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Abstract 

Background: Self-reported information may not accurately capture smoking exposure. We 

aimed to evaluate whether smoking-associated DNA methylation markers improve urothelial 

cell carcinoma (UCC) risk prediction.  

 

Methods: Conditional logistic regression was used to assess associations between blood-

based methylation and UCC risk using two matched case-control samples, N=404 pairs from 

the Melbourne Collaborative Cohort Study (MCCS) and N=440 pairs from the Women’s 

Health Initiative (WHI) cohort, respectively. Results were pooled using fixed-effects meta-

analysis. We developed methylation-based predictors of UCC and evaluated their prediction 

accuracy on two replication datasets using the area under the curve (AUC).  

 

Results: The meta-analysis identified associations (P<4.7×10-5) for 29 of 1,061 smoking-

associated methylation sites, but these were substantially attenuated after adjustment for self-

reported smoking. Nominally significant associations (P<0.05) were found for 387 (36%) and 

86 (8%) of smoking-associated markers without/with adjustment for self-reported smoking, 

respectively, with same direction of association as with smoking for 387 (100%) and 79 (92%) 

markers. A Lasso-based predictor was associated with UCC risk in one replication dataset in 

MCCS (N=134, odds ratio per SD [OR]=1.37, 95%CI=1.00-1.90) after confounder 

adjustment; AUC=0.66, compared with AUC=0.64 without methylation information. Limited 

evidence of replication was found in the second testing dataset in WHI (N=440, OR=1.09, 

95%CI=0.91-1.30). 

 

Conclusions: Combination of smoking-associated methylation marks may provide some 

improvement to UCC risk prediction. Our findings need further evaluation using larger 

datasets.  

 

Impact: DNA methylation may be associated with UCC risk beyond traditional smoking 

assessment and could contribute to some improvements in stratification of UCC risk in the 

general population.  
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Introduction 

Urothelial cell carcinoma (UCC) is a type of malignancy arising from the urothelium. While 

UCC accounts for more than 90% of urinary bladder cancers (1), some can also be found in 

the proximal urethra, the transitional epithelium of the renal pelvis, and the ureter 

(2). According to Global Cancer Statistics 2018, bladder cancer is the tenth most common 

cancer worldwide, with an estimated 549,000 new cases and 200,000 deaths (3). Cigarette 

smoking has been established as a strong risk factor for UCC with approximately half of 

newly diagnosed patients reporting a history of smoking (4, 5). Many studies (6-9) have 

investigated the association between smoking and risk of UCC, and a meta-analysis of 89 

observational studies reported an increased risk of bladder cancer for current smokers (odds 

ratio [OR] = 3.1, 95% confidence interval [CI] = 2.5-3.7) and former smokers (OR = 1.8, 95% 

CI = 1.5-2.1), compared with never smokers (10). However, information on smoking history 

used in most epidemiological studies, such as smoking status (never, former or current 

smoker) or pack-years, is typically collected via self-report and may be prone to substantial 

measurement error. The accuracy of self-reported information has also been questioned 

because of declining response rates and the increasing social stigmatisation of smoking (11). 

Furthermore, such information cannot reflect second-hand smoke exposure during childhood 

or adulthood. Therefore, such less accurate information would have potential impact on 

studies of disease association and risk prediction.  

        Serum or urinary cotinine (12) and blood DNA methylation (13-16) have been 

established as valid biomarkers of cigarette smoking exposure. Although cotinine and 

methylation markers showed similar accuracy in distinguishing current from never smokers, 

only methylation markers can distinguish former from never smokers with high accuracy (17). 

Therefore, DNA methylation markers measured in blood, which may also reflect different 

individuals’ responses to lifetime exposure, can be used to augment self-reported smoking 

data to help refine individual risk profiling of smoking-induced diseases (18-20). 

        Authors of several studies (21-23) have evaluated the association of genome-wide 

cytosine-guanine (CpG) methylation in blood DNA with risk of UCC. Jordahl et al. (23), for 

example, identified potential methylation-based markers of susceptibility to urothelial 

carcinoma of the bladder, using the Illumina Infinium HumanMethylation450 Bead Array 

(~450,000 probes) on pre-diagnostic blood collected in the Women’s Health Initiative (WHI). 

They subsequently found that two previously identified smoking-associated CpG sites 
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mediated the effect of smoking on bladder cancer risk (24). With the current study, we aimed 

to expand on previous research by identifying associations between smoking-associated DNA 

methylation and bladder cancer risk and by developing a predictor of UCC risk using 

smoking-associated DNA methylation measures.  

 

Materials and Methods 

Study participants 

The Melbourne Collaborative Cohort Study (MCCS) is an Australian prospective cohort 

study of 41,513 people recruited between 1990 and 1994 in the Melbourne metropolitan area. 

All participants were of white European origin. DNA was extracted from pre-diagnostic 

peripheral blood taken at recruitment (1990-1994) or at a subsequent follow-up visit (2003-

2007) in participants free of UCC. More details about the cohort, blood collection, DNA 

extraction and cancer ascertainment can be found elsewhere (22, 25). In this study, we 

utilized a case-control data set of urothelial cancer nested within the MCCS. Controls were 

matched to incident cases on age at blood draw, year of birth, sex, country of birth 

(Australia/New-Zealand/UK/other, Italy or Greece), sample collection period (baseline at 

recruitment or the follow-up visit) and sample type (peripheral blood mononuclear cells, 

dried blood spots or buffy coats) using incidence density sampling. To minimise batch effects, 

samples from each matched case-control pair were plated to adjacent wells on the same 

BeadChip, with plate, chip, and position assigned randomly. We excluded from the analysis 

sex-discrepant and failed samples for DNA methylation measures. Case-control pairs with 

any missing values for the confounders measured were also excluded. Overall, 404 case-

control pairs were included in the present study.  

        For replication and meta-analysis, we included the study sample previously used by 

Jordahl et al. (23, 24), which comprises 440 cases diagnosed with urothelial carcinoma of the 

bladder and 440 cancer-free controls matched on year of enrollment, age at enrollment (±2 

years), follow-up time greater than or equal to their matched case, trial component and DNA 

extraction method (5-Prime, phenol, Bioserve, or PurGene). This case-control study was 

nested within the WHI, which includes 161,808 postmenopausal women recruited from 1993 

to 1998 across the United States (26).  

        The study was approved by the Cancer Council Victoria’s Human Research Ethics 

Committee, Melbourne, VIC, Australia, and the Institutional Review Board and Publications 

and Presentations Committee of WHI - Clinical Coordinating Center in the Fred Hutchinson 
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Cancer Research Center, Seattle, WA, USA. All participants provided informed consent in 

accordance with the Declaration of Helsinki.  

 

Quality control and normalisation of methylation data 

Quality control (QC) details for measures of genome-wide DNA methylation in the MCCS 

have been reported previously (22). Briefly, we removed probes with missing rate > 20% and 

probes on Y-chromosome, and ultimately retained 484,966 CpG sites with their beta values 

for each sample. Methylation M-values, calculated as log2(beta/(1-beta)), were used for 

analysis as these are thought to be more statistically valid for detection of differential 

methylation (27). In the replication data of WHI, similar data processing on DNA 

methylation were performed, e.g. QC on CpGs sites using probe missing rate (> 10%) and 

beadcount (<3) in at least 10% of samples, and M-value transformation, as described 

previously (23, 24). 

 

Association analysis of genome-wide DNA methylation 

An epigenome-wide association study (EWAS) based on the 404 case-control pairs in MCCS 

was conducted, using conditional logistic regression to estimate OR and 95% CI of UCC risk 

per SD at each of the 484,966 CpG sites. A first model (Model 1) was adjusted for white 

blood cell composition (percentage of CD4 + T cells, CD8 + T cells, B cells, NK cells, 

monocytes and granulocytes, estimated using the Houseman algorithm [28]), and a second 

model (Model 2) was additionally adjusted for smoking status (current / former / never) and 

pack-years (log-transformed). As a sensitivity analysis, we evaluated a third model (Model 3) 

with additional adjustment for alcohol consumed in the previous week (in grams/day), body 

mass index (in kg/m2), height (in metres), educational level (pseudo-continuous score ranging 

from 1 for “primary school only” to 8 for “tertiary or higher university degree”), physical 

activity (categorised score based on time spent doing vigorous/less vigorous activities), 

socioeconomic status (deciles of the relative socioeconomic disadvantage of area of residence 

index) and diet quality (Alternative Healthy Eating Index 2010). We also stratified analyses 

by sex and clinical subtype (muscle invasive or non-muscle invasive) and tested 

heterogeneity of the associations using the likelihood ratio test, by comparing models with 

and without interaction terms for these variables. The Bonferroni correction was applied to 

account for multiple comparisons (P<0.05/484966 =1.03×10-7).  

 

Association analysis of smoking-associated DNA methylation  
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Among the 484,966 probes, we focused on 1,061 sites that were found to be strongly 

associated with a comprehensive smoking index in the MCCS (P<10-7) and also reported to 

be associated with smoking at this threshold P<10-7 in any of six large studies, as described in 

our previous publication (ref. 29; see Supplementary Table 1). For the replication study, we 

also used conditional logistic regression (Model 1 and Model 2) to estimate associations of 

the 1,061 smoking-associated DNA methylation measures with risk of UCC in the WHI. For 

the WHI study, Model 1 and Model 2 were additionally adjusted for race/ethnicity 

(Asian/Pacific Islander, Black/African American, Hispanic/Latino, non-Hispanic White, or 

other). The Bonferroni correction was applied to account for multiple comparisons 

(P<0.05/1061 =4.7×10-5). 

 

Meta-analysis of MCCS and WHI studies 

A fixed-effects meta-analysis with inverse-variance weights was conducted to combine 

associations with UCC risk at the 1,061 smoking-associated CpGs from the analyses of 

MCCS and WHI, using the metagen function in the R package meta (30). The I-square 

statistic was used to assess heterogeneity across the two studies.  

 

Predictive models 

A predictor of UCC risk was developed using the data of 270 case-control pairs from the 

MCCS cohort for which blood was collected at baseline (1990-1994) as the training set 

(discovery phase), and 134 case-control pairs for which blood was drawn at follow-up (2003-

2007) as an independent testing set in the validation phase. We used penalised logistic 

regression models with UCC risk as the outcome and the M-values at the 1,061 smoking-

associated CpGs as the independent variables, applied to the training set using the R package 

glmnet (31).  Fivefold cross-validation was used, and the mixing parameter (alpha) was set to 

1 to apply a Lasso (least absolute shrinkage and selection operator) penalty. The covariates 

used in Model 3 were forced in the penalised logistic models. Coefficients of the logistic 

Lasso model with the lambda value corresponding to the minimum mean cross-validated 

error were extracted and used as weights of the selected CpGs to construct a smoking 

methylation score (MS) for each participant. The smoking MS was then evaluated as a 

predictor of UCC risk in conditional logistic regression models (adjusted for covariates in 

Model 3 for MCCS data and in Model 2 for WHI data, respectively) in the validation sets.  

        Alternative ways to build methylation-based predictors of UCC risk were explored. We 

conducted univariate analyses using conditional logistic regression models to the training set 
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to estimate ORs for the individual associations between DNA methylation and UCC risk at 

each of the 1,061 CpGs. The same covariates as those forced in the Lasso models were 

included as covariates. We considered three P-value cut-offs (0.05, 0.01 and 0.001) of 

individual associations at the 1,061 sites, and for each of them we calculated a smoking MS 

as a weighted average using as weights the logarithm of the OR for each selected CpG.  

        As a sensitivity analysis, we also used the logistic Lasso method (as described above) to 

develop a DNA methylation-based smoking predictor of UCC risk using all 404 MCCS case-

control pairs. The external 440 case-control pairs from the WHI study were then used as an 

independent validation set to assess the proposed DNA methylation-based smoking predictors 

by using conditional logistic regression models (adjusted for covariates in Model 2).  

        The accuracy of the predictive models with the smoking MS as UCC risk predictor was 

assessed using area under the receiver operating characteristic curve (AUC) estimates with 

unconditional logistic regression models (Models A, B and C), using the R package pROC 

(32). Model A used white blood cell composition as independent variables. Model B used 

white blood cell composition, smoking status and pack-years (log-transformed) as 

independent variables. Race/ethnicity was also included in the two models for the WHI 

sample. Model C used white blood cell composition, smoking status, pack-years and other 

covariates (age, sex, country of birth, sample type, alcohol, BMI, height, educational level, 

physical activity, socioeconomic status and diet quality) as independent variables. The 

proposed methylation scores were then used as additional independent variables in the 

models to assess the prediction performance by AUC. The DeLong test (33) was used for 

comparing AUCs. 

        All methylation scores were rescaled to Z-scores for better comparability of their 

association with UCC risk. The flowchart of the statistical analysis pipelines and method 

details are shown in Figure 1.  

 

 

Results 

The distribution of sociodemographic, lifestyle, anthropometric and clinical characteristics of 

the participants in the MCCS is presented in Table 1. Controls were matched to cases on age 

at blood draw, sex, country of birth (Australia/New-Zealand/UK/other, Italy or Greece) and 

sample type (peripheral blood mononuclear cells, dried blood spots and buffy coats). The 

participants in the MCCS testing set were an average eight years older than in the training set. 
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Compared with controls, cases were more frequently past and current smokers, and had 

greater smoking pack-years.  

        For the genome-wide probes tested on the 404 MCCS case-control pairs using Models 

1-3, there was no significant association between DNA methylation and risk of UCC after 

Bonferroni correction (P<1.03×10-7). Nominally significant associations (P<0.05) were 

observed for 40,664 (~8%), 32,137 (~7%) and 31,319 (~6%) of the 484,966 CpGs using 

Models 1-3, respectively.  

        Focusing on the 1,061 smoking-associated CpG sites that we previously identified (29), 

there was no significant association between DNA methylation and UCC risk in the MCCS 

after Bonferroni correction (P<4.7×10-5). Comparing to genome-wide results, there were 

more methylation markers associated with risk of UCC for the smoking-associated loci, e.g. 

19 of the 25 CpGs most strongly with smoking had P<0.05 in Model 1 (Supplementary Table 

1). Nominally significant associations (P<0.05) were observed for 206 (~19%) and 93 (~9%) 

of the 1,061 CpGs in Models 1 and 2, respectively (Supplementary Table 1), and the direction 

of the association was the same as for smoking for 205/206 (100%) and 88/93 (95%) CpG 

sites. Adjustment for a more comprehensive set of variables (Model 3) did not substantially 

change the associations (Table 2 and Supplementary Figure 1). Furthermore, the direction of 

association at 883 (83%, 662 negative and 221 positive, Model 1) and 766 (72%, 586 

negative and 180 positive, Model 2) of the 1,061 CpGs was the same as for their association 

with smoking (Supplementary Table 1). The results for the 20 most significant associations 

are presented in Table 2; for all of these associations, the direction of association was the 

same as with smoking. The stratified results by UCC subtype and sex are shown in 

Supplementary Tables 2 and 3; we observed no evidence of significant UCC subtype or sex 

heterogeneity after Bonferroni correction for multiple testing (P<4.7×10-5).  

        The replication study using WHI data identified nominally significant associations 

(P<0.05) for 229 (~22%) and 47 (~4%) of the 1,061 smoking-based CpGs in Models 1 and 2, 

respectively (Supplementary Tables 4 and 5). Among these associations, 51 CpGs (Model 1) 

and 3 CpGs (Model 2) were also nominally significant and in the same direction as in the 

MCCS data. 

        The meta-analysis of MCCS and WHI results identified nominally significant 

associations for 387 (~36%) and 86 (~8%) CpG sites in Models 1 and 2, respectively 

(Supplementary Tables 4 and 5), and the direction of the association was the same as the 

association with smoking for 387/387 (100%) and 79/86 (92%) of the CpGs. There were 29 

significant associations in Model 1 after Bonferroni correction (P<4.7×10-5), and among these 
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associations, 9 CpGs overlapping the AHRR, GPR15, F2RL3, PRSS23 and GFI1 genes were 

genome-wide significant (P<1.03×10-7). The associations were nevertheless substantially 

attenuated (all P>4.7×10-5) after adjusting for self-reported smoking variables (Model 2). For 

the majority of the 1,061 CpGs, there was little heterogeneity between MCCS and WHI 

results (81% and 83% of the CpGs had I2 < 0.5 in Models 1 and 2, respectively, see 

Supplementary Tables 4 and 5). The 20 strongest associations in the meta-analyses of Model 

1 and Model 2 are shown in Table 3.  

        The logistic Lasso regression of UCC risk on the 1,061 smoking-based CpGs using the 

270 MCCS baseline case-control pairs selected ten CpGs (MS10): cg01324550 (LOC404266), 

cg02743070 (ZMIZ1), cg07058086 (KIF13B), cg10399789 (GFI1), cg16622061 (chr16: 

86888736), cg17924476 (AHRR), cg18979623 (ZBTB46), cg19089201 (MYO1G), 

cg23110422 (ETS2) and cg24139443 (chr17: 74131549) (Supplementary Table 6). The 

associations with risk of UCC for the 1,061 smoking-associated methylation sites on the 

training data are shown in Supplementary Table 6. The derived methylation scores based on 

associations at P<0.05, P<0.01 and P<0.001 included 66 (MS66), 11 (MS11) and 2 (MS2) 

CpGs, respectively. The associations of these four predictors with UCC risk in the MCCS 

validation dataset (N=134 cases, Model 3) are presented in Table 4. MS10 and MS11 had five 

overlapping CpGs (cg07058086, cg10399789, cg17924476, cg19089201 and cg23110422) 

and were associated with risk of UCC in the testing dataset (OR=1.37, 95% CI: 1.00-1.90) 

and (OR=1.42, 95% CI: 1.01-1.99), respectively. The association of MS10 with UCC risk in 

the WHI data (Model 2) was weaker (OR=1.09, 95% CI: 0.91-1.30).  

        Using all 404 case-control pairs of MCCS as the training set, as a sensitivity analysis, 

the logistic Lasso models selected 18 CpGs (MS18) from the 1,061 smoking-associated CpGs 

(Supplementary Table 7). MS18 and MS10 had eight overlapping CpGs (cg02743070, 

cg07058086, cg10399789, cg16622061, cg17924476, cg19089201, cg23110422 and 

cg24139443). We assessed the resulting predictor MS18 by examining its association with 

UCC risk in the WHI data, and the result was very similar as for MS10 (OR=1.09, 95% CI: 

0.92-1.30) (Table 4). The fixed-effects meta-analysis for MS10 of the two replication sets in 

MCCS (N=134) and WHI (N=440) gave an estimated OR of 1.15, 95% CI: 0.98-1.34, P=0.08. 

        The ability of the methylation scores to predict risk of UCC with different models on the 

validation datasets is presented in Table 5. For the MCCS validation set, the predictions by 

Model C + MS10 and Model C + MS11 achieved the highest AUC estimate of 0.66, which 

was only slightly greater than the same model without methylation information (AUC=0.64, 

P=0.43 for MS10 and 0.39 for MS11). For the WHI testing set, the prediction by Model B + 
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MS10 or MS18 achieved an AUC estimate of 0.68, which was of the same as Model B alone 

(P=0.11 or 0.22).  

 

 

Discussion 

Most previous studies that investigated the association of smoking with development of 

urothelial cancer used self-reported smoking history. We included two self-reported variables 

smoking status and pack-years in our analyses. There are other aspects of smoking history, 

such as age at starting or passive smoking that are typically not or inaccurately captured by 

questionnaires. As DNA methylation in blood can capture lifetime exposure or different 

individual responses to smoking, we evaluated the association between smoking-associated 

methylation and risk of UCC. Although potential associations with UCC were identified at 

206 (~19%) and 93 (~9%) smoking-based CpG sites in the MCCS in models without and 

with adjustment for self-reported smoking, respectively, and most associations were in the 

expected direction, these associations were overall quite weak. In the meta-analysis, DNA 

methylation at genes including AHRR, GPR15, F2RL3, PRSS23 and GFI1 (major smoking-

related genes) was strongly (P<10-7) associated with UCC risk; however, the associations 

were substantially attenuated after adjusting for self-reported smoking history, likely because 

these self-reported variables might have captured almost full information of smoking 

exposure. Thus, these methylation markers added relatively little to the prediction of 

urothelial cancer risk beyond their association with self-reported smoking. A methylation 

score combining measures at ten smoking-associated CpG sites developed in the MCCS 

cohort showed some evidence of association with risk of UCC (OR per SD ~ 1.4) 

independently of self-reported smoking in an independent dataset of MCCS participants 

(Table 4). Although these results suggest that the combination of smoking methylation 

markers may improve the prediction of urothelial cancer risk, limited evidence of replication 

was found in the WHI cohort (OR per SD ~ 1.1).  

        The previous study by Jordahl et al. (24) using WHI data investigated three specific 

smoking-related probes (cg05575921 in the gene AHRR, cg03636183 in F2RL3 and 

cg19859270 in GPR15) in relation to risk of UCC and showed that methylation alterations at 

cg05575921 and cg19859270 might mediate the effects of smoking on UCC. Our MCCS data 

also detected nominally significant associations with UCC risk at these CpGs (cg05575921: 

OR=0.78 [95% CI: 0.63-0.97], P=0.02 and cg19859270: OR=0.81 [95% CI: 0.68-0.97], 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.16.21253681doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253681
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 

 

P=0.02) in the adjusted model, which indicate they may add information about risk, in 

addition to the potential mediation of effect.  

        DNA methylation at AHRR cg05575921 was previously reported to be strongly 

associated with lung cancer risk (19, 34-36), e.g. OR=0.50 (95% CI: 0.43-0.59), P=4.3×10-17 

in a pooled analysis of five case-control studies (19). Six CpGs in the AHRR gene also 

showed nominally significant association (P<0.05) with risk of UCC in our meta-analysis 

(Model 2): cg05575921 (OR=0.76, P=0.003), cg17924476 (OR=1.19, P=0.003), cg26529655 

(OR=0.77, P=0.01), cg12806681 (OR=0.86, P=0.02), cg01899089 (OR=0.88, P=0.03) and 

cg03991871 (OR=0.88, P=0.04) (see Supplementary Table 5). Moreover, cg03636183 in the 

F2RL3 gene, cg21566642 and cg05951221 in 2q37.1, and cg06126421 in 6p21.33 were also 

reported to be strongly associated (P=2×10-15) with lung cancer risk (19). Among them, three 

CpGs also showed nominally significant association with UCC risk in our meta-analyses 

(Model 2): cg21566642 (OR=0.82, P=0.009), cg05951221 (OR=0.86, P=0.04) and 

cg06126421 (OR=0.85, P=0.03) (see Supplementary Table 5). These associations appeared to 

be weaker than in the lung cancer studies, likely because smoking is not as strong a risk 

factor for urothelial cancer as it is for lung cancer. In a recent study (37), we showed that 

GrimAge, a composite biomarker based on several DNA methylation surrogates for plasma 

proteins and a methylation-based estimator of smoking pack-years (38), is substantially more 

strongly associated with lung cancer risk (OR per SD=2.03, 95% CI: 1.56-2.64) than with 

risk of UCC (OR=1.22, 95% CI: 0.98-1.52). 

        The samples used in the WHI cohort were all postmenopausal women and smoking 

accounts for approximately half of bladder cancer incidence among postmenopausal women 

(4, 23). Sex is associated with distinct DNA methylation patterns (39). However, we did not 

find that associations of DNA methylation smoking markers with UCC varied by sex in the 

MCCS data, nor did we find heterogeneity between MCCS and WHI results. In this study, we 

used two common methods to develop risk predictors: i) Lasso and ii) univariate analysis 

with weighted average based on individual CpG associations with UCC risk. For the latter, it 

is difficult to decide on an appropriate P-value cut-off and our results showed that the Lasso 

performed well in this setting. Although there was a reasonably large association of the Lasso 

predictor in the testing set (OR per 1 SD ~ 1.4), this translated into only moderately improved 

risk prediction (Table 5).  

        There are several limitations in this study. First, even with pre-diagnostic blood samples, 

we cannot rule out the possibility that DNA methylation measures in blood reflected early 

cancer or development of other smoking-associated diseases. Second, the participants 
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included in the MCCS testing set were an average eight years older than in the training set. 

As DNA methylation exhibits strong correlations with age, findings may have varied due to 

age differences between cohorts. We also noted that Model 1, which included only white 

blood cell composition variables, achieved an AUC of 0.53 for the training set but an AUC of 

0.61 for the replication set (older MCCS participants). It may be that age, a strong cancer risk 

factor, is associated with changes in white blood cell composition over time (40) that are also 

associated with cancer risk (41, 42). Third, we considered the two MCCS datasets as 

independent because there was no participant overlap, and participants with follow-up blood 

samples were substantially older, however, the samples were drawn from the same cohort and 

might have shared environment; thus, the two datasets might not be completely independent, 

which may have an influence on results of validation and risk prediction. Fourth, the modest 

improvement of AUC may suggest that other factors, such as germline genetic variation, and 

incorporation of more environmental exposures, should be considered in the predictive 

models. Finally, compared with the MCCS cohort, the methylation measures in WHI were 

produced using different methods of sample collection and storage, DNA extraction, and 

DNA methylation processing, which may have influenced some findings, e.g. high 

heterogeneity for some CpGs across the two studies when performing meta-analysis.  

        In conclusion, our findings suggest that blood-based DNA methylation markers for 

smoking may be associated, albeit weakly, with risk of UCC independent of self-reported 

smoking history, and could provide some improvement to the prediction of urothelial cancer 

risk. The overall utility of our findings needs to be further assessed using additional external 

datasets.  
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Figure legends 

Figure 1. Flowchart of the study. 

 

 

 

Table 1: Characteristics of the MCCS participants included in the analyses. 

 
Participant characteristics Training set (1990-1994) Testing set (2003-2007) 

UCC cases 
(N=270) 

Controls 
(N=270) 

UCC cases 
(N=134) 

Controls 
(N=134) 

Age at blood draw, median [IQR] 63 
[58-67] 

64 
[58-67] 

72 
[67-77] 

72 
[67-77] 

Sex: 
male, N (%) 
female, N (%) 

 
207 (77%) 
63 (23%) 

 
207 (77%) 
63 (23%) 

 
101 (75%) 
33 (25%) 

 
101 (75%) 
33 (25%) 

Country of birth: 
    Australia/NZ/UK/other, N (%) 
    Italy, N (%) 
    Greece, N (%) 

 
 168 (62%) 
56 (21%) 
46 (17%) 

 
166 (61%) 
58 (21%) 
46 (17%) 

 
104 (78%) 
20 (15%) 
10 (7%) 

 
104 (78%) 
20 (15%) 
10 (7%) 

Blood sample type:  
    Dried blood spots, N (%)  
    Peripheral blood mononuclear cells, N (%)   
    Buffy coats, N (%) 

 
170 (63%) 
93 (34%) 
7 (3%) 

 
170 (63%) 
93 (34%) 
7 (3%) 

 
1 (1%) 
0 (0%) 

133 (99%) 

 
1 (1%) 
0 (0%) 

133 (99%) 
Smoking:  
    current, N (%)   
    former, N (%)   
    never, N (%) 

 
51 (19%) 
146 (54%) 
73 (27%) 

 
41 (15%) 
111 (41%) 
118 (44%) 

 
22 (16%) 
68 (51%) 
44 (33%) 

 
13 (10%) 
63 (47%) 
58 (43%) 

Smoking pack-years, median [IQR] 18 
[0-40.7] 

4.2 
[0-29.6] 

11.4 
[0-35.1] 

5.2 
[0-19.8] 

Height (cm), median [IQR] 168 
[162-173] 

168 
[163-173] 

169 
[162-176] 

170 
[164-175] 

Body mass index (kg/m2), median [IQR] 27.5 
[25.4-29.8] 

27.1 
[24.8-29.5] 

27.3 
[24.7-29.8] 

27.2 
[24.5-29.5] 

Alcohol (ethanol) consumption (g/day), median 
[IQR] 

4.5 
[0-20.5] 

6.8 
[0-17.7] 

9.2 
[1.3-23.6] 

8.7 
[0.6-23.4] 

Diet quality: AHEI-2010, median [IQR] 63.0 
[55.0-70.9] 

64.5 
[57.0-72.0] 

64.5 
[55.0-70.5] 

63.0 
[57.5-72.4] 

Physical activity score, median [IQR] 2 
[1.3-2] 

2 
[2-2] 

2 
[2-3] 

2 
[2-2.8] 

Education score, median [IQR] 4 
[3-5] 

4 
[3-6] 

4 
[4-7] 

4 
[4-8] 

Socioeconomic status, SEIFA-10, median [IQR] 5 
[3-8] 

5 
[3-8] 

6 
[4-9] 

6 
[3-9] 

 
Note: Physical activity score is a categorised score based on time spent doing vigorous/less 

vigorous activities.  Educational score is a pseudo-continuous score ranging from 1 for 

“primary school only” to 8 for “tertiary or higher university degree”.  
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Table 2: EWAS results of UCC risk in the 20 most significant associations (Model 1) of the 1,061 smoking-associated CpGs based on the 404 
matched case-control pairs in the MCCS. 

 

Note: Association of methylation with smoking was estimated by linear mixed-effects regression on a comprehensive smoking index with a 

parameter tau = 1.5.29 Association of methylation with UCC risk was estimated by conditional logistic regression model. Model 1 was adjusted 

for white blood cell composition. Model 2 was adjusted for white blood cell composition, smoking status and pack-years. Model 3 was adjusted 

for white blood cell composition, smoking status, pack-years and other covariates (alcohol, BMI, height, educational level, physical activity, 

socioeconomic status and diet quality).  

 

CpG Chr. Position Gene Association with 
smoking29 

Association with UCC risk 
Model 1 

Association with UCC risk 
Model 2 

Association with UCC risk 
Model 3 

Effect P value OR (95% CI) P value OR (95% CI) P value OR (95% CI) P value 
cg21566642 2 233284661  -0.27 <5E-308 0.72 (0.61-0.84) 5.68E-05 0.80 (0.66-0.96) 1.99E-02 0.80 (0.66-0.98) 2.89E-02 
cg19089201 7 45002287 MYO1G 0.08 1.22E-21 1.39 (1.18-1.64) 6.13E-05 1.35 (1.15-1.60) 3.21E-04 1.36 (1.15-1.60) 3.70E-04 
cg12803068 7 45002919 MYO1G 0.20 2.07E-71 1.37 (1.18-1.61) 6.91E-05 1.31 (1.11-1.54) 1.32E-03 1.31 (1.11-1.55) 1.28E-03 
cg17924476 5 323794 AHRR 0.07 3.52E-29 1.36 (1.17-1.60) 1.14E-04 1.31 (1.11-1.54) 1.24E-03 1.31 (1.11-1.54) 1.62E-03 
cg05575921 5 373378 AHRR -0.39 <5E-308 0.74 (0.63-0.86) 1.16E-04 0.78 (0.63-0.97) 2.26E-02 0.79 (0.63-0.98) 3.25E-02 
cg10399789 1 92945668 GFI1 -0.06 2.42E-16 0.70 (0.59-0.84) 1.41E-04 0.69 (0.57-0.84) 1.24E-04 0.69 (0.57-0.83) 1.43E-04 
cg12876356 1 92946825 GFI1 -0.13 1.07E-66 0.72 (0.61-0.85) 1.49E-04 0.75 (0.63-0.90) 1.48E-03 0.75 (0.63-0.90) 1.75E-03 
cg27457191 7 77429766 PHTF2 -0.03 2.05E-08 0.57 (0.42-0.76) 1.51E-04 0.59 (0.44-0.80) 6.77E-04 0.58 (0.43-0.79) 4.91E-04 
cg09935388 1 92947588 GFI1 -0.19 1.94E-119 0.72 (0.61-0.86) 1.93E-04 0.78 (0.64-0.93) 6.68E-03 0.79 (0.66-0.96) 1.49E-02 
cg01940273 2 233284934  -0.19 1.69E-304 0.75 (0.64-0.87) 2.77E-04 0.82 (0.68-0.99) 3.43E-02 0.82 (0.68-0.98) 3.28E-02 
cg05951221 2 233284402  -0.21 <5E-308 0.75 (0.65-0.88) 2.95E-04 0.85 (0.71-1.01) 6.66E-02 0.86 (0.72-1.03) 1.10E-01 
cg08884752 1 2162001 SKI -0.04 6.97E-14 0.67 (0.54-0.84) 4.56E-04 0.70 (0.56-0.88) 2.16E-03 0.69 (0.55-0.87) 1.84E-03 
cg19859270 3 98251294 GPR15 -0.12 1.71E-104 0.75 (0.63-0.88) 4.74E-04 0.81 (0.68-0.97) 2.10E-02 0.81 (0.67-0.97) 1.99E-02 
cg06126421 6 30720080  -0.24 2.10E-259 0.73 (0.61-0.88) 6.47E-04 0.82 (0.67-1.00) 5.14E-02 0.81 (0.66-1.00) 4.71E-02 
cg23576855 5 373299 AHRR -0.33 4.63E-96 0.76 (0.65-0.89) 6.73E-04 0.80 (0.68-0.94) 5.54E-03 0.79 (0.67-0.93) 4.72E-03 
cg16151960 5 133890280 PHF15 -0.02 4.45E-12 0.70 (0.57-0.86) 6.80E-04 0.74 (0.60-0.91) 4.53E-03 0.73 (0.59-0.91) 4.99E-03 
cg09662411 1 92946132 GFI1 -0.06 8.65E-33 0.72 (0.60-0.87) 7.86E-04 0.76 (0.63-0.93) 7.98E-03 0.76 (0.63-0.93) 8.88E-03 
cg03636183 19 17000585 F2RL3 -0.21 <5E-308 0.75 (0.64-0.89) 8.61E-04 0.84 (0.69-1.02) 7.09E-02 0.83 (0.68-1.02) 7.68E-02 
cg03707168 19 49379127 PPP1R15A -0.09 1.96E-48 0.68 (0.54-0.86) 1.00E-03 0.74 (0.58-0.94) 1.40E-02 0.72 (0.57-0.93) 1.03E-02 
cg04011474 2 28904455  -0.05 3.79E-17 0.69 (0.55-0.86) 1.02E-03 0.71 (0.56-0.89) 2.95E-03 0.70 (0.56-0.89) 3.19E-03 
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Table 3: Meta-analysis results for MCCS and WHI in the 20 most significant associations between DNA methylation at 1,061 smoking-

associated CpGs and risk of UCC by Model 1 and Model 2, respectively. 

Meta-analysis (Model 1) Meta-analysis (Model 2) 

CpG Chr. Position Gene OR (95% CI) P value CpG Chr Position Gene OR (95% CI) P value 

cg21566642 2 233284661   0.67 (0.60-0.75) 2.35E-12 cg26203136 7 739057 PRKAR1B 0.81 (0.72-0.93) 1.67E-03 

cg05575921 5 373378 AHRR 0.64 (0.56-0.72) 2.59E-12 cg05575921 5 373378 AHRR 0.76 (0.63-0.91) 2.72E-03 

cg05951221 2 233284402   0.69 (0.62-0.77) 4.72E-11 cg23110422 21 40182073 ETS2 0.84 (0.74-0.94) 2.85E-03 

cg06126421 6 30720080   0.68 (0.61-0.77) 2.88E-10 cg17924476 5 323794 AHRR 1.19 (1.06-1.33) 3.31E-03 

cg01940273 2 233284934   0.71 (0.64-0.79) 1.15E-09 cg04332373 4 15779642 CD38 1.28 (1.08-1.51) 3.74E-03 

cg19859270 3 98251294 GPR15 0.71 (0.64-0.80) 2.65E-09 cg19089201 7 45002287 MYO1G 1.19 (1.06-1.34) 3.79E-03 

cg03636183 19 17000585 F2RL3 0.69 (0.61-0.78) 4.88E-09 cg11660018 11 86510915 PRSS23 0.80 (0.68-0.93) 4.15E-03 

cg11660018 11 86510915 PRSS23 0.68 (0.59-0.77) 1.37E-08 cg07123182 11 2722391 KCNQ1OT1 0.84 (0.75-0.95) 4.81E-03 

cg09935388 1 92947588 GFI1 0.73 (0.65-0.82) 5.72E-08 cg15013801 10 73976790 ASCC1 0.82 (0.71-0.94) 5.64E-03 

cg19798735 7 110730805 IMMP2L 0.64 (0.54-0.75) 1.22E-07 cg25560398 2 233252170 ECEL1P2 0.84 (0.74-0.95) 6.15E-03 

cg17924476 5 323794 AHRR 1.31 (1.18-1.45) 1.37E-07 cg19798735 7 110730805 IMMP2L 0.77 (0.64-0.93) 7.29E-03 

cg06644428 2 233284112   0.73 (0.64-0.82) 4.48E-07 cg10399789 1 92945668 GFI1 0.83 (0.72-0.95) 7.59E-03 

cg25560398 2 233252170 ECEL1P2 0.75 (0.66-0.84) 7.67E-07 cg26337070 2 85999873 ATOH8 0.80 (0.68-0.94) 8.15E-03 

cg12803068 7 45002919 MYO1G 1.31 (1.18-1.45) 7.90E-07 cg04086928 9 134612644 RAPGEF1 0.80 (0.68-0.94) 8.62E-03 

cg23110422 21 40182073 ETS2 0.78 (0.70-0.86) 1.36E-06 cg21566642 2 233284661   0.82 (0.71-0.95) 9.07E-03 

cg12876356 1 92946825 GFI1 0.77 (0.69-0.86) 2.09E-06 cg05677062 12 123874707 SETD8 0.82 (0.70-0.95) 9.13E-03 

cg03991871 5 368447 AHRR 0.77 (0.69-0.86) 2.30E-06 cg09935388 1 92947588 GFI1 0.84 (0.73-0.96) 1.01E-02 

cg03707168 19 49379127 PPP1R15A 0.66 (0.55-0.79) 6.48E-06 cg22052143 5 78067856   0.83 (0.72-0.96) 1.05E-02 

cg12806681 5 368394 AHRR 0.78 (0.70-0.87) 7.18E-06 cg26361535 8 144576604 ZC3H3 0.86 (0.77-0.97) 1.16E-02 

cg25189904 1 68299493 GNG12 0.78 (0.70-0.87) 8.80E-06 cg26529655 5 424371 AHRR 0.77 (0.63-0.94) 1.17E-02 
 
Note: Association of methylation with UCC risk was estimated by conditional logistic regression model. Model 1 was adjusted for white blood 

cell composition. Model 2 was adjusted for white blood cell composition, smoking status and pack-years. 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted M

arch 24, 2021. 
; 

https://doi.org/10.1101/2021.03.16.21253681
doi: 

m
edR

xiv preprint 

https://doi.org/10.1101/2021.03.16.21253681
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

 

Table 4: OR (per 1 SD increase), 95% CI and P value for the association between 

methylation-based predictors and risk of UCC.  

 
 
 

Predictor 

Replication datasets 
MCCS (N=134 pairs) WHI (N=440 pairs) 

OR (95%CI) P value OR (95%CI) P value 
MS10 1.37 (1.00-1.90) 0.05 1.09 (0.91-1.30) 0.37 
MS66 1.35 (0.95-1.91) 0.09   
MS11 1.42 (1.01-1.99) 0.04   
MS2 1.05 (0.78-1.40) 0.76   
MS18   1.09 (0.92-1.30) 0.33 

 
Note: The predictor was built by weighted average on methylation at selected CpGs: MS = 

b1CpG1 + b2CpG2 + … + bnCpGn, where CpGi is M-value at this CpG site, bi use Lasso 

coefficients (for MS10, MS18) or log of OR from univariate analyses (for MS66, MS11, 

MS2). The association was estimated by conditional logistic regression Model 3 for MCCS 

data and Model 2 for WHI data, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.16.21253681doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253681
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

Table 5: AUC estimates and comparisons for predictions of UCC risk on the validation 

dataset sets using several models. 

 
MCCS (N=134 pairs) WHI (N=440 pairs) 

 AUC P value  AUC P value 
Model A 0.61 0.18 (vs. Model C) Model A 0.58 0.0002 (vs. Model B) 
Model B 0.63 0.52 (vs. Model C) Model B 0.68  
Model C 0.64     

Model A + MS10 
Model A + MS11 

0.63 
0.64 

0.27 (vs. Model A) 
0.19 (vs. Model A) 

Model A + MS10 
Model A + MS18 

0.61 
0.61 

0.05 (vs. Model A) 
0.07 (vs. Model A) 

Model B + MS10 
Model B + MS11 

0.65 
0.65 

0.36 (vs. Model B) 
0.30 (vs. Model B) 

Model B + MS10 
Model B + MS18 

0.68 
0.68 

0.11 (vs. Model B) 
0.22 (vs. Model B) 

Model C + MS10 
Model C + MS11 

0.66 
0.66 

0.44 (vs. Model C) 
0.45 (vs. Model C) 

   

 
Note: The AUC was estimated based on unconditional logistic regression models. Model A 

used white blood cell composition as independent variables (for WHI, race/ethnicity was also 

used). Model B used white blood cell composition, smoking status and pack-years as 

independent variables (for WHI, race/ethnicity was also used). Model C used white blood cell 

composition, smoking status, pack-years and other covariates (age, sex, country of birth, 

sample type, alcohol, BMI, height, educational level, physical activity, socioeconomic status 

and diet quality) as independent variables. MS10, MS11 and MS18 were additional 

independent variables. P value was obtained by de Long test versus other models.  
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Main study 

MCCS urothelial cancer data  
cases (N=404) & matched controls (N=404) 

484,966 genome-wide CpGs 
 

Training set (collected at 1990 - 1994) 
cases (N=270) & matched controls (N=270) 

Method 1 
Used Lasso with 

cross-validation to 
identify 10 CpGs 

Build predictors of methylation score (MS) by weighted average 
of selected CpGs: MS = b1CpG1 + b2CpG2 + … + bnCpGn, 
CpGi is M-value at this CpG site,  
bi uses LASSO coefficients or log of OR from univariate analysis.  
MS10 from Method 1 
MS66, MS11 and MS2 from Method 2 

Validation set (collected at 2003 - 2007) 
cases (N=134) & matched controls (N=134) 

Method 2 
Used univariate 

analysis to identify  
66 CpGs (P<0.05), 
11 CpGs (P<0.01), 
2 CpGs (P<0.001)  

Perform EWAS by Models 1-3 

Perform association analysis of  
individual CpGs by Models 1 & 2 

Focus on 1,061 smoking-associated CpGs 

Replication study 
WHI urothelial cancer data  

cases (N=440) and matched controls (N=440) 
1,061 smoking-associated CpGs 

Meta-analysis of 
MCCS and WHI for 

the 1,061 CpGs 

Test association with UCC risk for 
MS10, MS66, MS11 & MS2 (Table 4), 
and evaluate prediction by AUC for 
MS10 & MS11 (Table 5). Test association with UCC risk 

(Table 4) and evaluate prediction by 
AUC (Table 5) for MS10 & MS18. 
Note: MS18 was generated by 
Method 1 but using all 404 MCCS 
samples as a training set. 
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