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Abstract 

Lung cancer is the leading cause of cancer death worldwide and non-small cell lung 

carcinoma (NSCLC) represents 85% of newly diagnosed lung cancers. The high mortality rate 

of lung cancer is due in part to the lack of effective treatment options for advanced disease. A 

major limitation in the development of effective treatment options is our incomplete 

understanding of NSCLC metabolism at a molecular level, especially lipids. Improvements in 

mass spectrometry combined with our untargeted assignment tool SMIRFE enable the 

systematic and less biased examination of NSCLC lipid metabolism.  

Lipids were extracted from paired tumorous and non-tumorous lung tissue samples from 

86 patients with suspected resectable stage I or IIa primary NSCLC and were analyzed using 

ultra-high resolution Fourier transform mass spectrometry. Pathological examination of the 

samples revealed that the majority of the samples were primary NSCLC; however, the disease 

group does include examples of metastases of other cancers and several granulomas. 

Information-content-informed (ICI) Kendall tau correlation analysis revealed correlation and co-

occurrence patterns consistent with significant changes in lipid profiles between disease and 

non-disease samples. Lipids assigned using the program SMIRFE (Mitchell et al., 2019) were 

analyzed for differential abundance, followed by machine learning to classify the SMIRFE 

formula assignments into lipid categories. At the lipid category level, sterol abundances were 

consistently higher in diseased versus non-diseased lung tissues at statistically significant 

levels. 

The statistically significant increase in sterol abundances in primary NSCLC compared 

with non-cancerous lung tissue suggests for treatment of primary NSCLC a possible therapeutic 

role for statins and nitrogenous bisphosphonates, pharmaceuticals that inhibit endogenous 

sterol biosynthesis. This hypothesis is consistent with previous epidemiological studies that 

have identified a therapeutic role for statins in the treatment of NSCLC but were unable to 

identify a molecular mechanism for this effect. Additionally, the majority of the consistently 
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increased sterol abundances belong to the sterol ester subcategory, suggesting increased 

SCD1 and ACAT1 activity. SCD1 expression is a known negative prognostic indicator for 

survival in NSCLC. In our study, a large fraction of the NSCLC samples displayed this 

phenotype; however, SCD1 mutants would be unexpected in all of these samples. This 

suggests that this metabolic phenotype may be shared across multiple genetic subtypes of 

NSCLC. Thus, inhibitors of SCD1 and other enzymes involved in the production of this 

metabolic phenotype could have utility in the treatment of many genetic subtypes of NSCLC. 

 
Introduction 
         Lung cancer remains the most common cause of cancer death worldwide (Kanitkar et al., 

2018) with approximately 85% of newly diagnosed lung cancers belonging to the non-small cell 

lung carcinoma subtype (Molina et al., 2008). The high mortality of lung cancer, NSCLC included, 

is partially explained by the insidious and silent nature of the progression of early-stage disease, 

but also the lack of effective therapeutic options for advanced disease. Although improvements 

have been made in the fields of NSCLC treatment, especially for adenocarcinomas with 

actionable mutations such as EGFR,  ALK, certain K-RAS variants, and more recently with 

checkpoint inhibitors (Onoi et al., 2020), resistance often sets in (Liu et al., 2020) (Gettinger et al., 

2017) (Walsh & Soo, 2020); and the  overall 5-year survival rate remains low (<30%) 

(SEER*Explorer: An interactive website for SEER cancer statistics, 2021). 

 Treatment options for NSCLC vary with disease stage as well as genetic subtype. For low-

stage disease, surgery remains the most common and most effective treatment option (Uramoto 

& Tanaka, 2014), especially when combined with adjuvant chemotherapeutic drugs (Betticher, 

2005). For advanced disease, chemotherapy and/or radiotherapy (Sandler et al., 2000) (Pirker et 

al., 1995) (Wozniak et al., 1998) (Vansteenkiste et al., 2013) represents the primary first-line 

treatment option. Therapeutics targeting the epidermal growth factor receptor (EGFR) (Paez et 

al., 2004) (Shepherd et al., 2004), which is often mutated in NSCLC tumors in patients of East-
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Asian origin (Chang et al., 2006) and female never smokers, vascular endothelial growth factor 

(VEGF) (Piperdi et al., 2014) (Ferrara et al., 2005), anaplastic lymphoma kinase (ALK) (Crino et 

al., 2011) (Kim et al., 2014), and the PD-1/PD-L1 immune checkpoint (Sunshine & Taube, 2015) 

have increased the number of therapeutic options available for patients with advanced disease. 

However, while offering different side-effect profiles than traditional chemotherapy (Sgambato et 

al., 2016), overall survival of advanced NSCLC remains poor (Spigel et al., 2015) and many 

patients fail to express these particular biomarkers and are unsuitable for these therapies. 

 Finding drug targets for every genetic subtype of NSCLC would be very challenging and 

time-consuming. Alternatively, it is well known that cancer metabolism differs substantially from 

non-cancer metabolism due to metabolic reprogramming, a phenomenon that is essential to 

cancer development (Hanahan & Weinberg, 2011). As multiple genetic mutations may result in 

the same metabolic phenotypes, drugs targeting these metabolic processes may be efficacious 

for multiple genetic subtypes of NSCLC.  

 There are many examples of metabolic reprogramming in NSCLC (Sellers et al., 2015) 

(Hensley et al., 2016) (Sellers et al., 2019). In particular, isotope labeling studies in vivo have 

shown that both glycolysis and the TCA cycle are highly active in many NSCLC tumors, 

resulting in higher rates of glucose oxidation in NSCLC compared to surrounding non-NSCLC 

tissue (Hensley et al., 2016). Increased TCA activity provides the precursors needed for several 

anabolic processes needed for cell proliferation,  but this requires concomitant increased 

anapleurosis, such as enhanced pyruvate carboxylation (Sellers et al., 2015), to maintain TCA 

cycling. Additionally many NSCLC tumors oxidize several other substrates with a preference for 

non-glucose substrates such as lactate (Faubert et al., 2017) and glutamine (Hassanein et al., 

2013) (Mohamed et al., 2014) (Metallo et al., 2012) from the tumor microenvironment, especially 

at higher perfusion rates (Hensley et al., 2016).  

 Lipid metabolism is also commonly altered in NSCLC. Key enzymes for lipid metabolism 

such as ATP citrate lyase (ACLY) (Osugi et al., 2015), fatty acid synthase (FASN) (Uramoto et 
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al., 1999), and stearoyl-CoA desaturase 1 (SCD-1) (Huang et al., 2016) can be differentially 

expressed in NSCLC compared to non-cancer tissue.  Overexpression of these genes enables 

enhanced production of many lipid classes and is also correlated with poorer clinical outcomes 

and tumor aggressiveness (Wang et al., 2002) (Visca et al., 2004) (Noto et al., 2013) (Huang et 

al., 2016) (Csanadi et al., 2015). Additionally, previous studies have demonstrated an 

association between serum cholesterol and survival in patients with resectable NSCLC (Sok et 

al., 2009) (as well as other forms of cancer (Jamnagerwalla et al., 2018) (Kitahara et al., 2011)) 

and an association between membrane cholesterol content and EGFR signaling activity 

(Ringerike et al., 2002). Collectively, these findings suggest that altered lipid production plays a 

key role in the development and progression of NSCLC and that enzymes in these pathways 

are promising drug targets.  

 An alternative to the costly de novo development of novel therapeutics is the 

repurposing of existing pharmaceuticals for new indications. For example, previous 

epidemiological studies have suggested that patients prescribed statins, inhibitors of HMG-CoA 

reductase in the mevalonate pathway, have better overall survival rates for a variety of cancers 

including NSCLC (Hung et al., 2017), even at late stages (Lin et al., 2016) and with concurrent 

gefitinib treatment (Han et al., 2011). If this effect could be attributed to inhibition of endogenous 

sterol production, this suggests that statins or other inhibitors of the mevalonate pathway such 

as nitrogenous bisphosphonates (Tsoumpra et al., 2015)  could be repurposed for the treatment 

of NSCLC. However, the mechanism underlying this effect remains unclear, as statins have 

multiple known off-target effects besides inhibition of sterol biosynthesis including anti-

inflammation (Diomede et al., 2001), immunomodulation (Sadeghi et al., 2001), and 

angiogenesis inhibition (Weis et al., 2002), all of which may contribute to this possible survival 

benefit.  

 As these examples illustrate, an improved understanding of the metabolic differences 

between NSCLC and non-cancerous lung tissue represents a major first step in constructing 
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more complete models of NSCLC progression and ultimately the development of more effective 

therapeutics. Advances in ultra-high resolution mass spectrometry, particularly Fourier-

transform mass spectrometry (FT-MS), provide significant analytical improvements, including 

the ability to resolve distinct isotopologues, and the detection of lower abundance metabolites. 

These capabilities combined with our in-house data processing pipeline, artifact mitigation 

(Mitchell et al., 2017; Mitchell et al., 2018), and untargeted assignment method called Small 

Molecule Isotope Resolved Formula Enumeration (SMIRFE) (Mitchell et al., 2019; Moseley et 

al., 2018) enables the assignment of molecular formulas to spectral features observed in 

NSCLC-derived lipid extracts without bias due to the incompleteness of existing metabolic 

databases (Mitchell et al., 2014) (Schrimpe-Rutledge et al., 2016). These assignments can be 

classified into lipid category and class using our machine learning methods (Mitchell et al., 

2020) to investigate changes that occur in lipid profiles at the lipid category level. 

 

Materials and Methods 

Description of Paired Human Suspected NSCLC and Non-Disease Tissue Samples 

Eighty-six patients with suspected resectable stage I or IIa primary non-small cell lung 

cancer (NSCLC) and without diagnosed diabetes were recruited based on their surgical eligibility. 

The extent of resection was determined by the surgeon in accordance with clinical criteria. Many 

of the specimens were obtained from wedge resections, which minimizes surgery time while the 

other specimens were acquired in less than 5 minutes after the pulmonary vein was clamped. 

Both techniques minimize ischemia in the resected tissues. Immediately after resection, the tumor 

was transected and a section of cancerous tissue and surrounding non-cancer tissue at least 5 

cm away from the tumor were immediately flash frozen in liquid nitrogen and stored at <80 °C. 

On-site pathologists classified the samples into cancer subtype and stage when possible and 

confirmed cancer-free margins on parallel tissue samples. All samples were collected under a 

University of Louisville approved Internal Review Board (IRB) protocol or University of Kentucky 
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IRB protocol and written informed consent was obtained from all subjects prior to inclusion in the 

study (Sellers et al., 2015). 

The frozen samples were pulverized under liquid nitrogen to <10 μm particles using a 

Spex freezer mill and extracted using a modified Folch method, as previously described (Fan, 

2012) (Fan et al., 2016). The lipid fraction was supplemented with 1 mM butylated hydroxytoluene 

and then dried by vacuum centrifugation at room temperature. Samples for FT-MS analysis were 

redissolved in 200-500 μL chloroform/methanol (2:1) supplemented with 1 mM butylated 

hydroxytoluene. Reconstituted lipid samples were diluted in in isopropanol/methanol/chloroform 

4/2/1 (v/v/v) with 20 mM ammonium formate (95 μL of solvent for 5 μL of sample) before direct 

infusion. 

 

Mass Spectrometry Analysis of Paired Samples 

Ultra-high resolution (UHR) mass spectrometry was carried out on a Thermo Tribrid 

Fusion Orbitrap (Thermo Scientific, San Jose, CA, USA) interfaced to an Advion Triversa 

Nanomate (Advion Biosciences, Ithaca, NY, USA) nanoelectrospray source using the Advion 

“type A” chip, also from Advion, inc. (chip p/n HD_A_384).  The nanospray conditions on the 

Advion Nanomate were as follows: sample volume in wells in 96 well plate – 50 µL, sample volume 

taken up by tip for analysis – 15 µL, delivery time – 16 minutes, gas pressure – 0.4 psi, voltage 

applied – 1.5 kV, polarity – positive, pre-piercing depth – 10 mm. The Orbitrap Fusion Mass 

Spectrometer method duration was 15 minutes, and the MS conditions during the first 7 minutes 

were as follows: scan type – MS, detector type – Orbitrap, resolution – 450,000, lock mass with 

internal calibrant turned on, scan range (m/z) – 150-1600, S-Lens RF Level (%) – 60, AGC Target 

– 1e5, maximum injection time (ms) – 100, microscans – 10, data type – profile, polarity – positive. 

For the next 8 minutes, the conditions were as follows for the MS/MS analysis: MS properties: 

detector type – Orbitrap, resolution – 120,000, scan range (m/z) – 150-1600, AGC Target – 2e5, 

maximum injection time (ms) – 100, microscans – 2, data type – profile, polarity – negative; 
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monoisotopic precursor selection – applied, top 500 most intense peaks evaluated with minimum 

intensity of 5e3 counts; data dependent MSn scan properties: MSn level – 2,  isolation mode – 

quadrupole, isolation window (m/z) – 1, activation type – HCD, HCD collision energy (%) – 25, 

collision gas – Nitrogen,  detector – Orbitrap, scan range mode – auto m/z normal, Orbitrap 

resolution – 120,000, first mass (m/z) – 120, maximum injection time (ms) – 500, AGC target – 

5e4,  data type – profile, polarity –  positive. The ion transfer tube temperature was 275oC.  (Yang 

et al., 2017). Two Thermo Tribrid Fusion instruments were used to acquire spectra. 53 patients 

(102 spectra total) were acquired from Fusion 1 and 40 patients (77 spectra total) were acquired 

from Fusion 2. Three of the patients had only a cancer or non-cancer sample acquired. SMIRFE 

was used to generate assignments for all spectra. 

 

Molecular Formula Assignment 

The SMIRFE algorithm (Mitchell et al., 2019) assigns characterized peaks from the peak 

characterization method in a truly untargeted manner without a database of expected molecular 

formulas corresponding to known metabolites (Mitchell et al., 2019). This method queries peaks 

in the spectrum against a near-exhaustive set of molecular formulas given a description of an 

elemental molecular formula search space and a mass tolerance based on the digital resolution 

of the spectrum. Assignments are validated by testing their observed intensity ratios against their 

theoretically predicted ratios based on natural abundance.  

 

Lipid Categorization of Assigned Formulas 

         Assigned molecular formulas were classified into one or more lipid categories using a family 

of Random Forest classifiers (Mitchell et al., 2020) trained on entries from the LipidMaps (Sud et al., 

2006) and HMDB (Wishart et al., 2017) databases. Entries from LipidMaps represent examples of 

known lipids and their categories, while the non-lipid entries from the HMDB were used as examples 

of known non-lipid biological compounds.  
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Mass Spectrometry Peak Characterization 

 For each spectrum, each assigned formula was assigned a score equal to one minus the 

expectation value of the assignment (S) or two times S if the formula was assigned to a lipid category. 

Lipid categories that were previously observed to be overclassified by our models (neutral and acidic 

glycosphingolipids) were excluded. Voting is then performed using these scores after removing 

not_lipid or not_classified entries, and either returning the maximally abundant category or ‘multiple’ 

when there are ties across one or more lipid categories.  

To minimize false assignment, non_lipid and multiple lipids were not considered in the 

analysis. All lipid isotopologue intensities were normalized by dividing the isotopologue intensity by 

the median intensity of all the lipid peaks in the sample. Missing values were replaced with a 

threshold value that is ½ of the lower confidence interval of the distribution of all log-transformed 

intensities from that tissue. Sample-sample correlations were calculated using an information-

content-informed (ICI) Kendall-tau correlation that considers missing values in the calculation of 

concordance and discordance of pairs (Flight & Moseley, 2020).  

 

Quality Control of Patient Samples 

 To determine possible outlier samples, each sample’s median ICI-Kendall-tau correlation to 

other samples with the same disease label, as well as the fraction of lipids that could be considered 

as a possible outlier were calculated for each sample (Gierliński et al., 2015). Samples with low 

median correlation outlier values (lower than the lower limit minus the 1.5 times the interquartile 

range, as defined in the boxplot.stats R function) and high outlier lipid fraction (higher than the higher 

limit plus 1.5 times the interquartile range, as defined in the boxplot.stats R function) were removed 

from further analysis. 
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Consistently assigned spectral feature (corresponded peak) generation and Differential 

Abundance Analysis 

 Our SMIRFE assignment method assigns isotope-resolved molecular formulas (IMFs) to 

characterized peaks in each spectrum. Each IMF represents an isotopologue of a given elemental 

molecular formula (EMF) (e.g. 13C1
12C5

1H12
16O6 is an IMF representing the m+13C1 isotopologue of 

EMF C6H12O6). To minimize the effects of misassignment, only consistently assigned spectral 

features (i.e. corresponded peaks) are used in differential abundance analysis. Corresponded peaks 

are identified using an in-house method we have named EMF voting which is described in 

supplemental materials. EMF voting identified 3485 total corresponded peaks across all 156 spectra 

with 884 corresponded peaks present in 25% or more of either the disease or non-disease group of 

samples.  

Differential abundance analysis was then performed using both LIMMA (Ritchie et al., 2015) 

(Phipson et al., 2016) and SDAMS (Li et al., 2019) (Li Y, 2020) on the normalized features (see 

above). No pairing of samples was considered for the differential analysis, given the large size of 

the dataset and the desire to detect differences that are distinct even across patient biological 

variance. An adjusted p-value cutoff of 0.001 was used to determine metabolite significance. All lipid 

IMFs identified by either LIMMA or SDAMS were considered in this analysis. P-values were adjusted 

using the Benjamini-Hochberg multiple testing adjustment (Thissen et al., 2002). Cancer samples 

were clustered via hierarchical clustering on the sample-to-sample distances calculated as one 

minus the ICI-Kendall-tau correlation. Cluster leaves were ordered using the dendsort package 

(Sakai et al., 2014). All data manipulations and statistical testing were carried out in R v 4.0.0. (Ihaka 

& Gentleman, 1996). 

LIMMA identified 287 differentially abundant corresponded peaks while SDAMS identified 

426 abundant corresponded peaks. Together LIMMA and SDAMS identified 426 total unique 

differentially abundant corresponded peaks with 287 corresponded peaks identified by both 

methods. Of the 426 total unique differentially abundant corresponded peaks, 268 of them were 
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assigned to one lipid category and the rest either had multiple lipid categories, were classified as 

“not lipid”, or a classification was not generated by the software. Only the 268 with a single lipid 

category were analyzed further. The log2 fold changes for each categorized corresponded peak 

between disease and non-disease was then calculated. 

 

Lipid Category Enrichment of Significant Peaks 

 Using all of the peaks with a single assigned lipid category, hypergeometric enrichment of 

the significant peaks in each category was tested. This used the assigned lipid category as an 

annotation of the peak, and all of singly categorized lipids as the peak universe (541 peaks). The 

significantly more-abundant and less-abundant features (based on log2 fold-changes of cancer / 

non-cancer) were tested independently (up, 120; down, 148). Hypergeometric enrichment was 

performed using the categoryCompare2 R package (v 0.99.158) (Flight et al., 2014). 

 

Results 

MS Data Processing, Assignment Ambiguity and Quality Control of Samples 

 As previously described (Mitchell et al., 2019), our SMIRFE methodology reliably produces 

highly accurate molecular formula assignments but not necessarily unique assignments, especially 

at higher m/z where the molecular formula search space grows exponentially. Assignment ambiguity 

is further compounded by biological and analytical variance resulting from variance between 

biological units (in our case human patients), sample preparation, and limitations in dynamic range 

of the instruments, which can introduce high amounts of data sparsity across the dataset.  

 EMF voting identifies consistently assigned (i.e. corresponded) peaks and filtering these 

features to those present in at least 25% of samples for a given sample class limits the level of data 

sparsity. This subsequent reduction in data sparsity allows for the meaningful use of more traditional 

statistical approaches such as PCA that do not handle high data sparsity well.  Even so, the high 
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data sparsity present in the dataset significantly contributes to the low percent variance observed in 

the top principal components. 

 Additionally, our quality control measures allow us to detect outlier spectra that could 

represent failed sample preparation, poor injection, or non-primary or non-NSCLC tumors. Initially 

179 patient samples were included in the analysis. After removal of 10 samples from unrelated 

secondary metastatic tumors and of 13 outlier samples based on quality control, 156 samples 

remained for differential abundance analysis. 

 

PCA Shows Separation of Disease and Non-Disease Samples 

 Principal component analysis (PCA), performed using the normalized intensity of the 

corresponded peaks, revealed a clear, if imperfect, boundary between disease and non-disease 

samples along principal component 2 (PC2, Figure 1). This indicates that a significant portion of the 

variance observed in the second principal component represents biological variance between the 

two classes of samples. Correlation heatmaps between the samples further supports this claim 

(Figure 2). Samples from non-cancerous lung tissue cluster well together with high correlation 

observed between most of these samples. Correlation within the disease class were less strong but 

still differentiated disease samples from normal.  Further investigation of the correlation among the 

cancer samples reveals two groups of cancer samples with the larger group comprising the majority 

of the adenocarcinoma samples (Supplemental Figure 1). In both groups, samples were removed if 

their quality control scores were outliers in two different quality control metrics. These samples likely 

have data quality or spectral acquisition issues.   
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Figure 1 - PCA by Disease  

PCA was performed on the normalized intensities of the corresponded peaks present in at least 
25% of a sample class and shows a clear separation between disease and non-disease that is 
most obvious along PC2. This separation is not present along PC1. The grouping of samples by 
disease class in PCA space clearly indicates that the corresponded peak intensities capture 
some of the biological variance between disease classes. 
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Figure 2: Correlation Heatmap by Disease  

High correlation is observed between most non-disease samples and other non-disease 
samples and there are two subgroups with higher correlation observed. Correlation among 
cancer samples is less strong than the non-disease samples and there are multiple subgroups 
of samples that correlate more strongly with one another. Overall, the correlation between 
cancer samples is not as strong as the correlation between non-disease samples. In both 
disease classes, a smaller number of samples have poor correlation with samples from either 
class.  
 

Differential Abundance of Lipid Categories between disease and non-disease lung tissue 

 Lipids from five categories were observed: Fatty Acyls [FA], Glycerophospholipids [GP], 

Prenol Lipids [PR], Sphingolipids [SP] and Sterols [ST] across all samples. Of these five 

categories, only fatty acyls and prenols had no differentially abundant assignments. Additionally, 

few assignments were made to the fatty acyl or prenol categories. This may reflect the 

abundance of these lipids in our samples or their poor ionization in positive mode. Sphingolipids 

and sterols were significantly higher at the category level, whereas glycerophospholipids were 

significantly less abundant at the category level (Table 1). 
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Table 1 – Differential Abundance Analysis Results  

Category Number 
Observed 

More Abundant Features Less Abundant Features 
Expected Observed p-adjust Expected Observed p-adjust 

Fatty Acyls [FA] 12 2.662 0 1 3.283 0 1 

Glycerophospholipids 
[GP] 210 46.58 32 1 57.449 71 0.0255 

Prenol Lipids [PR] 5 1.109 0 1 1.368 0 1 

Sphingolipids [SP] 291 64.547 75 0.04764 79.608 74 1 

Sterol Lipids [ST] 23 5.102 13 0.00131 6.292 3 1 

 

Table 1: Differential Abundance Analysis Results 

 For each category of lipids, the number of observed more- and less-abundant features 
was recorded and compared to the number of expected more- and less-abundant features to 
statistically evaluate the differential abundance of that specific lipid category. P-values were 
calculated using a hypergeometric test and adjusted for multiple testing using the Benjamini-
Hochberg technique (Benjamini & Hochberg, 1995). This revealed two statistically significant, 
more-abundant lipid categories and one statistically significant, less-abundant lipid category in 
cancer compared to non-cancer.  
 

 The patterns in fold changes are shown with respect to m/z in Figure 3. In cases where 

an IMF is observed in disease but not in non-disease, the fold-change is very high due to 

imputation of missing values. In the case of sphingolipids, more and less-abundant sub-

populations appear to correlate with m/z, with cancer having higher concentrations of higher m/z 

sphingolipids on average. Sterols and glycerophospholipids show no such pattern with respect 

to m/z. Querying the top 5 most abundant unique EMFs of the more-abundant sterol IMFs 

against PubChem indicates that these assignments likely correspond to known sterol esters. 

Supporting this hypothesis is the observation that 12 of the 13 sterol EMFs assigned in our 

study were classified into the ST01 class of sterols from LipidMaps, which includes sterol esters.  
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Figure 3 – Log2 Fold Change by Category and m/z  

The Log2 fold-change of consistently assigned, classified, and significantly changed 
lipids are shown in panel A with respect to m/z and by class in panel B. The extremely high fold-
changes observed for some members of the sphingolipid and sterol lipid categories are due, in 
part, to imputed values. Most of the differentially abundant lipids occur in the 600 to 1000 m/z 
range; however, this region also has the highest density of assignments. Although no lipid 
category is exclusively more abundant, sterols are predominantly more abundant while 
substantial numbers of both sphingolipids and glycerophospholipids are more and less 
abundant.  

 
 
Lipid Category Correlation and Co-Occurence Heatmaps  

 Kendall tau correlation values between features were calculated using samples with non-

zero corresponded peak normalized intensities for both features (Figure 4).  

At the lipid category level, we see distinct groups of correlated lipids within each category and in 

general, intra-category correlation is stronger than inter-category correlation. Strong intra-

category correlations are expected, if regulation of these lipids is controlled at the category level 

and if the corresponded peaks are consistently and accurately assigned to lipid categories, which 

is why multi-classified corresponded peaks were dropped from these analyses.  

 Of the three groups, the glycerophospholipids collectively show the strongest intra-

category correlations; however, some subgroups of glycerophospholipids are correlated with 

subgroups of sphingolipids and sterols. Within the sphingolipid category, there are distinct sub-
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populations of sphingolipids with a varying amount of intra-group correlation. Several groups 

correlate with the sterols as well and these groups of sphingolipids are not strongly correlated 

with other groups of sphingolipids. Finally, the sterols show the weakest intra-category correlation 

of the three categories, but there are two distinct subgroups of sterols correlated with one another. 

These findings suggest possible coregulatory mechanisms between these groups of lipids.  

 Patterns observed in the co-occurrence heatmaps of the lipids by class and category 

revealed more interesting findings. There are two sets of co-occurring sphingolipids which mirrors 

the findings from the correlation analysis. The sterols co-occur with one sub-population of 

sphingolipids; however, it is not the sub-population of sphingolipids that were correlated with the 

sterols.  

 

 

 

Figure 4 - Peak Correlation and Peak Co-Occurrence Combined Heatmap 

The bottom-left corner of Figure 4 shows the Kendall tau correlation between corresponded 
peak normalized intensities grouped by lipid category. Obvious strong correlations are seen 
between many members of the same lipid category. Additionally, some examples of inter-
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category correlation can be observed, suggesting possible co-regulation. Shown in the upper-
right corner is the co-occurrence of lipids by lipid category and class. Notably there is a subset 
of sterols that co-occur with a sub-population of sphingolipids and a smaller sub-population of 
glycerophospholipids. The biological relevance of this co-occurrence is unclear.  It is also 
possible that this co-occurrence simply reflects that these lipids were generally of lower relative 
abundance, which could artificially create the co-occurrence pattern. 
 

Reproducibility across Instruments and Clinical Environments 

 In this study, two sets of samples were analyzed using two different Thermo Tribrid 

Fusion instruments (FSN10115 and FSN10352, referred to as Fusion 1 and Fusion 2 

respectively). Samples from Fusion 1 were derived only from patients undergoing resections at 

the University of Louisville, while Fusion 2 samples were derived from patients undergoing 

resections at both the University of Kentucky and the University of Louisville. PCA on the 

consistently assigned spectral features demonstrates that instrument and patient population 

specific variances are partially mitigated by our analysis as evidenced by the partial overlap 

between samples analyzed by the two instruments (Figure 5). The same analysis demonstrates 

a more obvious separation between cancer and non-cancer samples specifically along PC2 

(Figure 1). These results argue for the reproducibility and consistency of our results and that the 

observed changes in lipid differential abundance more accurately reflect variance due to 

disease state and not on one of these potential confounding factors.  
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Figure 5: PCA of Consistently Assigned Spectral Features by Instrument 

 PCA on the consistently assigned spectral features colored by instrument demonstrates 
no clear decision boundary or primary component that groups the samples by instrument. A 
clearer decision boundary exists in the case of disease along PC2 as shown in Figure 1. This 
implies that features identified by SMIRFE assignment, EMF voting, and 25% group inclusion 
filtering represents cancer vs. non-cancer status rather than which instrument was used to 
perform the analysis or which patient cohort the sample was collected from.   
 

Discussion 

Sample Correlation Analysis Shows Evidence of Metabolic Reprogramming in NSCLC  

 Although metabolic reprogramming is ubiquitous in cancer, the number of distinct 

dysregulations of metabolic programs that can lead to a pro-cancer state is likely large even 

among a cohort of patients with the same type of cancer. We hypothesize that the lipid profiles of 

non-disease samples are expected to be more similar to one another than the lipid profiles of 

disease samples from the same patients. This expected high inter-tumor metabolic variance is 

analogous to previously observed high inter-tumor variance in gene expression (Hu et al., 2006), 
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RNA editing (Paz-Yaacov et al., 2015), DNA methylation (Hansen et al., 2011), and mitochondrial 

DNA content (Mizumachi et al., 2008) 

 Likewise, this hypothesis is supported by the correlation patterns observed in Figure 2. 

Although individual genetic, metabolic, and environmental variance leads to some differences 

between lipid profiles of non-disease samples, the majority of the non-disease samples show 

higher correlation to one another with respect to the normalized intensities of shared 

corresponded peaks as compared to the disease samples. Additionally, the number of common 

corresponded peaks was higher in non-disease than in disease samples, arguing that in general, 

the non-disease samples have more similar lipid profiles to one another. The disease samples on 

the other hand displayed weaker correlation to one another, consistent with our hypothesis, with 

several distinct clusters of correlation observed. Further analysis of these clusters did not show a 

correlation with NSCLC subtype. The limited amount of correlation observed between disease 

and non-disease samples is explained by the sizable effect of metabolic reprogramming on some 

components of cellular metabolism. 

 Furthermore, these correlation patterns demonstrate that our assignment methods and 

data analysis pipeline, including our quality control measures, are successfully reducing 

assignment ambiguity and providing consistent assignments across samples as well as 

instrument and clinical environment. Random incorrect assignments would not result in the 

observed correlation patterns between samples nor the stronger correlations observed among 

peaks classified to the same lipid category. 

 

Lipid Category Correlation and Co-Occurrence 

 In addition to the differences in abundance at a lipid category level, our study also 

examined the correlation of normalized lipid intensity across samples as well as the co-occurrence 

of those features across samples. We observed strong intra-category correlation among most 

glycerophospholipids, among several sub-populations of sphingolipids and weak intra-category 
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correlation with the sterols but two distinct sub-populations. Additionally, we observed inter-

category correlation among some glycerophospholipids, sphingolipids, and one sub-population of 

sterols.  

The de novo synthesis of lipids is complex and we hypothesize that these correlation 

patterns are the result of co-regulation across lipid categories possibly in combination with 

regulation at a lipid category level. A possible mechanism for this co-regulation is through steroid 

response element binding proteins (SREBPs), which are involved in regulating key enzymes in 

the sterol and glycerolipid biosynthetic pathways (Ericsson et al., 1997). Both SREBP-1 and 

SREBP-2 have been implicated in the control of lipid biosynthesis (Wen et al., 2018) and previous 

studies have shown that altered SREBP-1 signaling due to B7-H3 (aka CD276, an immune 

checkpoint protein) overexpression is correlated with aggressive NSCLC and increased 

glycerolipid production (Luo et al., 2017).  However, the weaker correlation patterns observed 

among sphingolipids and glycerophospholipids could imply more incorrect assignments for these 

lipid categories, which is expected for sphingolipids due to our method’s  tendency to overpredict 

that lipid category (Mitchell et al., 2020). This weaker correlation could also represent more 

complex regulatory mechanisms or a mixture of scavenging and de novo synthesis. Additionally, 

some correlation could be the result of multiple lipid categories sharing various precursor 

metabolites.  

 Correlation, however, is only part of the picture. Although many of the lipid categories were 

correlated to other members of their same category or class, not all members of each class are 

observed to co-occur with one another. Two distinct populations of sterols are clear in Figure 4B, 

one large and one small population of sterols that co-occur with one another. Additionally, each 

population of sterols co-occurs with other lipids from the other categories, implying that there are 

two distinct lipid profiles observed across the samples. The origin and clinical implications of these 

two lipid profiles is unclear, but one population could correspond to lung cancer that may respond 

to statins.  
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Potential Clinical Implications  

 Our differential abundance analysis identified clear differences in the relative abundances 

of lipids between NSCLC tissue and non-cancerous tissue samples derived from the same 

patient. Notably, the relative abundances of a subset of sterols (Figure 4) were significantly and 

consistently higher in the disease samples compared to control. Although interfering with any of 

the metabolic pathways implicated by these findings could potentially have therapeutic roles in 

the treatment of NSCLC, sterol metabolism is the easiest to target with existing commonly-

prescribed pharmaceuticals. As discussed earlier, increased sterol production is observed across 

multiple cancers and as such, this finding is not unexpected. While our results do not directly 

support a claim that statins have an anti-cancer effect through the inhibition of the mevalonate 

pathway, increased sterol production in cancer vs. non-cancer is a prerequisite for such a 

hypothesis to be true and our results are indirectly supportive of this hypothesis. More importantly, 

our methods provide a potential avenue to explore the effects of statins and other pharmaceuticals 

on lipid profiles in an untargeted and comprehensive manner.   

The mechanisms resulting in the observed lipid profile changes from our study are not 

addressed here, and should be the object of future studies. Increased sterol and 

glycerophospholipids concentrations are consistent with direct (constitutively active mutants) or 

indirect (downstream signaling) activation of: i) EGFR, which promotes glycerophospholipids and 

sterol biosynthesis (Sukhanova et al., 2013) (Gabitova et al., 2013); ii) SCD, which is required for 

some sterol esters (Bené et al., 2001) and glycerophospholipids (Balgoma et al., 2019); and iii) 

ACLY, which is essential for lipid biosynthesis (Zaidi et al., 2012). As mentioned previously, 

SREBPs might also be involved in these lipid profile changes (Luo et al., 2017) (Ericsson et al., 

1997). Furthermore, if the presence of more-abundant sterol esters can be verified, the enzyme 

ACAT-1 becomes a promising target in NSCLC. Previous studies on pancreatic cancer have 
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shown that inhibition of ACAT-1 prevents the conversion of cholesterol to sterol esters, which 

results in apoptosis due to elevated endoplasmic reticulum stress (Li et al., 2016). 

One possible hypothesis explaining the observed differences is that acquisition of a high 

concentration sterol and glycerophospholipid metabolic phenotype may be necessary for the 

development of NSCLC. Therefore, multiple distinct genetic lesions may result in this metabolic 

phenotype. Thus, pharmaceutical intervention that directly targets the sterol component of this 

phenotype may be beneficial for a variety of genetically distinct NSCLC subtypes. Alternatively, 

these lipid profile differences may be a byproduct of other disease processes and not directly 

contributory to the development of disease. In this case, these metabolic changes would still be 

useful as biomarkers for genetic subtypes of NSCLC.  

   

Conclusions 

 The use of untargeted assignment tools such as SMIRFE combined with EMF voting and 

machine learning models for the prediction of lipid categories enables comprehensive lipid 

profiling in human derived samples. The accuracy of the resulting molecular formula assignment 

and lipid classification for paired disease and non-disease tissue samples from human patients 

predominantly with primary NSCLC is confirmed through observed patterns of stronger within-

patient correlation and within-lipid category and class correlations. A subsequent differential 

abundance analysis identified a consistent and significant difference in lipid profiles between 

disease samples and controls. Most notably, sterols are significantly and consistently observed 

in higher relative concentrations in disease tissue than in neighboring non-disease tissue. These 

findings are consistent with known genetic lesions observed in NSCLC and with common 

metabolic alterations observed in cancer metabolic reprogramming.  

 Furthermore, the change in sterol profile between disease and non-disease has the 

potential to be clinically translatable. Statins and other mevalonate pathway altering drugs, which 

are known to improve outcomes in NSCLC patients, could be altering these lipid profiles as part 
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of their mechanism of action. Although further studies are necessary to test this hypothesis, the 

ability to detect and quantify lipid profiles in an untargeted manner provides the capability to 

directly observe the metabolic effect of pharmacological interventions targeting the mevalonate, 

with respect to NSCLC lipid profiles. Which genetic markers correlate to our observed molecular 

phenotype remains unclear, but future genomic or transcriptomics datasets from a similar cohort 

of patients combined with our lipid profiling approach could identify the genetic markers for this 

metabolic phenotype. The possibility that multiple genetic lesions could result in the same or 

similar metabolic phenotype implies that anti-mevalonate pathway therapies could have a direct 

chemotherapeutic or adjuvant role in the treatment of many genetically distinct subtypes of 

NSCLC.  
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Supplemental Materials 

 

EMF Voting Description and IMF-Level Data Extraction 

 Elemental molecular formula (EMF) voting was used to match peaks across samples and 

determine the most likely assignments from SMIRFE. First, for each sample, the assignments are 

extracted, filtered, and scored. Those assignments containing sulfur are removed, and any 

assignments that contain only peaks that were marked as being questionable removed. Scores 

are calculated as 1 – E-value, and EMFs that were classified as lipids had their score multiplied 

by 2. 
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 For each sample, peaks were grouped to a sample specific EMF by determining the list of 

shared EMFs across a group of peaks (grouped_EMF). Scores for each formula in the 

grouped_EMF in the sample were taken as the best score for that formula from available scores 

in the group. After all sample grouped_EMFs are generated, additional scores for a formula are 

considered in actual voting by looking for the same unadducted base EMF with different adducts 

and adding these scores into the final total score.  

 pseudo_EMFs are collections of grouped_EMFs across samples. They are generated 

across samples by iteratively merging grouped_EMFs with shared formulas, creating a new list 

of formulas in an EMF, and merging any pseudo_EMFs that have shared formulas again. 

 For each pseudo_EMFs, the most likely formulas are determined by voting. Voting uses 

the sum of EMF scores across samples, including those from the same formula with a different 

adduct. Those formulas with a total score in the top 90% of all total scores were considered 

“winning” formulas and kept as the “voted formula” set. Any peaks that did not originally have a 

“voted formula” were then checked to see if the peak location was within previously defined 

tolerance, and if the ordered peak intensities for the set of peaks from a sample are in the same 

order as the natural abundance probabilities of IMFs for the voted EMF. If so, then the peaks are 

kept as having the “voted formula” set. 

 After voting, all of the peaks are checked to make sure that the peak locations are within 

previously defined m/z specific cutoffs. Any peak outside of it’s specific cutoff is removed. 

 Finally, those pseudo_EMFs that share greater than 50% of their peaks are merged 

together, and voting on the EMFs is performed again. 

 Peak locations from our custom data processing pipeline are reported both in m/z and 

frequency, which are derived from the m/z values. The frequency values are more reliable (i.e., 

more consistent with less variance), but differ between instruments. Therefore, for each set of 

samples from a particular instrument, we use high confidence assignments (e-value <= 0.1, m/z 

<= 600) to derive a frequency cutoff using the mode of the distribution of frequency standard 
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deviations across both groups of samples. This frequency cutoff is used to do EMF voting within 

an instrument. The m/z standard deviations of the voted peaks are then fit to m/z using a 

generalized additive model, and the standard deviation of the predicted m/z values are multiplied 

by 2 to derive an m/z cutoff so that voting can be performed across the instruments. 

 

Patient Info Table 

 

demographic_info_NSCLC.xls 
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Supplemental Figure 1 

 

 

 

Supplemental Figure 1:  

 Further analysis of correlation observed between cancer samples reveals two distinct 

groups of cancer samples. Group 1 comprises 22 of the 26 adenocarcinoma samples and 

Group 2 the remaining 4. Group 1 appears to comprise at least two subgroups of cancer 

samples; however, neither of these subgroups represents one subtype of NSCLC.  
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