including only whole and regional MRI measures (respectively, C-index= 

0.65, se= 0.03; C-index= 0.69, se= 0.02).  

Conclusions The disability progression was better predicted by networks of covarying GM 

regions, rather than by single regional or whole-brain measures. Network analysis can be 

applied in future clinical trials and may play a role in stratifying participants who have the most 

potential to show a treatment effect.  

 

 

Keywords: Independent component analysis, Multiple sclerosis, progressive multiple 

sclerosis, grey matter network, brain networks 
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Abbreviations: 

 

9HPT  9-Hole Peg Test 

C-index Concordance Index 

CDP  Confirmed Disability Progression  

CNS  Central Nervous System  

CSF  Cerebro-Spinal Fluid 

DGM  Deep Grey Matter  

EDSS  Expanded Disability Status Scale  

FWHM Full Width At Half Maximum  

GM  Grey matter 

HR  Hazard Ratio  

ICA  Independent Component Analysis  

MRI  Magnetic Resonance Imaging  

MS  Multiple Sclerosis  

SDMT  Symbol Digit Modalities Test 

SPMS   Secondary Progressive Multiple Sclerosis 

WM  White Matter   
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Introduction 

 

Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease of the central 

nervous system (CNS). The most recognised pathological feature of MS is an inflammatory 

demyelinating white matter (WM) lesion, whose formation is associated with relapses. 

However, the principal driver of irreversible disability, and progressive MS, is thought to be 

neurodegeneration [1,2]. We now have many treatments that reduce the risk of MS relapses, 

but only have two licensed treatments for progressive MS, and their efficacy appears to be 

mainly in people who still show evidence of ongoing inflammatory lesion activity. 

 

Neurodegeneration manifests as brain atrophy and this can be measured with magnetic 

resonance imaging (MRI) [3]. Brain atrophy is mainly due to GM volume loss, GM volume 

loss is faster in deep grey matter (DGM) than the cortex, and within the cortex preferentially 

affects temporal and parietal regions [2,4,5]. In phase 2 progressive MS clinical trials MRI-

based measures of brain atrophy are now the preferred outcome, as they have proven more 

sensitive to treatment effects than clinical measures [6,7]. However, regional and global brain 

atrophy, and other conventional MRI measures, only partly correlate with and predict disability 

progression in people with progressive MS [8]. In part, this is explained by pathology being 

assessed at a whole or regional brain level, while the disability occurs as a result of impaired 

connections between clinically eloquent regions.  

 

Pathology in MS affects some parts of the brain more than others, and ideally, we should seek 

to measure pathology where it is most likely to affect clinical outcomes. With this in mind, 

network-based measures have the potential to add value to conventional MRI measures, and 

have already proven promising in explaining motor disability [9]. Data-driven GM network 

measures are also a good candidate to be used as prognostic markers in clinical trials, and these 

are important as they can potentially substantially enrich clinical trials with patients more likely 

to progress and so demonstrate treatment effects. 

 

Independent component analysis (ICA) is a robust data-driven technique that has been used to 

identify brain networks on structural MRI [10,11]. Spatial ICA can identify separate brain 

regions whose volume covaries, which can be linked by a common biological or pathological 
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property [12,13]. In a mainly relapsing-remitting (RR) MS cohort, in a cross-sectional study 

Steenwijk and colleagues (2016) used the associated technique of canonical correlations to 

identify co-varying patterns in cortical thickness associated with clinical outcomes. A previous 

study in early RRMS showed that co-varying patterns of GM intensities at baseline did not 

predict confirmed disability progression (CDP) within 10 years, or at 10 years differentiate 

between patients with CDP and without CDP [14]. These studies were weighted towards 

RRMS, and while atrophy occurs early in MS, it is more prominent, and thought to be more 

clinically relevant [15,16], during the progressive phase. No study so far has looked at the 

predictive value of baseline network-based measures of the cortex and DGM.  

 

The overarching goal of our study was to apply network-based MRI measures of GM atrophy, 

seeking to better predict disability progression in secondary progressive MS when compared 

to conventional regional or whole brain volumetric measures. We applied spatial ICA to 

identify co-varying patterns of GM from structural MRI in 988 people with SPMS. Our specific 

aims were to (1) identify clinically relevant GM network measures at study entry, and (2) 

identify GM network measures that predict future disability progression. We also aimed to 

assess stability and reliability of these networks.  
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Materials and methods 

Participants 

 

We re-analysed data from the ASCEND trial, an international (163 sites across 17 countries), 

phase 3, randomised, double-blind, placebo-controlled trial. Baseline and longitudinal clinical 

and baseline MRI data from 1003 subjects aged 18 to 58 years old, who had secondary 

progressive multiple sclerosis (SPMS), and baseline EDSS score between 3.0-6.5, were 

acquired [17]. We included visits that acquired the following MRI sequences: (1) T2-FLAIR, 

(2) T2-weighted, and (3) T1-weighted without contrast administration MRI scans. We 

excluded data from (n=15) participants with artefacts on the available scans (e.g. ghosting, 

magnetic susceptibility, and motion artefacts).  

 

MRI acquisition and processing  

Image acquisition 

 

Brain scans were acquired with 2D T1-weighted with voxel size= 0.98×0.98×3mm3; (2) fast 

fluid-attenuated inversion recovery (FLAIR) with voxel size= 0.98×0.98×3mm3, and (3) T2-

weighted sequences with voxel size= 0.98×0.98×3mm3. Details on MRI acquisition from a 

representative centre are provided in the Supplementary Materials. 

 

Image Processing  

  

The aim of image processing was to extract GM probability maps which are the input to ICA 

analysis from T1-weighted MRI. We followed the steps shown in (Figure 1). 

 

We used an established pipeline as described elsewhere [18]. Briefly, this pipeline included N4 

bias field correction [19], lesion filling [20] (to reduce the effects of hypointense lesions in T1 

scans during segmentation), and used the Geodesic Information Flows (GIF) version 3.0 [21] 

to segment the lesion filled T1-weighted images into GM, white matter (WM), and CSF 

probability maps, as well as to parcellate the brain into 120 regions according to the 

Neuromorphometrics atlas [22]. We used GIF because it allows the inclusion of 2D-MRI data 

and does not require additional manual editing, which for a cohort of this size would have been 
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unfeasible. We (EC, AE, DC) visually inspected these outputs to check for erroneous 

segmentation or parcellation outputs.  

 

Voxel based analysis of GM probability maps 

We randomly selected 39 participants to create a study-specific template (as described in 

Supplementary Materials), to improve the accuracy of the registration and minimise bias [23]. 

For each participant, we registered the baseline T1-lesion filled scans to the study-specific 

template using rigid, affine and diffeomorphic non-linear registrations [24]. We calculated the 

cortical and deep GM volumes from GM probability maps in the native space. We transformed 

GM probability maps to the template by applying the warping matrices obtained from the 

previous step. We modulated the GM probabilistic maps by the Jacobian determinants 

estimated in Advanced Normalization tools (ANTs) version 2.3.1 to adjust for deformations 

that occurred to the original volumes after the non-linear registration [14,23,25]. We used an 

8-mm Full Width at Half Maximum (FWHM) smoothing kernel to account for inter-subject 

variability. We created a whole brain parcellation mask (as described in Supplementary 

Materials) to constrain the ICA analysis to the brain, and to identify and label brain regions in 

each ICA-component.  

  

Network analysis with ICA 

  

We used the FastICA algorithm [26] implemented in scikit-learn 0.23.1 to identify the 

independent components representing spatial maps of GM co-variation (GM networks). We 

concatenated the GM probability maps into a 4D volume and fitted the ICA model allowing 

for 20 components to be identified [11,27]. To assess the stability and repeatability of the 

identified components, we randomly divided our cohort into 4 folds (247 subjects each) and 

repeated the analysis for each fold. We generated a 4D image by concatenating the 20 identified 

components and assessed pairwise spatial cross-correlations with “fslcc” in FSL [28] to select 

components that were spatially stable for each fold (see Figure 1). We defined components 

with statistically significant correlations (p<0.05) across sub-folds and entire cohort as stable. 

We overlaid the stable components with our whole-brain mask (obtained as described in 

Supplementary Materials) to label brain areas involved in each network. To identify a 

biological meaning, looking at the involved brain areas we compared the identified GM 

networks with functional networks previously reported in the literature [29,30].  
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We used the loading factors of the stable components for further statistical analysis. Loading 

factors quantify the contribution of a given subject to a particular component.  

  

Statistical analysis 

 

We computed z-scores from the loading factors for each ICA-component, whole brain GM, 

DGM, and other brain regions volumes with RStudio (version 1.2.5001). To identify 

components that represent overall brain preservation and brain atrophy, we correlated the 

loading factors of the ICA-components with baseline whole brain GM volume. We correlated 

ICA factors with whole brain GM volumes, rather than with the volumes of brain regions 

involved in each network, because we aimed to determine the direction of ICA-atrophy 

associations, not their true magnitude (correlations are likely to be smaller than they would 

otherwise have been considering just brain volumes comprised in each network). To further 

identify which brain areas in each ICA-component were atrophic and which preserved, we 

correlated the loading of each network with the baseline volume of the corresponding brain 

areas. We calculated Pearson correlation coefficients between z-scores of ICA-components and 

baseline average (dominant and non-dominant hands) 9HPT and SDMT, and Spearman 

correlations between these z-scores and the baseline EDSS. We calculated correlation 

coefficients for EDSS, 9HPT, and SDMT with the z-scores of lesion load, whole brain GM 

volume, DGM, and other brain region volumes known to be affected in MS and to be associated 

with the investigated clinical tests (i.e., thalamus, precuneus, caudate, putamen, pallidum) 

[31,32]. Correlations were corrected for multiple comparisons using the false discovery rate 

(FDR; = 0.05). We used multivariable stepwise regression models to identify the best 

predictors across 15 networks and whole brain GM volume, deep GM volume, lesion load, age, 

gender and trial arm as variables of interest. To evaluate the predictive ability of the 

independent variables while adjusting for centre effects, we fitted a mixed-effect model using 

the clinical measures (EDSS, 9HPT, and SDMT) as dependent variables, the identified 

predictors as fixed effect and the centre as random effect. 

 

To calculate time to worsening of physical and cognitive disability we estimated the EDSS 

progression as an increase of 1 point from a baseline EDSS score of 5.5 or below, or of 0.5 

points from baseline EDSS score greater than 5.5, and these scores were confirmed at least at 

3 months [7]. We excluded from this estimation all the clinical visits within 30 days of an MS 
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relapse. We also estimated the 9HPT and SDMT worsening as respectively a 20% increase 

[7,33] and 10% decrease [34,35] with respect to the baseline score.  

 

We performed Cox regression analysis to determine whether the standardised loading of GM 

networks at baseline could predict the clinical disability. We built one model for each 

independent variable (i.e., ICA-networks, whole brain atrophy, DGM atrophy, lesion load, and 

atrophy in smaller regions), adjusting for age, gender, trial arm, and centre, and having the 

event and the time-to-event as dependent variables.  

 

To determine whether data-driven networks provide added value above regional MRI volumes 

and lesion loads, we performed post-hoc analysis applying multivariate Cox proportional 

regression analysis. To identify the best predictive model for 9HPT and SDMT progression, 

we compared the performance of the three models with the following independent variables: 

(1) 15 stable ICA-components,  

(2) 15 ICA-components together with conventionally used MRI measures (whole brain GM, 

DGM, and lesion load), 

(3) conventionally used MRI measures 

We estimated the concordance index or C-index, which is a measure of the discrimination 

power of survival models, and represents the proportion of subjects with a progression on the 

clinical test and a worse outcome predicted by the model (concordant pairs) divided by the 

total number of possible evaluation pairs [36]. A C-index of 1 represents a perfect model 

prediction, while a value of 0.5 denotes random prediction. Age, gender, trial arm, and centre 

were used as covariates for each model.  

 

Data availability 

 

Processed data and codes used in this study are available upon request from qualified 

investigators.  
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Results  

 

Participants  

 

For 15 subjects, their scans did not meet our inclusion criteria. Therefore, our final cohort 

comprised of 988 patients with SPMS (366 men and 622 women with mean age of 46.71±7.70). 

Table 1 reports the demographic characteristics of these patients.  

 

Spatial maps of ICA components overlap with previously known networks  

 

While allowing for up to 20 components, spatial cross-correlation showed that 15 (Figure 2) 

were stable (Supplementary materials Table 1).  

 

Most of the identified structural GM networks resembled well known functional systems, 

although the correspondence in the involved regions was never perfect. For example, 

component 5 is a sensorimotor-like network, encompassing the precentral gyrus, postcentral 

gyrus, and supramarginal gyrus (action-execution network). Component 8 is a cortico-basal 

ganglia-like network, spanning the brain stem, pons, thalamus, nucleus accumbens, insula, 

putamen, caudate, pallidum, frontal and temporal lobe. Component 20 resamples a default 

mode-like network (DMN-like), spanning mainly the precuneus, posterior cingulate, and 

middle frontal gyrus. For a detailed description of the remaining networks and of regions 

associated with each component see Figure 2 and Table 2. 

 

Networks represent brain atrophy or preservation 

We identified ICA-components representing a mixture of relative brain preservation and brain 

atrophy. Two representative examples are: 

- Component 20 was positively correlated with whole brain GM volumes (r= 0.28, 

95% CI [0.22:0.33], p<0.001). Higher component loading was associated with 

higher GM volume, therefore this component represents a network of relatively 

greater regional volume at baseline.  

- Component 13, instead, was inversely correlated with whole brain GM (r=  

-0.38, 95% CI [-0.43: -0.33], p<0.001). Higher loading on component 13 was 

associated with lower whole brain GM volumes, thus this network represents brain 
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atrophy. Table 2 (Supplementary Materials) shows correlations between the 

loading of each ICA-component and whole brain GM volumes.   

We identified which brain region in each GM network was atrophic and which preserved (see 

Table 2).  

 

Baseline GM networks correlate with clinical measures 

 

Among all ICA-components, component 8 (in which higher values corresponded to lower basal 

ganglia volumes) was significantly correlated with the SDMT and 9HPT (respectively, r= -

0.44, 95%CI [-0.52: -0.36], p<0.001, and r= 0.18, 95% CI [ 0.11: 0.24] p<0.001). Component 

6 (in which higher values corresponded to higher cerebellar volumes) was correlated with 

EDSS (rho= -0.11, p= 0.001) (Figure 3). Overall, SDMT and 9HPT correlated more strongly 

with the ICA-components than with conventional MRI measures (Table 2 and Table 3 in 

Supplementary Materials).  

 

 

Stepwise regression and mixed-effect models for cross-sectional analysis  

 

EDSS variability was explained by a model comprising 9 ICA-components, together with 

whole brain GM and age (F-statistic (818) = 4.91, p< 0.001, R2 = 0.06, R2 corrected = 0.05). 

The 9 networks encompassed mainly the cerebellum, caudate, putamen, thalamus, precuneus, 

frontal, parietal, temporal and occipital brain regions (ICA-networks 6, 7, 8, 9, 11, 12, 15, 18, 

20, whole brain GM, and age). EDSS was significantly associated with component 6 (= -0.19, 

se= 0.07, t(817.87)= -2.76, p <0.01), component 8 (= 0.17, se= 0.07, t(809.09)= 2.37, p 

<0.05), component 11 (= 0.15, se= 0.07, t(776.81)= 2.10, p <0.05), component 20 (= 0.15, 

se= 0.07, t(815.87)= 2.08, p <0.05), and whole brain GM (= -0.17, se= 0.08, t(817.51)= -2.10, 

p <0.05) (Table 4 in Supplementary materials). 

 

The best explanatory model for 9HPT comprised ICA-networks 1, 6, 8 (mainly in the superior 

and middle frontal, cerebellar, basal ganglia, and middle frontal GM), together with whole 

brain and DGM, age, sex and trial arm (F-statistic(821)= 7.79, p< 0.001, R2 = 0.07, R2 

corrected = 0.06). 9HPT was significantly associated with loading of component 6 (= -2.73, 

se= 0.71, t(795.74)= -3.87, p <0.001), component 8 (= 3.11, se= 0.76, t(815.89)= 4.08, p 
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<0.001), whole brain GM volume (= -2.65, se= 1.32, t(760.01)= -2.00, p <0.05), and age (= 

-0.24, se= 0.09, t(793.06)= --2.56, p <0.01) (Table 5 in Supplementary materials). 

 

SDMT variability was best explained by a model comprising 7 ICA-components, whole brain 

GM, lesion load and sex (F-statistic (378) = 17.09, p< 0.001, R2 = 0.31, R2 corrected = 0.29). 

SDMT was best associated with: component 5 (= 1.50, se= 0.66, t(349.68)= -2.27, p <0.02), 

component 7 (= -1.37, se= 0.60, t(376.56)= -2.29, p <0.02), component 8 (= -3.61, se= 0.86, 

t(373.19)= -4.22, p <0.001), component 15 (=-1.31, se= 0.62, t(374.85)= -2.11, p <0.05), 

whole brain GM volume (= 3.95, se= 0.96, t(377.58)= 4.11, p <0.001), lesion load (= -2.13, 

se= 0.79, t(373.12)= -2.70, p <0.01), and sex (= -5.11, se= 1.62, t(374.21)= --3.16, p <0.005) 

(Table 6 in Supplementary materials). According to a multivariable stepwise regression 

analysis performed on two fitted models (one with the 15 ICA-components and the other with 

GM, DGM volumes, and lesion load), the first one had a lower Akaike’s Information Criteria 

(AIC) and higher adjusted R2 (respectively, R2= 0.27, R2-adjusted = 0.26, AIC= 3064.816, p< 

0.001; R2= 0.23, R2-adjusted = 0.22, AIC= 3075.921, p< 0.001), which means that it was better 

at explaining SDMT variance.   

 

Predicting disability progression with survival modelling 

 

Predicting the risk of 12-week confirmed EDSS progression  

 

Data were available for 840 participants (317 males, 523 females, 419 patients under DMT, 

421 patients in the placebo group). A total of 28.5% of subjects had 12-week confirmed EDSS 

progression (Figure 1 in Supplementary Materials). None of ICA networks predicted EDSS 

progression. Baseline caudate volume was the only measure that predicted the EDSS 

progression (HR= 0.81, 95%CI [0.68: 0.98], p= 0.03) (Table 7 in Supplementary Materials).  

 

GM networks predicted 9HPT worsening  

 

Data for 361 subjects were available (134 males, 227 females, 191 patients under DMT, 170 

patients in the placebo group). By the last available visit, 42% of participants experienced a 

worsening in the 9HPT after a mean-time-to-conversion of 1.76 years (Figure 2 in 

Supplementary materials). Component 2 (HR= 1.30, 95% CI [1.06:1.60], p<0.01), component 
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20 (HR= 1.21, 95% CI [1.01:1.45], p<0.05), and DGM (HR= 0.72, 95% CI [0.52:0.99], p= 

0.05) predicted the worsening of the 9HPT (Figure 4 and Table 7 in Supplementary Materials).  

 

GM networks predicted SDMT worsening  

 

SDMT was available for 360 (140 males, 220 females; 185 under DMT, 175 in the placebo 

group) subjects. By the last available visit  51% of participants had a 10% worsening [35] in 

SDMT score after a mean-time-to-conversion of 1.36 years (Figure 3 Supplementary 

Materials). SDMT worsening could be predicted by six of ICA-components (component 7, 

component 8, component 13, component 15, component 17, component 18), lesion load, and 

thalamus (Figure 5 and Table 7 in Supplementary Materials).  

 

GM networks add value to conventional MRI measures: Cox-proportional regression 

analysis 

 

Models with ICA-components had a higher concordance index (C-index= 0.69, se= 0.025) with 

respect to models including just conventional MRI measures (C-index= 0.65, se= 0.025) (Table 

3).  

 

The highest concordance index belonged to a model with all ICA-components (C-index= 0.72, 

se= 0.021). When compared to models including just conventional MRI measures (C-index= 

0.69, se= 0.022), models that include also ICA-components had higher concordance index (C-

index > 0.71, se= 0.021) (Table 3).  
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Discussion 

 

Our main finding is that data-driven network-based measures of GM atrophy can predict 

physical and cognitive disability in a large cohort of people with SPMS. Further, GM ICA 

measures correlated more closely with concurrent disability than regional or whole brain GM 

atrophy, and network-derived measures better predicted disability progression: two of these 

networks predicted the 9HPT worsening and six networks predicted cognitive disability better 

than any other assessed MRI measures. Post-hoc analysis showed that network-based measures 

added value to conventional MRI measures. Interestingly, the network-derived components 

that correlated with concurrent disability were not necessarily the same as those associated with 

progression.  

 

We found that ICA-components correlated more closely with disability than regional and 

whole brain measures. For each disability measure, different ICA-components dominated, 

encompassing both cortical and subcortical areas. For EDSS it was component 6, which 

included regions in the cerebellum, brainstem, pons, lingual gyrus, fusiform gyrus, temporal 

and parietal lobe. For 9HPT components 6 and 8 (thalamus, brainstem, pons, ventral 

diencephalon, insula, accumbens, caudate, putamen, pallidum, frontal and temporal lobe) were 

significant, and for the cognitive dysfunction (SDMT) components 1 (superior and middle 

frontal gyrus, anterior cingulate gyrus), 8, 11 (cuneus, middle and inferior temporal gyrus, 

occipital pole, calcarine cortex, supramarginal gyrus, superior parietal lobule), 18 (post and 

precentral gyrus, parahippocampal gyrus, frontal, occipital, parietal lobe; inferior, middle and 

superior temporal gyrus, supramarginal and fusiform gyrus), and 20 (precuneus, posterior 

cingulate gyrus, superior and middle frontal gyrus, superior parietal, angular gyrus, superior 

occipital gyrus) dominated. Although EDSS at baseline was more strongly associated with 

component 6 than DGM, whole GM atrophy and lesion load measures, the volume of the 

thalamus in isolation had a higher correlation with EDSS. While whole brain GM and DGM 

measures span the whole brain, considering several regions not associated with the lower limb 

functions, component 6 comprised primarily (but not only) areas related to motor functions. 

Nonetheless, the involvement in this network of brain regions not related to motor functions 

might have decrease the strength of the association (coefficient of correlation) with EDSS score 

when compared to the volume of the thalamus taken in isolation. Thalamus is a neuralgic site 

for motor control, which has already been reported to be associated with EDSS [37].  
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While the ICA components were identified without prior knowledge of functionally relevant 

brain regions, their correlations with disability reinforce their usage in predictive models. These 

components include regions linked with specific neurological and cognitive functions and also 

those that were both functionally and structurally related. Component 8, which was mainly a 

basal ganglia-fronto-temporal network, correlated with 9HPT and SDMT at baseline. It 

includes regions of DGM (thalamus, brainstem, pons, ventral diencephalon, accumbens, 

caudate, putamen, pallidum) and cortical areas (frontal and temporal lobe), that are known to 

be involved in motor control, in memory and learning [38]. These regions are also part of the 

cortico-thalamic, cortico-basal ganglia-thalamo-cortical, and thalamo-cortical pathways that 

control both sensory and motor information coming from and going to the cortex [39]. Basal 

ganglia represent a series of interconnected subcortical nuclei (among which the putamen, 

caudate, accumbens) which are known to be involved in selecting and implementing purposeful 

actions, facilitating voluntary movements and inhibiting the competing or interfering ones, and 

controlling non-motor behaviours (e.g., language, working memory, procedural learning, 

decision making, higher-order process of movement initiation) [39,40]. Moreover, atrophy in 

the cortex, caudate, putamen, globus pallidus, thalamus and nucleus accumbens have been 

reported to be associated with lower performance in the SDMT [41]. Component 6 was mainly 

a cerebellar network. It encompassed brain regions in close proximity and functionally related 

(cerebellum, brainstem, pons, parietal lobe), already known to be involved in motor functions. 

It also encompassed the fascicular gyrus and lingual gyrus, which may be functionally related 

by indirect connections. 

 

Consistent with previous work in predominantly RRMS populations, we found co-varying and 

clinically relevant patterns of GM atrophy. Previous studies using ICA have identified eight 

[14] and ten [5] GM components. In the present study, we looked for 20 components, a practical 

maximum given available computational power, but found 15 could be consistently identified. 

Our ICA-components only partially overlapped with previously reported GM networks. For 

instance, component 5 resembled pattern 2 in Steenwijk et al. (2016) study (they both include 

the middle temporal gyrus, superior temporal gyrus, supramarginal gyrus, postcentral gyrus, 

and parietal lobule). However, in addition our ICA-component includes other brain regions 

(cuneus and frontal gyrus) not reported by the previous study. Pattern 8 reported by Bergsland 

and colleagues (2018) encompasses similar brain areas as in the ICA-component 7 presented 

here (e.g., calcarine cortex, precuneus, occipital and frontal lobe). However, a perfect match is 
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never present and overall GM networks presented in this study encompass a higher number of 

brain regions when compared to the above-mentioned studies. Most patterns identified in other 

studies were not replicated here, nor between studies. There are several potential reasons for 

this. First, cohort difference: when compared to Bergsland and colleagues’ study (2018), 

differences in our results may be related to more severe atrophy in SPMS compared to RRMS. 

Then there are methodological differences, for example, we used GM volumes as input to the 

ICA instead of cortical thickness, and we allowed for more components to be extracted. Further 

work is required to resolve these inconsistencies, but a clear overarching finding is that ICA-

based analyses identify overlapping components which could otherwise be lost in whole brain 

and regional atrophy measures, and that these components are clinically relevant. 

 

Our results reinforce the view that GM atrophy in MS represents an interplay between multiple 

factors, some promoting atrophy and others relatively mitigating it, hence the multiple 

overlapping ICA components. Several mechanisms may underlie neurodegeneration, including 

tract mediated anterograde and retrograde degeneration of highly interconnected regions, 

network-mediated neurodegeneration, meningeal inflammation, mitochondrial failure, 

hypoxia, and iron deposition [12,42], and these may all occur in the same cortical region or 

DGM structure. For instance, DGM (in particular the putamen and caudate), is known to 

present several connections with motor and associative cortices, but appear to be susceptible 

sites for extensive demyelination and iron deposition [43]. Other brain regions involved in 

ICA-components are known to be more susceptible to neurodegeneration due to CSF exposure 

(deep sulci in the temporal pole) and hypoxia (pallidum, precuneus and posterior cingulate). 

For example, the precuneus and posterior cingulate present extensive connections with several 

other brain regions and are part of the default brain functional system, known to present under 

normal condition the highest level of energy consumption [44]. Because neurons require a 

higher amount of energy to adapt to demyelination [45], this could make highly connected 

brain regions more susceptible to neurodegeneration. Therefore, several mechanisms can cause 

the observed patterns of volume changes. Future work with longitudinal ICA studies will 

investigate this further. 

 

We found baseline ICA components correlated with baseline and longitudinal 9HPT and 

SDMT measures, and baseline EDSS, but did not predict EDSS progression. While ICA 

components may have greater relative clinical effects earlier and later in the course of MS, the 

limitations of disability measures, which are well-recognised for EDSS, might play a role. The 
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EDSS was designed as a composite score, but is heavily weighted toward walking impairment, 

particularly affecting mid to higher score ranges [46]. In contrast the 9HPT and SDMT were 

designed as more specific measures and are more likely to reflect the effects of pathology.  

 

Our study has some limitations. In this study we re-analysed data from a large, negative, 

multicentre study, where MRI data were acquired with different scanners. However, to take 

into account the effect of centre had on the association and predictive ability of MRI measures 

on clinical outputs, we used the centre as covariate in our regression models. Non-isotropic 2D 

T1w scans were acquired, and while we were still able to measure cortical volumes, and 

identify multiple ICA-components, isotropic 3D scans may enable future studies to identify 

additional components. We preferred GM volumes over cortical thickness measures as input 

for ICA analysis because we were also interested in changes of sub-cortical brain regions. 

Similar to previous works, we smoothed the probability maps to account for inter-subject 

variability, but this will have reduced sensitivity to small regional effects, albeit offset by the 

large size of the cohort.  

 

This study focused on GM networks, however MS is a generalised disorder, and so while our 

ICA components often complemented whole or regional brain GM measures, future work will 

determine whether white matter regions could increase the predictive accuracy of network-

based measures. Because we used data from a phase 3 clinical trial, no data for healthy controls 

were available thus we cannot exclude whether the same networks would be identified and how 

they would differ among healthy controls. Regardless of this limitation, network measures had 

prognostic utility in our cohort.  

 

In conclusion, we have shown that ICA identifies multiple regional patterns of GM atrophy, 

several of which are relevant to concurrent disability and some predict future progression. 

Importantly, several of the ICA-derived GM networks were more closely linked with disability, 

and better able to predict disability progression, than MRI measures currently used as clinical 

trial outcomes. As the source data for this study was a phase 3 clinical trial, the ICA analysis 

pipeline we have developed can readily be deployed in future clinical studies. Given the ability 

of some components to predict future progression, they could be used to stratify those who are 

more likely to progress. 
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Tables 

 

Table 1. Characteristics of participants 

 N= 988 

Gender (M/F) 366/ 622 

Age (mean±SD) 46.71±7.70 

Trial Arm (DMT/Placebo) 420/422 

EDSS (median, range) 6 (3-7.5) 

SDMT (mean±SD) 39.86±14.20 

9HPT (mean±SD) 35.81±19.62 

EDSS progression confirmed at 3 months 

(No. progressed/not progressed) 

 

197/643 

9HPT worsening 

(No. worsened/not worsened) 

 

177/244 

SDMT worsening 

(No. worsened/not worsened) 

 

173/187 

 

 

Table legend: EDSS progression was defined as 1 point increase from a baseline EDSS score 

equal or below 5.5, or as 0.5 points from a baseline EDSS score above 5.5, excluding all clinical 

visits within 30 days from an attack, and these scores were confirmed at 3 months [7]. We 

estimated the 9HPT worsening as a 20% increase with respect to the baseline score (Lublin et 

al., 2016; Tur et al., 2018). We calculated the SDMT worsening as a 10% decrease with respect 

to the baseline score [34,35].  

 

Acronyms: M= males; F= females; DMT= disease modifying treatment; EDSS= Expanded 

Disability Status Scale; SDMT= Symbol Digit Modalities Test; 9HPT= Nine Hole Peg Test; 

SD= standard deviation;  
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Table 2. List of the 15 stable components with their corresponding involved brain regions 

Networks Regions   

Component 1  ▲Superior frontal gyrus, ▲Middle frontal gyrus, ▲Superior frontal gyrus medial segment, ▲Anterior cingulate gyrus, 

▲Opercular part of the inferior frontal gyrus  

Component 2  ▼Temporal pole, ▼Inferior temporal gyrus, ▼Middle temporal gyrus, ▼Middle cingulate gyrus, ▼Parahippocampal 

gyrus, ▼Precentral gyrus medial segment, ▼Posterior cingulate gyrus, ▼Entorhinal area, ▼Parietal lobule, 

▼Fusiform gyrus   

Component 3  ▲Parietal and ▲Temporal pole, ▲Middle temporal gyrus, ▲Superior temporal gyrus, ▲Planum temporale, 

▲Parietal operculum, ▲Planum polare, ▲Central operculum, ▲Middle cingulate gyrus, ▲Cingulate, ▲Middle 

frontal gyrus, ▲Posterior Insula, ▲Transverse temporal gyrus  

Component 5  ▼Middle temporal gyrus, ▼Parietal lobule, ▼Supramarginal gyrus, ▼Postcentral gyrus, ▼Precentral gyrus, 

▼Triangular part of the inferior frontal gyrus, ▼Middle frontal gyrus, ▲Superior temporal gyrus, ▼Angular gyrus, 

▼Cuneus, ▼Superior frontal gyrus, ▼Precentral gyrus medial segment, ▼Inferior occipital gyrus  

Component 6  ▲Cerebellum, ▲Brain Stem, ▲Pons, ▼Lingual gyrus, ▼Fusiform gyrus, ▼Temporal and ▼Parietal lobe 

Component 7  ▼Superior occipital gyrus, ▼Occipital lobe, ▼Lingual gyrus, ▼Calcalcarine cortex, ▼Precuneus, ▼Parietal lobe, 

▼Temporal lobe, ▲Middle temporal gyrus, ▼Frontal lobe, ▲Precentral gyrus, ▼Supramarginal gyrus  

Component 8  ▼Brain Stem, ▼Pons, ▼Ventral DC, ▼Thalamus, ▼Insula, ▼Accumbens, ▼Caudate, ▼Putamen, ▼Pallidum, 

▼Frontal and ▲Temporal lobe  

Component 9  ▲Angular gyrus, ▲Middle occipital gyrus, ▲Postcentral gyrus, ▲Medial orbital gyrus, ▲Triangular part of the 

inferior frontal gyrus, ▲Middle frontal gyrus, ▲Superior frontal gyrus medial segment, ▲Superior frontal gyrus, 

▲Superior parietal lobule, ▲Claustrum, ▲Occipital, ▲Frontal, and ▲Parietal pole 

Component 11  ▲Occipital pole, ▲Calcarine cortex, ▲Cuneus, ▼Middle temporal gyrus, ▼Inferior temporal gyrus, ▲Inferior 

occipital gyrus, ▼Angular gyrus, ▼Superior parietal lobule, ▼Supramarginal gyrus  

Component 12  ▼Angular gyrus, ▼Inferior temporal gyrus, ▼Middle temporal gyrus, ▼Inferior occipital gyrus, ▼Middle occipital 

gyrus, ▼Superior occipital gyrus, ▼Fusiform gyrus, ▼Occipital fusiform gyrus, ▼Precentral gyrus, ▼Middle frontal 

gyrus, ▼Claustrum, ▼Superior frontal gyrus 

Component 13  ▼Lateral orbital gyrus, ▼Middle frontal gyrus, ▼Superior frontal gyrus, ▼Superior frontal gyrus medial segment, 

▼Anterior orbital gyrus, ▼Medial frontal cortex, ▼Gyrus rectus, ▼Frontal pole, ▼Medial orbital gyrus, ▼Anterior 

cingulate gyrus, ▼Brain Stem, ▼Lingual gyrus, ▼Temporal pole  

Component 15  ▲Thalamus, ▲Caudate, ▼Anterior insula, ▼Posterior insula, ▼Planum polare, ▲Putamen, ▼Frontal operculum, 

▼Planum temporale, ▼Claustrum, ▼Triangular part of the inferior frontal gyrus, ▼Opercular part of the inferior 

frontal gyrus, ▲Precentral gyrus, ▼Central operculum, ▼Parietal operculum, ▼Frontal and ▼Temporal pole 

Component 17  ▲Hippocampus, ▲Pons, ▲Middle temporal gyrus, ▲Superior temporal gyrus, ▲Postcentral gyrus, ▲Triangular part 

of the inferior frontal gyrus, ▲Temporal pole, ▲Posterior orbital gyrus, ▲Medial orbital gyrus, ▲Anterior insula, 

Claustrum, ▲Basal Forebrain, ▲Putamen, ▲Subcallosal area, ▲Medial orbital gyrus, ▲Gyrus rectus, ▲Medial 

frontal cortex, ▲Lateral orbital gyrus, ▲Orbital part of the inferior frontal gyrus, ▲Medial frontal cortex, ▲Anterior 

cingulate gyrus, ▲Anterior orbital gyrus, ▲Posterior cingulate gyrus, ▲Postcentral gyrus, ▲Frontal operculum, 

▲Inferior temporal gyrus  

Component 18  ▼Middle occipital gyrus, ▼Postcentral gyrus, ▼Precentral gyrus, ▼Opercular part of the inferior frontal gyrus, 

▼Fusiform gyrus, ▼Parahippocampal gyrus, ▼Frontal, ▼Occipital and ▼Parietal lobe, ▼Inferior temporal gyrus, 

▼Middle temporal gyrus, ▼Superior temporal gyrus, ▼Supramarginal gyrus, ▼Middle temporal gyrus  

Component 20  ▲Superior occipital gyrus, ▲Superior parietal lobule, ▲Precuneus, ▲Posterior cingulate gyrus, ▲Superior frontal 

gyrus, ▲Middle frontal gyrus, ▲Angular gyrus, ▲Occipital lobule  
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▲ Relative preserved brain region 

▼ Atrophic brain region 

 

Table legend: We overlaid a whole brain parcellation mask with the identified ICA-

components in order to retrieve and label brain regions involved in each network. We correlated 

the loading of ICA-components with the baseline volume of the areas involved in each network 

to identify which brain area in each network was atrophic (negative correlation between 

network loading and baseline volume) and which represented relative brain preservation 

(negative correlation between those volumes and ICA-loadings).  

 

 

Table 3. Comparison between different predictive models for 9HPT and SDMT progression  

  

 20% 9HPT worsening 10% SDMT worsening 

 

Predictors 

Concordance 

index 

(C-index) 

Standard 

error (se) 

Likelihood 

ratio test 

(p-value) 

Concordance 

index 

(C-index) 

Standard 

error (se) 

Likelihood 

ratio test 

(p-value) 

15 ICA-components + 

DGM + whole brain DGM 

+ lesion load 

0.69 0.025 p= 9e-05 0.71 0.021 p= 4e-06 

15 ICA-components  0.68 0.025 p= 2e-04 0.72 0.021 p= 5e-06 

Whole GM + DGM + lesion 

load 

0.65 0.025 p= 8e-05 0.69 0.022 p= 3e-05 

*sex, age, trial arm, and centre were used as covariates in each model 

 

Table legend: Models including ICA-components and conventionally assessed MRI measures, 

or considering both DGM and the predictive ICA-components identified by Cox-models, have 

a stronger predictive value when compared to models including just measures of whole brain 

and deep GM volumes and lesion load. Models including ICA-components and conventionally 

assessed MRI measures have a stronger predictive value when compared to models including 

just measures of whole brain and deep GM volumes and lesion load. Concordance index is 

generally used to validate the predictive ability of survival models. The likelihood ratio test 

represents the predictive statistically significance value of each model. 
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Acronyms: C-index= concordance index; se= standard error, DGM= deep grey matter; GM= 

grey matter; ICA= independent component analysis; 9HPT= 9 hole peg test; SDMT = symbol 

digit modalities test 
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List of figures  

 

Figure 1. Visual representation of our image-analysis pipeline 

 

Figure legend: Aiming to identify data-driven network-based measures of covarying GM 

volumes, we initially pre-processed our data as in Eshaghi et al., 2019 (N4 bias field correction, 

lesion filling, brain segmentation and parcellation). We created a customised template from all 

the available scans from 39 randomly selected subjects. After having resampled those scans to 

an isotropic space, we created 39 single subject templates, and from those an average study-

specific template. We registered the T1 lesion filled scans to the template and 

diffeomorphically transformed the GM segmentation maps to the template using the warping 

matrix generated from the previous step. We modulated the GM segmentation maps by the 

Jacobian determinants in order to account for possible deformations to the original volumes 

occurred after the non-linear transformation. We applied an 8mm smoothing kernel to account 

for inter-subject variability and applied a whole brain mask to constrain the following analysis 

at the level of the brain. Aiming to prove the stability of our results, we randomly divided our 

cohort into 4 sub-folds. For each sub-fold and for the entire cohort, we generated a 4D image 

by concatenating the available GM maps and ran fastICA on each of those inputs allowing for 

20 components to be identified. For each fold and for the entire cohort, we generated a 4D 

image by concatenating the 20 generated ICA-components and ran cross-sectional correlations 

between those inputs to identify which components were stable and could be implemented for 

statistical analysis.  

Acronyms: ANTs= Advanced normalization tools; ICA= independent component analysis;  

 

Figure 2. Stable ICA components.  

 

Figure legend: To determine the stability of the ICA-networks, we randomly split the sample 

into four sub-folds and ran the ICA on each of them, as well as on the entire sample. While 

allowing for 20 components to be identified, cross-sectional correlations proved that only 15 

out of the 20 ICA-components were stable (emerged in all of the 4 sub-folds and from the 

entire sample). The colour bar represents the loading of each component.  
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Most of the identified networks resampled well known functional systems. Component 3 

represents an auditory-like network, spanning mainly the superior temporal gyrus, posterior 

insular and Heschl’s gyrus (cognition-language-speech network).  

Component 5 is a sensorimotor-like network, encompassing the precentral gyrus, postcentral 

gyrus, and supramarginal gyrus (action-execution network). Component 6 resamples a 

cerebellum-like network, involving mainly the cerebellum but also fusiform gyrus, temporal 

and parietal lobe. Component 8 is a cortico-basal ganglia-like network, spanning the brain 

stem, pons, thalamus, nucleus accumbens, insula, putamen, caudate, pallidum, frontal and 

temporal lobe. Component 9 represents an executive control-like network, involving mainly 

medial frontal areas (action planning and inhibition). Component 11 is a visuo-like network, 

encompassing mainly several regions of the occipital pole but also supramarginal, temporal 

and parietal areas. Component 15 resamples a salience-like network, involving the insula, 

thalamus and striatus (autonomic reaction to salient stimuli; goal directed behaviour). 

Component 17 represents an affective and reward network, encompassing mainly the anterior 

cingulate, medial orbitofrontal cortex, and prefrontal cortex. Component 20 resamples a default 

mode-like network (DMN-like), spanning mainly the precuneus, posterior cingulate, and 

middle frontal gyrus. The remaining identified networks did not correspond to any major brain 

functional network, but can be labelled by their predominantly involved brain areas. 

Component 1 is a superior frontal network, encompassing mainly superior and medial frontal 

brain areas. Component 2 is a temporal-like network, involving mainly temporal brain regions. 

Component 7 is a precuneus-like network. Component 12 is an occipito-temporal-like network, 

spanning mainly the temporal and occipital pole. Component 13 represented a prefrontal 

cortex-like network, involving mainly frontal and orbitofrontal brain areas. Component 18 is a 

parieto-temporal-like network, involving mainly temporal and parietal brain areas.  

 

Figure 3. Correlations between baseline ICA-components and baseline EDSS, 9HPT, and 

SDMT 

 

Legend: Among the 15 stable ICA-component, baseline SDMT score was more strongly 

associated with a mainly basal ganglia component (component 8). Among the three clinical 

tests, (a) SDMT had the highest correlations with ICA-networks (mainly with component 8). 

(b) 9HPT was associated to the factor loading of component 8. 9HPT and SDMT correlated 

better with some ICA-networks rather than with any other regional or whole brain MRI 

measure. (c) Among all the 15 networks, component 6 (i.e., cerebellum, brainstem, pons) had 
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the highest correlation with EDSS. We used the false discovery rate (FDR,  = 0.05) to correct 

for multiple comparisons. Confidence interval band is added to the figure.  

Acronyms: SDMT= symbol digit modalities test; 9HPT= 9-hole peg test; EDSS= expanded 

disability status scale  

 

Figure 4. Cox regression models predictive of 9HPT worsening  

 

Figure legend: Hazard ratio (HR) of the statistically significant predictors of 9HPT worsening. 

The figure shows that 2 GM networks and the volume of the DGM can predict the 9HPT 

progression. HR higher than 1 indicates that for each standard deviation increase in the 

corresponding variable there is a higher risk of developing the event. HR values lower than 1 

indicates that for each standard deviation decrease in the corresponding variable, there is a 

higher risk of progressing on 9HPT. Error bars represent the confidence interval. p-values 

lower that 0.05 represent a statistically significant relative risk of developing a 9HPT 

progression comparing subjects for each independent variable shown on the vertical axis.  

Acronyms: DGM= Deep Grey Matter; Component 2 encompasses the temporal lobe, middle 

cingulate gyrus, precentral gyrus medial segment, posterior cingulate gyrus, parietal lobule, 

inferior and middle temporal gyrus, parahippocampal gyrus, fusiform gyrus, and entorhinal 

area. Component 20 consisted of precuneus, posterior cingulate gyrus, middle and superior 

frontal gyrus, angular gyrus, superior occipital and superior parietal lobule.  

 

 

Figure 5. Cox regression models predictive of SDMT worsening  

 

Figure legend. Hazard Ratio (HR) of the statistically significant predictors of SDMT worsening 

in separate Cox regression models. The figure shows that 6 ICA-components, lesion load, and 

the volumes of the thalamus could predict the SDMT progression. HR higher than 1 indicates 

that for each standard deviation increase in the corresponding variable there is a higher risk of 

developing the event. HR values lower than 1 indicates that for each standard deviation 

decrease in the corresponding variable, there is a higher risk of progressing on SDMT. For each 

standard deviation increase in component 8 (encompassing mainly basal ganglia regions), 

which is inversely related to GM volumes, there was a 29% higher risk of developing SDMT 

progression. For each standard deviation decrease in the volume of the thalamus there is a 18% 
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increased risk of worsening in SDMT. Error bars represent the confidence interval of HR. p-

values lower than 0.05 represent a statistically significant relative risk of developing a SDMT 

progression for each independent variable shown on the vertical axis.  

Acronyms: HR= hazard ratio; SDMT= Symbol digit modalities test 
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Figures  

 

Figure 1. Visual representation of our image-analysis pipeline 

 

Figure legend: Aiming to identify data-driven network-based measures of covarying GM 

volumes, we initially pre-processed our data as in Eshaghi et al., 2019 (N4 bias field 
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correction, lesion filling, brain segmentation and parcellation). We created a customised 

template from all the available scans from 39 randomly selected subjects. After having 

resampled those scans to an isotropic space, we created 39 single subject templates, and from 

those an average study-specific template. We registered the T1 lesion filled scans to the 

template and diffeomorphically transformed the GM segmentation maps to the template using 

the warping matrix generated from the previous step. We modulated the GM segmentation 

maps by the Jacobian determinants in order to account for possible deformations to the 

original volumes occurred after the non-linear transformation. We applied an 8mm 

smoothing kernel to account for inter-subject variability and applied a whole brain mask to 

constrain the following analysis at the level of the brain. Aiming to prove the stability of our 

results, we randomly divided our cohort into 4 sub-folds. For each sub-fold and for the entire 

cohort, we generated a 4D image by concatenating the available GM maps and ran fastICA 

on each of those inputs allowing for 20 components to be identified. For each fold and for the 

entire cohort, we generated a 4D image by concatenating the 20 generated ICA-components 

and ran cross-sectional correlations between those inputs to identify which components were 

stable and could be implemented for statistical analysis.  

Acronyms: ANTs= Advanced normalization tools; ICA= independent component analysis 
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Figure 2. Stable ICA components 
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Figure legend: To determine the stability of the ICA-networks, we randomly split the sample 

into four sub-folds and ran the ICA on each of them, as well as on the entire sample. While 

allowing for 20 components to be identified, cross-sectional correlations proved that only 15 

out of the 20 ICA-components were stable (emerged in all of the 4 sub-folds and from the 

entire sample). The colour bar represents the loading of each component.  

Most of the identified networks resampled well known functional systems. Component 3 

represents an auditory-like network, spanning mainly the superior temporal gyrus, posterior 

insular and Heschl’s gyrus (cognition-language-speech network).  

Component 5 is a sensorimotor-like network, encompassing the precentral gyrus, postcentral 

gyrus, and supramarginal gyrus (action-execution network). Component 6 resamples a 

cerebellum-like network, involving mainly the cerebellum but also fusiform gyrus, temporal 

and parietal lobe. Component 8 is a cortico-basal ganglia-like network, spanning the brain 

stem, pons, thalamus, nucleus accumbens, insula, putamen, caudate, pallidum, frontal and 

temporal lobe. Component 9 represents an executive control-like network, involving mainly 

medial frontal areas (action planning and inhibition). Component 11 is a visuo-like network, 

encompassing mainly several regions of the occipital pole but also supramarginal, temporal 

and parietal areas. Component 15 resamples a salience-like network, involving the insula, 

thalamus and striatus (autonomic reaction to salient stimuli; goal directed behaviour). 

Component 17 represents an affective and reward network, encompassing mainly the anterior 

cingulate, medial orbitofrontal cortex, and prefrontal cortex. Component 20 resamples a 

default mode-like network (DMN-like), spanning mainly the precuneus, posterior cingulate, 

and middle frontal gyrus. The remaining identified networks did not correspond to any major 

brain functional network, but can be labelled by their predominantly involved brain areas. 

Component 1 is a superior frontal network, encompassing mainly superior and medial frontal 

brain areas. Component 2 is a temporal-like network, involving mainly temporal brain 

regions. Component 7 is a precuneus-like network. Component 12 is an occipito-temporal-

like network, spanning mainly the temporal and occipital pole. Component 13 represented a 

prefrontal cortex-like network, involving mainly frontal and orbitofrontal brain areas. 

Component 18 is a parieto-temporal-like network, involving mainly temporal and parietal 

brain areas.  
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Figure 3. Correlations between baseline ICA-components and baseline EDSS, 9HPT, and 

SDMT 

 

 

 

Legend: Among the 15 stable ICA-component, baseline SDMT score was more strongly 

associated with a mainly basal ganglia component (component 8). Among the three clinical 

tests, (a) SDMT had the highest correlations with ICA-networks (mainly with component 8). 

(b) 9HPT was associated to the factor loading of component 8. 9HPT and SDMT correlated 

better with some ICA-networks rather than with any other regional or whole brain MRI 

measure. (c) Among all the 15 networks, component 6 (i.e., cerebellum, brainstem, pons) had 

the highest correlation with EDSS. We used the false discovery rate (FDR,  = 0.05) to 

correct for multiple comparisons. Confidence interval band is added to the figure.  

Acronyms: SDMT= symbol digit modalities test; 9HPT= 9-hole peg test; EDSS= expanded 

disability status scale  
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Figure 4. Cox regression models predictive of 9HPT worsening  

 

 

 

Figure legend: Hazard ratio (HR) of the statistically significant predictors of 9HPT 

worsening. The figure shows that 2 GM networks and the volume of the DGM can predict the 

9HPT progression. HR higher than 1 indicates that for each standard deviation increase in the 

corresponding variable there is a higher risk of developing the event. HR values lower than 1 

indicates that for each standard deviation decrease in the corresponding variable, there is a 

higher risk of progressing on 9HPT. Error bars represent the confidence interval. p-values 

lower that 0.05 represent a statistically significant relative risk of developing a 9HPT 

progression comparing subjects for each independent variable shown on the vertical axis.  

Acronyms: DGM= Deep Grey Matter; Component 2 encompasses the temporal lobe, middle 

cingulate gyrus, precentral gyrus medial segment, posterior cingulate gyrus, parietal lobule, 

inferior and middle temporal gyrus, parahippocampal gyrus, fusiform gyrus, and entorhinal 

area. Component 20 consisted of precuneus, posterior cingulate gyrus, middle and superior 

frontal gyrus, angular gyrus, superior occipital and superior parietal lobule.  
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Figure 5. Cox regression models predictive of SDMT worsening  

 

 

Figure 2. Hazard Ratio (HR) of the statistically significant predictors of SDMT worsening in 

separate Cox regression models. The figure shows that 6 ICA-components, lesion load, and 

the volumes of the thalamus could predict the SDMT progression. HR higher than 1 indicates 

that for each standard deviation increase in the corresponding variable there is a higher risk of 

developing the event. HR values lower than 1 indicates that for each standard deviation 

decrease in the corresponding variable, there is a higher risk of progressing on SDMT. For 

each standard deviation increase in component 8 (encompassing mainly basal ganglia 

regions), which is inversely related to GM volumes, there was a 29% higher risk of 

developing SDMT progression. For each standard deviation decrease in the volume of the 

thalamus there is a 18% increased risk of worsening in SDMT. Error bars represent the 

confidence interval of HR. p-values lower than 0.05 represent a statistically significant 

relative risk of developing a SDMT progression for each independent variable shown on the 

vertical axis.  

Acronyms: HR= hazard ratio; SDMT= Symbol digit modalities test 

 

 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 26, 2021. ; https://doi.org/10.1101/2021.03.23.21253388doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.23.21253388

