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Abstract

We propose (a) a method for aggregating and processing age-stratified subregional
time series data for positive tests of infection given partial sampling for variant-of-concern
biomarkers, and (b) a simple model-based theoretical framework for interpreting these pro-
cessed data, to assess whether observed heterogeneity in age-specific relative differences
can be explained by environmental effects alone.

We then apply this strategy to public-domain subregional time series data with S-gene
target failure (SGTF) sampling as a proxy for B.1.1.7 lineage, from weeks 45 to 50 of 2020
from England. For the time period in question, we observe convergence toward a 1.27 (95%
Cl 1.17-1.38) times higher ratio of SGTF to non-SGTF infection for 0-9-year-olds than for
the total population, and a 1.16 (95% CI 1.09-1.23) times higher ratio for 10-19-year-olds.
These are roughly comparable to previous findings, but this time we find high-significance
evidence for adequate compatibility with our proposed modelling framework criteria to
conclude that these relative elevations for 0-19-year-olds are very unlikely to be explained
by environmental effects alone. We also find possible indications that 0-19-year-olds might
experience a higher relative increase in infectiousness than susceptibility for B.1.1.7.

Introduction

The emergence of new variants of concern for SARS-CoV-2 brings the challenge of
rapidly assessing how a new variant effects transmission, susceptibility, and clinical outcome,
relative to the average such effects of previously circulating variants. This includes the more
specific challenge of identifying age-heterogeneous effects, and distinguishing such signals
of heterogeneity from artefacts of environmental effects.

In late December, a preliminary study by a collaboration of Imperial College and Public
Health England researchers' found a statistically significant elevation in relative proportion
of infection among 0-9-year-olds (the largest relative increase) and 10-19-year-olds for
variants of B.1.1.7 lineage, as detected by sampling for S-gene target failure, which was a
strong biomarker for B.1.1.7 lineage in November-Decmber 2020 England.?

At the time, various researchers including the present author publicly raised concerns
that this observed elevation might be an artefact of environmental factors—specifically
increased school transmission during a period of significant restrictions on adult mobility—

and that increased data availability and more elaborate evaluation of such data were needed
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After a winter school-holiday period involving both a spike in adult cases and a sharp
decrease in child and adolescent cases, a Public Health England researcher group performed
a new analysis of positive test data averaging in this additional school holiday period, and
no longer observed increased relative child and adolescent B.1.1.7 infection in this broader
average.> The consensus view then shifted towards regarding prior observations of this
signal as having been due exclusively to environmental factors.

In the author's view, however, neither of these two assessments took adequate account
of time-dependent behaviour of detected relative infection proportions, which in this case
is crucial to detecting potential signals of relative differences in infection unlikely to be
explained by environmental effects alone. Meanwhile, increased observations of B.1.1.7-
related child outbreaks have accumulated from other countries.*™®

Below, we propose a simple method for reprocessing these subregional time series data,
and a primitive theoretical framework for interpreting these processed data, based on a
model of convergence towards dominant eigenvectors of “transmission” matrices.

Methods

Theoretical modelling framework: Background

Since the key strategies of this paper involve convergence towards dominant eigenvectors
of transition matrices, we begin by briefly reviewing the notion of a transmission-matrix
infection model (a type of non-stochastic transition-matrix model) which is best suited
to heterogeneous populations in a relatively constant environment over a time scale with
relatively small changes in proportions of population susceptibility.

Restricting to the example of stratifying by age band, let v(¢) denote our infection
incidence vector, so that the i component v;(t) of v(t) is the number of new infections
in age band ¢, per specified time increment ending at time ¢. The model in question then
predicts that v(t + ) = T'(t)v(t), where v is the generation time of infection and T'(t) is
the transmission matrix at time ¢, i.e. the 4, j entry 7(¢); ; of T'(t) is the expected number
of people of age i that a person of age j will infect. In other words, 7(t); ; = c(t); ;pi ;.
where ¢(t); ;, the i, j entry of a contact matrix C'(t) at time ¢, is the expected number of
susceptible contacts of age ¢ a person of age j will expose, and p; ; is the probability that
an infected person of age j will infect a susceptible person of age i, given exposure.

If changes in environment or susceptibility proportion are large enough that time de-
pendence of T'(t) has substantial impact, often a more stochastic approach such as a
susceptible-infected-recovered model is preferable. When such challenges can be neglected,
we take the contact matrix C—and therefore the transmission matrix 7—to be constant
in time. Since T is ordinarily a positive square matrix, the Perron-Frobenius Theorem then
guarantees a unique dominant eigenvector vy for T with all real positive entries and a real
positive eigenvalue A7 with larger absolute value than that of any other eigenvalues. Then
for any vector v with all positive entries, )\;kav converges to v as k increases.

Modulo distinctions between infectious period and generation time, this dominant eigen-
value Ay approximates the reproduction number R, and this approximation improves as
0(ty + k7) approaches vy. (We use the notation w to denote the L; unit norm vector
w := w/||wl||1, and normalise all eigenvectors to be L; unit norm. Note that if the entries
of w are non-negative, the Ly norm is just ||w||; = >, w;).

The above notions are standard. See, eg, work by Munday and colleagues’ for recent
application of such ideas.
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Key methodological insights

1. Key theoretical point. Suppose a variant of concern (VOC) and non-VOC variants
circulate in the same environment and elicit robust cross-neutralising activity in convalescent
sera (as occurs for variants of B.1.1.7 lineage®), so that they share the same contact matrix
C. Furthermore suppose that changes in environment and susceptibility proportions are
small enough for the given time scale to take C' as approximately constant in time.

Then if the age-stratified infectiousness and susceptibility of the VOC only differ from
those of non-VOC variants by an overall factor, the respective transmission matrices Tyoc
and Thon-voc Will differ only by a scalar factor and therefore will have the same dominant
eigenvector. In particular, if the Li-unit age-stratified infection incidence vectors ©VO¢(t)
and ©""VOC(t) are observed to converge towards significantly different vectors as mea-
sured by the limit of the vector (9y°¢(¢)/67°"VOC(¢)); of their entry-wise ratios, then this
difference is unlikely to be explained by environmental factors alone.

2. Key application point. When aggregating regional time series data for such an analysis,
it is helpful to use VOC proportion of cases as a proxy for time, or more precisely, to replace
time with a synthetic time variable proportional to the logarithm of the ratio of VOC to
non-VOC weekly cases in a given region.

To justify point (2), if one aggregates across literal time instead, one risks mixing to-
gether regions in different states of VOC spread, which could muddy signals of time-
dependent trends including convergence towards dominant eigenvectors. For instance, for
any given week, aggregating over literal time risks making regions with earlier VOC spread
contribute disproportionately to averages of VOC cases, while regions with later VOC
spread contribute disproportionately to averages of non-VOC cases, so that the dominat-
ing VOC and non-VOC contributions for any given week have poor comparability. Another
advantage of (2) is added flexibility to tune the granularity of time.

To implement point 1, we first assess the appropriateness of the above modelling frame-

work to the data in question, by assessing the convergence behaviour of 7VO¢(¢) and

omeVOC(1), in addition to that of the vector of their component-wise ratios v/2t°(¢) =

;
(0YOC(t) /omonVOC(#)). We then estimate the limits to which these vectors converge. The
limits of 6YOC(¢) and 9"°"VOC(¢) then serve as estimates of the respective dominant eigen-

vectors (vySC and v§o7VOC); . Significant discrepancy of the limit of v™%°(t) from the vector
(1,...,1)is then evidence of age-heterogeneity of VOC effects not caused by environmental

factors alone.

However, this v™%° does not provide details about changes in relative infectiousness or
susceptibility for each age group, or on how the effect sizes of relative infection by age
might be impacted by different environments. We therefore construct explicit transmission
matrices in the final part of our Results section to explore some of these questions.
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Changes in susceptibility proportions

We pause here for a brief technical point on decreasing proportions of susceptibility,
to point out that this is less of a concern in the current case of assessing proportions of
infection than it would be for estimating absolute growth. To be more precise, let 3; denote
the proportion of the total population in age band 7, and for initial conditions at time ¢,
suppose a proportion « of the population is infected and a proportion o; of each i age
band is still susceptible (i.e. not yet immune).

Using the dominant eigenvalue Ay of T' as an approximation for R and assuming
early convergence to the dominant eigenvector vy, we estimate that the proportion of
the subpopulation of age 7 still susceptible at time ¢ is roughly (1 _ 2im

0; %

o;, where

a ~ ( ,E(:tzt‘))/m )J})a. (One could alternatively replace the discrete sum with an in-

tegral, if preferred.) For any i, pair, we can then take the cross ratio with the initial
- . . Q VT QU 5
susceptibility ratio 0;/0;, to obtain ( — —ﬂ)/(l — —ﬂ) )
. oi B o i)

If these cross ratios are all 1, then changes in susceptibility proportions only effect C'
up to an overall scalar and therefore do not impact dominant eigenvectors or convergence
towards them. In the case at hand, we had o; = 85% and @ < 10%, so the effect should
be relatively minor. At most, they might lead to a slight observed decrease in 9;(t) near

: o a vpy
the end of the time scale for age bands i with larger — L such as for 10-19-year-olds,
i i
who had the largest such coefficient. Similarly we would expect the opposite effect in the
opposite circumstance. In the actual data, such effects appear to be only slight.

Applied methods

Preparation and aggregation of data.

In January, the Imperial College team that originally found a disproportionate increase
in B.1.1.7 infection in the younger population provided a Github link!'® with weekly time
series data for weeks 43-50 for England, disaggregated into 42 subregions as organised
by local health authorities collecting data. The data repository also included population
data for subregions and age-stratified population data for England. For each subregion this
included a weekly count of positive RT-PCR pillar 2 tests (symptom-targeted community
testing)? for SARS-CoV-2, with very roughly 20-35 % of positive tests coming from a
“TaqPath” Centre that additionally divided positive test data into tests that were positive
or negative for S-gene target failure (SGTF) as a proxy for genomic sampling for B.1.1.7
lineage. During a similar time period in England, Public Health England found that SGTF
had 99.5% sensitivity for the A69-70 mutation associated with B.1.1.7 lineage.’

To maximise continuity of environmental factors, we discarded data from weeks 43 and 44
(schools closed for half-term holidays on week 44). Of the remaining 42 x 6 subregion-week
pairs, we discarded 50 pairs for low TagPath sample size, with most of these excluding all
6 weeks for a given subregion. These 50 excluded pairs accounted for 14% of positive tests
in the data, 6% of which were from the Cumbria subregion. This was a very conservative
pruning of data, only excluding a week-subregion pair if there was an age band for which
< 4 people were tested for SGTF.
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Each remaining subregion-week pair (r,w) had 24 data points, 3 for each of 8 10-year
age bands capped at under 80 years old. For the i age band, these 3 numbers were
(1) N, := SARS-CoV-2 positive tests for age-band i ,
2 n

i
(3) n; := age i positive tests with known SGTF status; were S-gene-target positive-

:= age 1 positive tests with known SGTF status; were S-gene-target negative,

From this, we computed

n; . . . .
(4) v; = | ———— | V; = positive tests estimated to be S-negative, age 1,
n, +n;
ni
(5) v = ————— | N; = positive tests estimated to be S-positive, age 1,
n; +n,
(6) N™ =7 | = Zv; = total positive tests estimated to be S-negative,

)

(7) Nt =T = va = total positive tests estimated to be S-positive,
i
where the — and + labels are respective substitutes for “VOC" and “non-VOC" labels.
For brevity we suppressed (7, w) labels in the above notation, but really we should have
written v(r, w);, etc. We then convert (r,w) to a synthetic time variable, via

(8) (r,w) = t(r,w) :=In(N"(r,w)/N*(r,w))-

Smoothing.

The next step was to smooth 9% (¢) as a function of synthetic time.

For our initial qualitative analysis, we simply grouped synthetic-time-consecutive data
into buckets evenly distributed by sample size, as measured by (N, i) - (Vi er)- Since
6 weeks is 42 days and the generation time is roughly 5 days, we started with an 8-bucket
smoothing, although since these buckets are grouped by sample size, they are not quite
evenly distributed across synthetic time, so not quite spaced at equal generation times
apart. Since the data were originally presented at the granularity of 6 time points, we also
performed a 6-bucket smoothing.

For quantitative assessments of convergence behaviour, we ignored buckets and used a
combination of p-value tests and bootstrap resampling estimates.

Producing an alternate "Rescaled” version from random-sampled prevalence data.

We produced two versions of v (r,w) and v™%(r,w): one from the original, “un-
rescaled” data, and one “rescaled” version meant to approximate age distribution of in-
fections, as opposed to symptom-based positive tests, by appealing to Office for National
Statistics prevalence estimates, which are based on random-sampled RT-PCR nasopharyn-
geal swab testing of participants taken irrespective of symptom presentation.

Let v* := 37, ) v"(r,w) denote the respective totals of v*(r,w) and v~ (r, w) over all
subregions and weeks, and let o denote the vector of average infection-count prevalence per
age band for weeks 45-50. To compute o, we took the ONS non-overlapping age-stratified
weighted fortnightly estimates for infection-percentage prevalence for weeks 45-46, 47-48,
and 49-50,'° averaged these percentages for each ONS age band (which were 2-11.5,
11.5-16.5, 16.5-24, 25-34, 35-49, 50-69, 70+), and then, assuming uniform infection rates
across ONS age bands, used 5-year age band population data for England'* to convert
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these average prevalence percentages to average infection numbers per 10-year age band,
yielding 0. Then, with ~ denoting L;-unit vector, we computed a vector w = (w;) of
rescaling coefficients such that

(9) (v' o) w=|lv" o],
(v + v )wi/|[v" +v7 [l = oif|lo] |1
Then to rescale the actual data, we peformed the maps

(10) v; (r,w) = wo; (rw), o (r,w) = wot(r,w)-

The distinction between symptomatic case count versus infection count is not a pedantic
one, when studying age-stratified data. In particular, symptom-based testing in England
has typically undercounted 0-9-year-olds by a factor of roughly 2.5 more than the total pop-
ulation, compared to random-sampled prevalence data. Our computed rescaling coefficient
for 0-9-year-olds for the relevant time period was 2.42.

On the other hand, it is likely that average infectiousness is lower among the total group
of infected persons than among those discovered from symptom-based testing. As such, it
is worthwhile to study both the unrescaled (symptomatic cases) and rescaled (estimated
infections) data sets in tandem, at least for purposes of studying the vectors v~ and v™.

For the ratio v™ itself, the effect of rescaling mostly cancels out, and any observable
differences are due to small differences in sorting of data by SGTF proportion, mostly caused
by a few small-SGTF-testing-sample-size outliers. Rescaling otherwise only multiplies vt
by an overall scalar very close to 1. That is, after convergence, we have

. ot - w . .
(11) U::sttl:céled = (@ ] w) Ulﬁtrlgscaled =.970 Ulzantrlgscaled'

This .970 figure was computed from the quotient (07 -w) /(0™ -w) using post-convergence
bootstrapped estimates for ¥+ and 0. One can use either both unrescaled or both rescaled
versions of 0 in this computation, as they yield the same answer. For comparison, if one
COMPULES V[ALS oy i/ Voo aieq.; directly from post-convergence bootstrapped estimates, the
answers for different ¢ range from .969 to .971, so within the limits of rounding error.

This .97 factor simply represents the error inherent in the prior of rescaling v~ and v™ the
same. With better priors, we could have replaced the rescaling transformation v + wyvi
with the transformation v;" — cw;v;", v;7 — .97cw;v;, for a scalar ¢ close to 1 determined
by the equation (cv™ + -97cv™) - w = ||[v" + v~ ||;. In particular, since this .97 factor
is merely an artefact of minor rescaling error, it is not an intrinsic aspect of v2t° _ and

rescaled?’
should be cancelled out.

Explicit transmission matrix modelling

For the final part of our Results section, we constructed explicit transmission matrix
models. To do this, we first started with a contact matrix C' based on Comix surveillance
data from England from the time period in question,” and then constructed an infection
probability matrix P based on estimates of infectiousness and susceptibilty from data in
metastudies, with additional corrections to susceptibility and infectiousness coming from
rescaling coefficients, including in the unrescaled case, where, e.g., 0-9-year-old suscepti-
bility must be artificially suppressed to create data consistent with symptomatic testing
missing the majority of 0-9-year-old infections. We next adjusted C' to a matrix C’ so that
T = (c;pij) fit the dominant eigenvectors observed. Such C" is not uniquely determined,
so we examined a range of possibilities.
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Results

(a) Assessment of appropriateness of class of model (assessing convergence)

Qualitative assessment of convergence behaviour.

We begin by studying graphs of 6-bucket and 8-bucket smoothings of (i) the unit vectors
0~ (t) and 07 (t) of proportions by age of SGTF (B.1.1.7 proxy) and non-SGTF cases, re-
spectively, as smoothed functions of the synthetic time variable ¢ = In(SGTF /non-SGTF);
and (i) the vector v™%°(¢) of ratios, v?"° = o, /0;". We also examine the versions of these
vectors based on non-symptom-based-testing-Rescaled versions of our data. We look for
a trend of curves first approaching new values, then approximating horizontal lines.

Age distribution of SGTF cases Age distribution of non-SGTF cases
vs synthetic time, 6 bucket smoothing vs synthetic time, 6 bucket smoothing
25%
20%
— o—7 -8 & = * 09 .—__./v— — °
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Figure 1. 6-bucket smoothings for 0~ (t)—proportion of SGTF (B.1.1.7-proxy) confirmed cases
by age-band out of total SGTF confirmed cases—on the left, and for ¢ (t)—proportion of
non SGTF confirmed cases by age-band out of total confirmed cases—on the right.

Age distribution of SGTF infection Age distribution of non-SGTF infection
vs synthetic time, 6 bucket smoothing, vs synthetic time, 6 bucket smoothing,
Rescaled data Rescaled data
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20%

10-19
20-29
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Figure 2. Same as Figure 1, but based on Rescaled data, where positive test data were
subjected to a constant overall rescaling by age to match overall age distributions from non-
symptom-based testing, to simulate time series data for total infections.

The graphs of age distribution of SGTF infection (left) and non-SGTF infection (right)
in Figure 2 are very nearly a linear transform of the analogous graphs in Figure 1, except
that these rescalings cause occasional minor changes in ordering of subregion-week pairs
by In(SGTF/non-SGTF), accounting for minor difference in assignments to buckets. The
larger separation in curves tends to make the Rescaled data easier to visualise.
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Age distribution of SGTF infection Age distribution of non-SGTF infection
vs synthetic time, 8 bucket smoothing, vs synthetic time, 8 bucket smoothing,
Rescaled data Rescaled data
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Figure 3. Rescaled version of 8-bucket smoothings for o~ (¢) (left) and o7 (¢) (right).

The approach to horizontal lines in graphs of ©; and 9" is perhaps easier to see in the
8-bucket smoothings (shown with Rescaled data in Figure 3), due to the greater spread
in time. Note how the first 4 synthetic-time buckets of data trend toward a new value,
whereas the final 4 buckets tend to hover about a fixed value for each age band.

In Figures 1-3, we see that initial conditions for the B.1.1.7-proxy SGTF graphs (left-
hand graphs) are similar to initial conditions for the non-SGTF graphs (right-hand), except
with a slight bias towards B.1.1.7 being introduced more by adults. All 6 graphs show
an initial relative increase in 0-9-year-old and 10-19-year-old infection. If this seems a
surprising trend for the non-SGTF graphs, the reader should keep in mind that the data
collection in question started the week immediately following a week-long fall-term school
holiday, which coincided with a significant lowering of either infection prevalence or its
rate of increase for 0-19-year-olds according to ONS prevalence data, REACT-1 prevalence

data, and school absence data.!01213
(SGTF proportion by age)/(non-SGTF proportion by age) (SGTF proportion by age)/(non-SGTF proportion by age)
vs synthetic time, 8 bucket smoothing vs synthetic time, 8 bucket smoothing, Rescaled data
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Figure 4. Ratios 0[*t"° = ﬁ;/ﬁj, per age band ¢, of corresponding data points from Figure 3

(from Rescaled data) on the right, and from unrescaled data on the left.

0.50

The right-hand panel of Figure 4 graphs the ratio v/ = ¢, /9" of the two graphs
in Figure 3, with the left-hand panel showing the unrescaled version. As noted earlier,
the limiting behaviour of the left-hand and right-hand graphs differ from each other by an
overall factor of (07, - w)/ (95, - w) & .97, where w is the vector of rescaling coefficients.

The large variation in v539 is an artefact of small size of 97, ;4 and @3, 19, SO that ratios
greatly exaggerate small variations. Many subregions also had poor sample size for SGTF
testing for 70-79-year-olds. Thus, since the final behaviour of the 60-69 and 70-79 bands

are similar, we henceforth combine these two age bands.
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(SGTF proportion by age)/(non-SGTF proportion by age) (SGTF proportion by age)/(non-SGTF proportion by age)
vs synthetic time, 50-79 omitted, 6 buckets, Rescaled vs synthetic time, 20-39 omitted, 6 buckets, Rescaled
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Figure 5. Ratios (v™!°) of SGTF proportion by age to non-SGTF proportion by age, omitting
ages 50-79 on the left, and omitting ages 20-39 on the right. Rescaled version.

Although the 6-bucket smoothing for v™%° is already smoother than the 8-bucket one,
we further improve clarity by graphing fewer age bands at a time in Figure 5. The apparent
slight final downward trend for v!3%° 4 in Figure 5 should be considered in conjunction with
the the slight final upward trend for v[2f9, in the 8-bucket smoothing in Figure 8. Note
how v}t is highest for 0-19-year-olds, but for adults, v[2t° decreases as i gets further from
40-49, consistent with Figure 4B by Volz and colleagues.*

We conclude that these data are qualitatively consistent with the behaviour of a trans-
mission matrix model, and that convergence appears to start from approximately the 5th
and 4th bucket of the 8-bucket and 6-bucket smoothings, respectively. In each of these

cases, the bucket in question started just after a 20% cutoff for total SGTF proportion.

Quantitative assessment of convergence.

To simplify the signal being measured, we redivide the population into two age bands:
0-19-year-olds and 20-79-year-olds. To produce a prior against which to make comparisons,
we use our qualitative assessment cutoff of 20% SGTF to estimate vti%) = 1.187 by simply
taking the total number of SGTF and non-SGTF cases in each age band for subregion-
week pairs with total SGTF proportion > 20%, but restricting to TagPath (SGTF-testing)
sample size > 20 for each 10-year age-band (with 60-79 combined) per subregion-week.

Returning to our Tagpath sample size > 4-per-age-band data, we then conduct 3 series
of p-value tests. As a compromise between logarithmic distribution and data availability
between cutoffs, we select the cutoffs >0%, >2%, >5%, >8%, >12%, >20%, >30%,
>50%, and >70%, for total SGTF proportion for each subregion week. Then, for each
cutoff, we conduct

(i) a 2-tailed p-value test for number of subregion-weeks with v{f%, > 1,

(i) a 1-tailed p-value test for number of subregion-weeks with v{?*%, > 1.090, and

(iii) a 2-tailed p-value test for number of subregion-weeks with vf2te, > 1.187.

Test (i) looks for presence of any effect, since no age heterogeneity would imply v/t =
Test (ii) measures when v{P™y starts trending to be above 1.090—the geometric mean of 1

and our 1.187 prior for v, Test (iii) assesses for v, approaching a distribution with

median 1.187. Thus, for SGTF proportion cutoffs with ideal convergence, we want low
p-values for tests (i) and (ii), but high p-values for test (iii).
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p values
SGTFCZ;Z‘;MO” () viato 4 (i) vt 5 1.000 | (i) v 5 1.187
(2-tailed) (1-tailed) (2-tailed)
> 0% 0.07 0.92 0.00004
> 2% 0.03 0.84 0.0001
> 5% 0.001 0.43 0.02
> 8% 9x10°8 0.06 0.32
>12% 9x107° 0.0008 1.00
> 20% 1x1072 0.0003 0.43
> 30% 1x1077 0.0006 0.65
> 50% 0.002 0.03 1.00
>70% 0.22 0.34 0.69

Figure 6. Table of p values to assess convergence at different SGTF proportion cutoffs.

To select the best SGTF % cutoff (and hence synthetic time cutoff) for limit estimation,
there is a tension between cutting off late enough to have good convergence versus cutting
off early enough to have adequate data. In the Table in Figure 6, this tension manifests in
a U-shaped pattern for the first two series of p-tests, with minimum at the 20% cutoff.

One could worry that sitting at the minimum of the first two series of p tests might
make the 20% cutoff biased to have high v, but the Table in Figure 7 shows that is not
the case. If one uses bootstrap resampling (which also takes case number into account)
to compute 1"t point estimates for data from cutoffs higher than 8%, the v™° estimate
for the 20% cutoff minimises L, distance both from the median and from the geometric
mean, and in fact is approximately as close to these two central estimates as these central
estimates are to each other. By contrast, the 12% cutoff estimate for v overestimates
vt even though it has p = 1 in test (jii).

SGTF % v/ estimates Distance Distance
from from

cutoff 0-9 10-19 20-29 30-39 40-49 50-59 60-79 | Geommean | Median
>12% 1.268 1.191 0.840 0.935 1.042 0.990 0.876 0.043 0.042
>20% 1.266 1.158 0.845 0.941 1.031 1.004 0.894 0.017 0.007
>30% 1.229 1.143 0.863 0.937 1.028 1.008 0.908 0.046 0.047
>50% 1.265 1.103 0.869 0.930 1.062 1.025 0.874 0.072 0.073
>70% 1.293 1.217 0.825 0.898 1.020 1.030 0.930 0.084 0.088
Geommean | 1.264 1.161 0.848 0.928 1.036 1.011 0.896 0 0.012

Median 1.266 1.158 0.845 0.935 1.031 1.008 0.894 0.012 0
ratio

Figure 7. Point estimates for v for different SGTF proportion cutoffs, computed from
bootstrap resampling, restricted to TagPath sample size >20 per age band.

In summary, we find strong evidence for convergence over (synthetic) time toward a
highly statistically significant effect, and we decide on a 20% SGTF proportion cutoff for
“post convergent data,” as the shared verdict of qualitative and quantitative methods.
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(b) Estimates of v™°: relative infection ratios for B.1.1.7

Based on the preceding convergence cutoff assessements, we discard all subregion-week
pairs with < 20% total SGTF proportion, corresponding to the first half of the buckets in
the graphs in the preceding subsection. This leaves us with 59 subregion-week pairs. To
reduce the role of outliers from small SGTF-testing sample size, we furthermore discard any
subregion-week pair with any age band with < 20 cases tested for SGTF (as was also done
for the point estimates computed in Figure 8), leaving 50 subregion-week pairs, consisting
of about 140,000 positive tests, of which about 75,000 were tested for SGTF.

One could worry these exclusions might exaggerate effect sizes for the 0-9-year-old age
band (the source of most low sample-size exlusions), but if anything the opposite is true.
These excluded pairs had v{fgjrs = 2.00 as computed by total cases count, or v{ﬁg;’m = 1.67
as computed by geometric mean. Seven of these nine excluded subregion-week pairs had
a uiho, value respectively below or above the respective mininum or maximum of the

remaining 50 vgég;;s values, and an eighth pair was within 1% of the maximum.

Age band (years) 0-9 10-19  20-29  30-39  40-49  50-59  60-79
SGTF by age/total SGTF
o Ao S T | 127 1.16 085 094  1.03 1.00  0.89
95% confidence 1.17-1.38 1.09-123 .81-.88 .90-98 .99-1.07 .95-1.06 .82-.97
o confide 17-1.38 1.09-1.23 .81-88 .90-98 .99-1.07 .95-1.06 .82-.

Figure 8. Table of v2t°. = o, /64 . values and 95% confidence intervals.

SGTF by age/total SGTF

¢ non-SGTF by age/total non-SGTF

1.4

SR ;
1.0 § }

0.9

0.8

0.7

0.6
0-9 10-19 20-29 30-39 40-49 50-59 60-79

: ratio _ ~— ~+ 0
Figure 9. Plot of viiip; = Og .1 1/ Ofinal; Values and 95% error bars.

The table and chart in Figures 8 and 9 display point estimates and 95% confidence
intervals for v™t°, computed from bootstrap resampling. (The chart uses slightly higher
precision estimates than shown in the table.) Note the similarity between Figure 9 and
Figure 4B by Volz and colleagues.! The age trends are the same, but our effect sizes for
0-39-year-olds are slightly larger, likely due to our restriction to SGTF percentage > 20%.
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Again, if the matrix P = (p; ;) of probabilities of an infected index in age band j infecting
a susceptible contact in age band 7, given exposure, only differed by an overall scalar factor
for B.1.1.7, versus non-B.1.1.7 variants, then we should have observed v{ati° =1.

On the other hand, given that we have demonstrated the existence of age-heterogeneous
effects in this context, the sizes of these effects will be partly influenced by environment,
hence the discussion in part (c).

For example, the magnitude of relative infection increase in 0-19-year-olds compared to
parent age groups is too large to be explained by an increase in infectiousness in parents,
since a relative increase in B.1.1.7 parent infectiousness could only produce that large a
relative increase in B.1.1.7 child infection if it produced an even larger increase in B.1.1.7
parent infection. This latter increase in parent B.1.1.7 infection would therefore need to
be cancelled out by an extreme reduction in B.1.1.7 parent susceptibility; but decreasing
adult susceptibility is equivalent to increasing child susceptibility up to an overall scale.

On the other hand, from fitting matrices C' and P to the available data, there are strong
indications that at least part of the inverse U trend for adults in Figure 9 is an inevitable
consequence of their gradient of exposure to higher-B.1.1.7-infected 0-19-year-olds.

60%

primary school student’s parents
[l secondary school student’s parents
18 year-old’s parents

45%

30%

15%

0%

20-29 30-39 40-49 50-59 60-79

Figure 10. Very approximate age distribution in England and Wales for parents of a person
of specified age, in this case a median-aged primary school student, a median-aged secondary
school student, and an 18-year-old.

For illustrative purposes only, we have constructed a very approximate chart of age
distributions of parents for Figure 10, to help illustrate the sorts of exposure trends apparent
in contact matrices, . To do this, we started with the age distribution of parents of live
births in 2017 in England and Wales by 5-year age bands'* as the age distribution for
parents of a zero-year-old, and used a combination of translations and weighted averages
to construct approximations for the age distributions of parents of a primary school student,
secondary school student, and 18-year-old, with the idea that among 0-19-year-olds, these
groups would be the ones with the largest outside-home exposure.

The above analogy between the inverse U trend for adults in Figure 9 and the inverse
U trend in exposure in Figure 10 is only qualitative, but such notions can be made precise
by contact matrices. We next proceed to direct constructions of transmission matrices.
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(c) Explicit transmission matrix modelling

There are not enough data available in the preceding analyses to determine a transmission
matrix T uniquely, but one can still construct a range of plausible transmission matrices
consistent with the dominant eigenvectors observed.

To improve accuracy at the cost of determinism, we replaced each contact matrix co-
efficient with a random variable with that coefficient’s expected value. (This change did
not significantly impact expected dominant eigenvectors of our matrices.)

We also imposed a temporary damping on 7' at the very beginning of the time series
to account for (a) over-dispersion effects from small absolute case numbers early in our
SGTF data, and (b) an early-averaging artefact of our synthetic time construction. For
(b), when different subregions have their initial weeks introduced at different times early
in the synthetic time series, these staggered introductions have a tendency to average out
and dampen the transmission progress observed in the first few synthetic time steps. Once
most of the subregions are introduced, this damping effect wears off and we observe a
progression more typical of the ordinary iteration of transmission matrix multiplication.

In fact, this damping artefact is a powerful asset of our synthetic time construction, as
it slows down the convergence process enough to be able to witness it clearly.

Age distribution of SGTF infection vs synthetic time

25%

20%

* 09
10-1
15% 23-22
30-39
10% o 40-49
- 50-59
5% ® 60-79
0% 40 30 -20 -1.0 00 10
Actual data Modelled data
(Rescaled by prevalence) (Typical simulation runs)
Age distribution of non-SGTF infection vs synthetic time
25%
20% * 09

10-19
20-29
30-39
® 40-49
# 50-59

15%
10%

5% © 60-79
0% 40 -30 -20 -1.0 00 1.0
Actual data Modelled data
(Rescaled by prevalence) (Typical simulation runs)

Figure 11. Actual and modelled data for age distribution of SGTF infection (top panel) and
age distribution of non-SGTF infection (bottom panel).

In Figure 11, we graph some typical simulation runs for a typical pair of transmission
matrices fitting our dominant eigenvector estimates and sharing a common contact matrix.

To simplify our analysis, we made the assumption that

(12) Psctr = SaPron-scTria,

where Sa and Ia are diagonal matrices whose diagonal entries represent relative multi-
plicative change in susceptibility and infectiousness, respectively, considered only up to
an overall scalar factor. (See the beginning of the Methods section for definitions of
the contact matrix C, infection conditional probability matrix P, and transmission matrix
T = (¢i;pi;).) This assumption then has the consequence that

(13) Tsgte = SaThon-scTrlA-
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One pattern that quickly emerges is that with any plausible choice of transmission matrix
Thon-scTF With dominant eigenvector matching o7 if one increases the infectiousness

actual’,
and susceptibility for 0-19-year-olds and computes v/ = ¢~ /0;" from the new dominant

(2
eigenvector v, this produces an inverse U trend for adults similar to the trend in Figure 9.

Getting the exact v™%° values to match requires tuning the 0-19 values for In and
SA. In most cases, a better match is obtained from implementing a higher increase
in infectiousness than in susceptibility for 0-19-year-olds. Subject to the constraint that
(vgEge, vitie)) = (1.27,1.16), the ratios 1X°/S%° and 1301°/S119 basically control the
steepness of the inverse U trend that appears in vt for adults (using a superscript here
to denote diagonal entries of In and Sa). If these 0-19 I} /S’ ratios are 1, then the adult
inverse U produced is slightly too flat, and one must additionally tune adult infectiousness
and susceptibility parameters to obtain a better match.

For example, for one choice of Tpon-sgTr, both the pair
(14) In(diag) = (1.30, 1.35, 1,1, 1, 1, 1),
Sa(diag) = (1.165, 1.035, 1, 1, 1, 1, 1)
and the pair
(15) In(diag) = Sa(diag) = (1.185, 1.07, .95, .975, 1.01, 1, .95)

produce v with L, distance < .01 from v/t = whereas if we demand that I} = S%

and that all adults have I, = S = 1, the best we can do is
(16) Ia(diag) = Sa(diag) = (1.22,1.10,1,1,1,1,1),

which produces a v with L, distance .06 from v2t° = (Note again that I and Sa
are only defined up to an overall scale. Thus, although we normalised at 130%° = 1, if we
divide (15) by the mean for adults, we obtain I%° = 1.205.)

If we demand I}, = S% and normalise so that the arithmetic mean of I for adults is
1, then for plausible fitting Thon-scTr, 1X° tends to vary from 1.18 to 1.23 as a subjective
observation. To produce an objective confidence interval would require systematising what

we mean by “plausible” for Thonsetr. If T4 > S, the range of potential values is larger.

Sensitivity analysis for other environments.

For various fitted choices above, we fixed P and (Ia,Sa) but replaced the contact
matrix C' to reflect a new environmental setting: lockdown with closed schools, or no
lockdown and open schools. The original environment was lockdown and open schools,
with (v@he, vjatie)) = (1.27,1.16).

For a non-systematic selection of choices of fitting ThonscTr and (Ia,Sa), but with
I, = S%, we obtained (vgS°,viatie)) = (1.18-1.20, 1.08-1.11) for lockdown and closed
schools, and (vi§e, vi3fie)) = (1.29-1.35, 1.19-1.25) for no lockdown and open schools.
For the same constraints but with I3 > S% for 0-19-year-olds and I}, = S% = 1 for adults,
we obtained (v, vate) = (1.11-1.15, 1.02-1.06) for lockdown and closed schools, and
(vgse, viatie ) = (1.30-1.34, 1.20-1.24) for no lockdown and open schools.

Thus, the age-relative increase of 0-19-year-old B.1.1.7 infection is somewhat more
robust to changes in school exposure if T4 = S% than if I{ > S%, but when the entire
community has restored mobility, it matters much less whether I, = S% or Iy > S%.

Again, this was a very non-systematic exploration, and subject to substantial uncertainty
about Thon-sGTF-
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Discussion

Before addressing Results obtained, we pause for a warning about analysis methods that
risk producing misleading results.

Comment on averaging accross environments

Subsequent to the Imperial College preprint by Volz and colleagues’ showing increased
relative SGTF infection for 0-19-year-olds during weeks 46-51,' the next Public Health
England Technical Update on the Variant of Concern included a bar chart in Figure 62 of
total symptom-targeted positive tests 1 December 2020 through 4 January 2021 showing
a slightly smaller proportion of cases for 0-19-year-olds among SGTF infections than their
proportion among non-SGTF SARS-CoV-2 infections.

The Technical Update itself made no comments interpreting this bar chart, but various
members of the UK scientific advisory committees SAGE and NERVTAG made prominent
comments on social media or media interviews pointing to this bar chart (and similar results)
as evidence that the Imperial College results were confounded by environmental factors and
that more recent averages showing no B.1.1.7-related relative increase for 0-19-year-olds
were a more reliable indicator of relative infection.

Unfortunately, the opposite was true. The Imperial College preprint studied a time of
relatively constant environmental factors during which valid conclusions could be drawn
about age heterogeneity of relative B.1.1.7 infection. By contrast, the Public Health Eng-
land chart averaging over cases from 1 December through 4 January mixed incomparable
environments in a manner that confounded results.

To demonstrate this latter effect more explicitly, suppose we divide the time interval
in question into two intervals: Period 1 from 1 to 20 December, and Period 2 from 21
December to 4 January, with the idea that Period 1 had mostly open schools and more
stringent adult restrictions, whereas Period 2 had mostly closed schools and increased
holiday-related adult exposure. Let a; and c¢; denote the respective total number of adult
cases and child cases in Period 7, and let Bf denote the proportion of B.1.1.7 cases in age
group p and period j. There was a sharp decrease in incidence in child and adolescent
cases during Period 2, but there was such a peak in adult cases that a; > a; even though
Period 2 was shorter. Thus, regardless of whether “child” refers to 0-9-year-olds or 10-
19-year-olds (which we leave ambiguous for the moment), we have as/a; > co/ci. In
particular, if we attempt to compute

1+( 8% /8% ) (a2/a1
adult B.1.1.7 cases Biait+Bas 1 (626/61)( fo1)
(17) A = adult total cases — ai+tag — +(52/51)(c2/01)
child B.1.1.7 cases Bfc1+B5ca 1+(az2/a1) )
child total cases c1+eo 1+(c2/c1)

we deduce that even if 8§ /3¢ = 55//5, the facts that as/a; > ca/cy and 85/57 > 1 have
the automatic consequence that A > 1.

In other words, the observation that the proportion of 0-19-year-old cases was smaller
among SGTF cases than among SGTF cases for the total time period was merely an artefact
of the circumstances that many of the child cases occurred when B.1.1.7 proportions were
still small, whereas most of the adult cases occurred after B.1.1.7 proportions were larger.

Such averages should not be used to inform notions of the age-stratified patterns of
SARS-CoV-2 infection for variants of B.1.1.7, versus non-B.1.1.7, lineage.
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Key Findings

e In an environment of open schools and reduced adult mobility, the ratio (Age-band
proportion of SGTF infection)/(Age-band proportion of non-SGTF infection) converged to
1.27 (95% Cl 1.17-1.38) for 0-9-year-olds and 1.16 (95% CI 1.09-1.23) for 10-19-year-olds.

e With high statistical confidence, these results cannot be explained by environmental
factors alone, and a sensitivity analysis on effect size found that relative elevations in
infection for 0-19-year-olds should also be observed in other environments.

e With lower confidence, there are indicators that 0-19-year-olds might experience a higher
relative increase in infectiousness than susceptibility for B.1.1.7.

Potential concerns

Some have questioned the relevance of potential increases in 0-9-year-old infection when
this age group is perceived as having such a low infection rate already. This perception,
however, is often skewed by the extent to which symptomatic testing undercounts 0-19-
year-old infection compared to that of the total population, which for the time period in
question was by a factor of 2.4 for 0-9-year-olds and a factor of 1.3 for 10-19-year-olds.

According to symptom-based testing for the time period in question, 10-19-year-olds had
a lower confirmed case rate than 20-29, 30-39, and 40-49-year-olds, and 0-9-year-olds had
36% the total confirmed case rate of 20-59-year-olds and the lowest confirmed case rate
of any age band.! By contrast, according to random sampled prevalence data, the total
infection rate for 20-59-year-olds for that time period was lower than that for 0-9-year-olds,
and 10-19-year-olds had the highest infection rate of any age band, including more than
50% higher than that for 20-59-year-olds.'°

One might also be tempted to worry that the age-relative increase in 0-19-year-old pos-
itive tests with SGTF merely reflects an age-relative increase in proportion of testing for
infected individuals of this age group. For instance, Office for National Statistics question-
naires for participants in their Infection Survey found a slight increase in the proportion
of symptoms reported by SGTF-infected versus non-SGTF-infected participants, among
those with Ct threshold < 30.*°

However, if the observed relative increase of 0-19-year-olds only reflected an increase
in testing rather than an increase in infection, it would be difficult to explain the age
trend for relative adult B.1.1.7 infection in Figures 8 and 9, which so closely reflects
differing exposures to 0-19-year-olds and is consistently reproduced by modelled increases
in 0-19-year-old infectiousness and susceptibility. This inverse U age trend for adults was
statistically significant: the age 20-29, 30-39, and 40-49 confidence intervals were all
pairwise disjoint, as were the age 40-49 and 60-79 confidence intervals.

Potential mechanisms

One mechanism for our observed age-relative increase in 0-19-year-old B.1.1.7 infec-
tion might be the longer viral shedding period proposed for B.1.1.7 in recent findings.'®
Firstly, there are indications that viral shedding period might be correlated with age,'’ in
which case an increase in viral shedding period might have larger impact on infectious-
ness of younger age groups. Secondly, an increased viral shedding period would cause
a disproportionate increase in transmission in settings of days— or weeks—long exposure.
Household transmission is a key example of this, but this would also impact age groups
with a higher rate of paucisymptomatic or undetected infection, as subpopulations with
undetected infection tend to expose habitual contacts for the duration of their infection.
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Limitations

Whilst it is unlikely that potential disproportionate increases in test-seeking for younger
age groups with B.1.1.7 infection could explain observed effects, it is still possible that
changes in testing behaviour could impact the precise values of observed effect sizes. It
would be useful to see if the Office for National Statistics retain age-stratified SGTF-
stratified prevalence data from at least part of the time period in question, as these data
are independent of symptom presentation or test-seeking behaviour.

In our “Explicit modelling” subsection, our sensitivity analyses to different environments
and to infectiousness/susceptibility mechanisms for observed relative infection increases
were limited by high uncertainty about contact matrices, along with mild to moderate un-
certainty about infection probability matrices. Even with good surveillance data, accurate
contact matrices are difficult to construct, as one must take into account not only the
number of people contacted but the duration and quality of exposure. We tried to explore
a range of plausible transmission matrices with appropriate dominant eigenvectors, and it
appeared that outcomes were not highly sensitive to different choices of matrices, but it
is still possible that the range of transmission matrices we explored sat in a qualitatively
different component of parameter space from the “true” transmission matrix.

Lastly, while most of our analysis relied on coefficient-wise factorisation of our trans-
mission matrix into separate environmental and intrinsic effects as captured by a contact
matrix C' and infection probability matrix P, this approach to some extent exaggerates
both the accuracy and the utility of divorcing environmental from intrinsic effects.

For example, there are some indications that a person tends to transmit SARS-CoV-2
more efficiently to a contact of the same age.'® Perhaps they speak more to someone
of the same age, or perhaps height differentials play a role in close-range droplet and
aerosol transmission. If we force our infection probability matrix (or changes to it) to
be an exterior product of susceptibility and infectiousness, then we are forced to rely on
the environmental contact matrix C' to capture such aspects of increased transmission
efficiency. If certain environmentally-dependent infection patterns are shared by nearly all
environmental settings, is this feature best viewed as environmental or intrinsic?
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