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Abstract 

Individualizing treatment is key to improve outcome and reduce long-term side-effects in any 

cancer. In Hodgkin lymphoma (HL), individualization of treatment is hindered by a lack of 

genomic characterization and technology for sensitive, molecular response assessment. 

Sequencing of cell-free (cf)DNA is a powerful strategy to understand an individual cancer 

genome and can be used to develop assays for extremely sensitive disease monitoring. In 

HL, a high proportion of cfDNA is tumor-derived making it a highly relevant disease model to 

study the role of cfDNA sequencing in cancer. 

Here, we introduce our targeted cfDNA sequencing platform and present the largest 

genomic landscape of HL to date, which was entirely derived by cfDNA sequencing. We 

comprehensively genotype and assess minimal residual disease in 324 samples from 121 

patients, presenting an integrated landscape of mutations and copy number variations in HL. 

In addition, we perform a deep analysis of mutational processes driving HL, investigate the 

clonal structure of HL and link several genotypes to HL phenotypes and outcome. Finally, we 

show that minimal residual disease assessment by repeat cfDNA sequencing as early as a 

week after treatment initiation is feasible and predicts overall treatment response allowing 

highly improved treatment guidance and relapse prediction. Our study also serves as a 

blueprint showcasing the utility of our platform for other cancers with similar therapeutic 

challenges. 
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Introduction 

Classical Hodgkin lymphoma (HL) is a B-cell derived malignant lymphoma that is now often 

curable with aggressive chemotherapy1,2. Nevertheless, many challenges exist. Aggressive, 

multi-agent front-line chemo- and radiotherapy leads to early- and late-toxicities such as 

secondary cancers, cardiovascular disease, infertility, fatigue and osteonecrosis3–7. 

Furthermore, 10-30% of patients fail initial treatment and many of these often young patients 

ultimately die8. 

Individualizing treatment is key to improve outcome and reduce long-term side-effects in any 

cancer. Principally, two strategies for treatment individualization in a curable cancer exist: 

upfront treatment individualization by accurate risk assessment or accurate assessment of 

treatment response to stop treatment as soon, as cure is achieved. 

In HL, both strategies are currently hampered by a lack of genomic characterization of the 

disease and sensitive, molecular response assessment. Upfront risk assessment is currently 

purely based on clinical risk factors such as disease extent and has not improved much in 

recent decades9. Biological risk classification is impeded, because a comprehensive 

genomic characterization of HL has so far been challenging due to the paucity of malignant 

Hodgkin Reed-Sternberg (HRS) cells in the typical HL tumor biopsy10. Past studies relied on 

cumbersome and technically challenging laser microdissection or flow sorting of biopsies for 

enrichment of HL cells11–14. Response assessment in HL is currently based on positron 

emission tomography (PET). However, sensitivity and specificity of PET-based response 

assessment is limited15–17. 

In contrast, biological risk classifications based on the detection of genetically defined 

subgroups has superseded clinical risk classification systems and improved outcome in 

other cancers such as acute myeloid leukemia18. Likewise, highly sensitive, molecular 

response assessment based on the detection of minimal residual disease (MRD) has greatly 

improved outcome in acute lymphoblastic leukemia19. 

A powerful strategy to unravel the cancer genome of a patient is the sequencing of cell-free 

DNA (cfDNA), which is released into the circulation from apoptotic cells and contains 

circulating tumor-derived DNA (ctDNA) with mutations, copy number alterations, gene 

fusions or specific (clonal) immune-receptor (IgH) rearrangements representative of the 

tumor20,21. We and others have found that the plasma ctDNA content is much higher than 

one would expect in HL21–24, considering the paucity of tumor cells, making it a highly 

relevant disease model to study ctDNA. Specifically, sequencing of ctDNA in HL allows easy 

and clinically feasible genotyping and biological risk assessment. Furthermore, carefully 
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developed strategies to reduce sequencing errors enable highly sensitive and specific 

minimal residual disease assessment by sequencing of ctDNA25,26. 

Here, we comprehensively genotype and assess minimal residual disease in 324 

longitudinally collected samples from 121 HL patients before, during and after treatment. We 

present the largest integrated landscape analysis of mutations and copy number variations 

in HL to date and perform deep analysis of mutational processes driving HL, associations 

between HL and viruses and bacteria and clonal structure of HL. We link several genotypes 

to HL phenotypes and treatment outcome and show that MRD assessment is informative for 

overall treatment response as early as one week after treatment initiation suggesting high 

clinical utility.   
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Results 

Technical and clinical validation 

We aimed at designing a targeted ctDNA sequencing and bioinformatics platform for 

accurate baseline genotyping and MRD detection during follow-up. To this end, cfDNA 

sequencing artifacts and stochastic sequencing errors need to be suppressed25. Combining 

existing knowledge22,23,25, our error suppression approach includes tagging DNA molecules 

with unique molecular identifiers (UMIs) and a combination of two comparative error 

suppression (CES) methods: (I) deriving and excluding error-prone genomic regions in a 

identically processed set of cfDNA samples from a healthy control cohort and (II) judging 

each base call based on its modelled error-rate in an identically processed healthy control 

cohort considering the given tri-nucleotide context27 (see methods for details). 

For technical validation we used spike-ins of well-characterized reference DNA 

(NA12878)28,29 fragmented to cfDNA-size into healthy donor cfDNA. Observed error profiles 

depended on use of UMI-based error suppression or additional CES (Fig. 1A-C). Combined 

UMI-based and CES error suppression resulted in improved sensitivity and specificity of 

mutation calling at 0.5% spiked-in mutated allele frequency (mAF) (Fig. 1D-E). UMIs 

contributed most to sensitivity (Fig. 1D) whereas CES was essential for high specificity (Fig. 

1E). For technical validation of MRD detection we used lower spike-ins of 0.5%, 0.05%, 

0.025%, 0.0125% and 0.005% mAF and were able to show that combined error-suppression 

is necessary to reliably distinguish MRD from background below a mAF (corresponding to 

the MRD level) of 0.025% or 1 mutated allele in 4000 DNA molecules (Fig. 1F).   

For clinical validation of mutation calling, we compared detected variants in 8 cfDNA 

samples with corresponding Formalin-Fixed Paraffin-Embedded (FFPE) tumor biopsies. We 

confirmed all mutations called in cfDNA with a mAF > 4% (26/26) and 91.3% (63/69) of all 

mutations irrespective of mAF (Fig. 1G-H). This is in line with expectations, as mutation 

calling in artifact rich bulk FFPE samples with low HL cell content will fail to detect rare 

variants, underscoring the value of ctDNA sequencing in HL. For clinical validation of copy 

number assessment in cfDNA, we compared 9p24.1 (locus of PD-L1) gains assessed in 

cfDNA with gold standard Fluorescence in situ hybridization (FISH). Average PD-L1 copies 

assessed by FISH in HL lymph node biopsies correlated strongly with copy number gain in 

cfDNA (Fig. 1I). Based on standard protocols for assay validation30 we defined a limit of 

blank of 0.00714% (appx. 1 in 14,000 DNA molecules) and a limit of detection of 0.00945% 

(appx. 1 in 10,500 DNA molecules) for MRD detection. Employing baseline variant calls from 

6 HL patients, we tested 10 healthy donor samples as negative MRD controls. All healthy 

control samples showed no evidence of MRD (Supplementary Table 1). 
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Sequencing and patient characteristics 

We produced a mean of 2.02x108 (±7.51x106 standard error of mean) reads per HL patient 

cfDNA sample with a mean of 6.84x107 (±3.65x106) uniquely mapped reads (Fig. S1A). The 

high duplication rate (mean: 3.67±0.25) (Fig. S1B) was intentional and utilized for UMI-based 

error suppression. Mean post UMI-deduplication per gene coverage was 1902x (±48) and 

mean per patient coverage was 1670x (±90) (Fig. S1C-D). The median cfDNA concentration 

was 14.1 ng/ml plasma (range: 2.5-557.5 ng/ml) (Fig. S1E). Baseline cfDNA concentration 

was higher in males (median 19.7 vs. 10.8 ng/ml, p=0.0587) (Fig. S1F) and patients with 

higher clinical stage (p=0.0001) (Fig. S1G) or higher International Prognostic Score9 

(p<0.0001) (Fig. S1H). Patient characteristics were as expected with a representative stage, 

age, gender and histological subtype distribution1 (Supplementary Table 2). 

Mutational landscape of Hodgkin lymphoma 

We detected 4738 single base substitutions (SBS) and small InDels in our cohort with a 

median of 36 mutations per patient (range 1-175) (Fig. S1I, Supplementary Table 3). 

Variants were identified in 109 out of 111 patients (98%). Nonsynonymous mutations were 

predominant (n=2050), followed by non-coding mutations (n=1891), synonymous mutations 

(n=614), mutations in untranslated regions (UTRs) (n=92) and splicing mutations (n=44) 

(Fig. S1J). This was as expected for our enrichment approach targeting mostly exons.  

The genes with most non-synonymous, non-intronic and non-intergenic mutations were TTN 

(n=71), SOCS1 (n=58), TNFAIP3 (n=51), ITPKB (n=50), STAT6 (n=42), GNA13 (n=36), 

B2M (n=34) and CSF2RB (n=28) (Supplementary Table 4) (Fig. S2A-B), after conservatively 

removing putative mutations detected in MUC4 or MUC16 as these could be artifacts 

resulting from paralogous alignment31. The number of mutations per patient was highly 

heterogeneous (Fig. S2C-D).  

Mutational frequency is not an indicator of relevance, for example because large genes such 

as TTN, the most frequently mutated gene in this cohort, possibly only harbors many 

mutations because of its size31. To identify genes likely relevant in HL pathogenesis and not 

mere bystander mutations we used a modified Vogelstein rule32 (see methods for details). 

We identified 23 tumor suppressor genes (TSG) and 20 oncogenes (OG) (Fig. 2A, 

Supplementary Table 5). The number of OG and TSG mutations per patient was highly 

heterogeneous with a median of 5 (Fig. 2B-C). We identified recurrent mutations in several 

known oncogenic pathways in HL such as JAK-STAT signaling33 (SOCS1, STAT6, CSF2RB, 

IL4R), Class I MHC mediated antigen processing and presentation12 (B2M) and NF-kappa B 

signaling34 (TNFAIP3, IKBKB, NFKBIE). In addition, we identified several recurrent TSGs 

and OGs involved in chromatin modification (EZH2, ARID1A, PBRM1), ubiquitination 
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(UBE2A, FBXO11), cAMP signaling (GRIN2A, PLCE1, GNAI2), transcriptional cell fate 

regulation by TP53 (TNRC6B, FAS, CDKN2A), cell cycle regulation (XPO1, CCND3) and 

transcriptional misregulation in cancer (JMJD1C, MYCN, TCF3), interferon signaling (IRF4, 

IRF8, PTPN1) as well as histone genes (HIST1H1E, HIST1H2AM) (Fig. 2D). Next, we 

expanded our analysis by allocating identified non-synonymous mutations to these pathways 

based on predefined gene sets (Supplementary Table 6). Almost all patients had histone 

mutations (87.9%), while most patients had mutations in the JAK-STAT signaling pathway 

(71.0%), interferon signaling (60.7%), ubiquitination (60.7%), Class I MHC mediated antigen 

processing and presentation (57.9%) and NF-kappa B signaling (52.3%) (Fig.2D). 

To understand their functional relevance, we analyzed spatial clustering of mutations in OGs 

within 3-dimensional protein structures using Mutation3D35. We identified significant spatial 

clustering in EZH2, IKBKB, IRF4, IRF8, STAT6 and XPO1 (Fig. 2E). Mutations in EZH2 all 

occurred in residue 641 (NM_001203247) (pcluster=6.67x10-5). Recurrent Y641 EZH2 

mutations in HL have so far not been reported11. For IKBKB, we identified two clusters 

(pcluster=1.7x10-3 each) in the PKinase domain of IKBKB with possible gain-of-function and 

increased NF-κB signaling36. For IRF4 we identified a cluster in the IRF (DNA binding) 

domain (pcluster=1.83x10-4). Recurrent IRF4 mutations have not yet been described in HL. 

Mutations in the identified cluster are in close proximity to mutations that have been shown 

to increase IRF4 transcriptional activity37. Similar to IRF4, we identified a cluster of mutations 

in IRF8 in the IRF (DNA binding) domain (pcluster=2.52x10-4). For STAT6 we identified a 

cluster of mutations in the STAT (DNA binding) domain (pcluster=5.56x10-2). Functionally, 

STAT6 expression is important for HL survival38. Finally, we identified a cluster of mutations 

in XPO1 (pcluster=9.71x10-5) consisting mostly of the recurrent E571K (NM_003400) mutation. 

Functionally, it has been shown that the XPO E571K mutation is a gain-of-function mutation 

leading to clonal B-cell malignancy39. A more detailed functional discussion of the identified 

mutation clusters is available as a supplementary note.  

Furthermore, we identified several co-occurring or mutually exclusive OGs and TSGs using 

DISCOVER40 (Fig. S3A-B). However, co-occurrence or mutual exclusivity analysis did not 

reveal any clear relationships between pathways beyond the single gene relationships 

outlined in Fig. S3. 

Mutational signatures 

Mutational signatures have been identified as characteristic processes of somatic mutation 

acquisition in cancer reflecting distinct mechanisms41. We identified 6 distinct COSMIC 

single base substitution (SBS) signatures41 (Fig. 3A) using deconstructSigs42: SBS1 

(deamination of 5-methylcytosine to thymine, associated with aging), SBS3 (defective 
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homologous recombination-based (HR) DNA damage repair), SBS6 and SBS15 (defective 

DNA mismatch repair (MMR), associated with microsatellite instability) SBS9 (somatic 

hypermutation in lymphoid cells) and SBS25 (unknown cause, hitherto only identified in HL 

cell lines)43 (Fig. 3B). 

Next, we examined the contribution of these mutational signatures to mutations in recurrently 

mutated genes in our cohort. We identified distinct mutational processes active in different 

genes. SBS1 was the biggest contributor in DMD, LRP1B, TTN, KMT2D and OBSCN; SBS3 

the biggest contributor in STAT6, GNA13, MFHAS1, CIITA, IGLL4, BCL6, CSF2RB and 

SOCS1; SBS15 the biggest contributor in ITPKB; SBS9 the biggest contributor in B2M and 

LRRN3; and SBS25 the biggest contributor in TNFAIP3 (Fig. 3C). Overall, SBS1 - the aging 

signature - was the main contributor in genes that are not OGs or TSGs, suggesting a role of 

the underlying process in inducing bystander mutations. Interestingly, SBS3 - the defective 

homologous recombination signature - contributed majorly to mutations in genes crucial for 

HL oncogenesis, such as STAT6, CSF2RB or SOCS112,33, highlighting a potential role for 

defective homologous recombination in HL pathogenesis. SBS9 – the somatic 

hypermutation signature – was the sole contributor to LRRN3 mutations, which has not been 

empirically shown to be a target of somatic hypermutation but predicted to be one in one 

analysis44. SBS25 – a potential HL specific signature - was the main contributor to mutations 

in TNFAIP3, one of the most frequently mutated genes in HL45, supporting the notion that 

SBS25 is indeed a HL signature and not an artifact. 

Correlating mutational signatures with patient phenotypes, we observed that patients with 

detection of SBS25 were older (38.1 vs. 31.0 years of age, p=0.0208) (Fig. 3D), while 

detection of SBS15 was linked to lower lactate dehydrogenase (LDH) levels (217 vs. 253 U/l, 

p=0.0441) (Fig. 3E) and less frequent erythrocyte sedimentation rate (ESR) elevation 

(OR=0.32, p=0.0098) (Fig. 3F), suggesting SBS15 could be associated with a less 

inflammatory and lower tumor burden or tumor cell turnover phenotype. 

Next, we examined if mutations in genes involved in homologous recombination (HR) or 

mismatch repair (MMR) (Supplementary table 7) were associated with SBS3 (defective HR) 

or SBS6 and SBS15 (defective MMR), respectively. The contribution of SBS3 was higher in 

patients with mutations in genes involved in HR, although this was not significant (Fig. 3G). 

The combined contribution of SBS6 and SBS15 was significantly higher in patients with 

mutations in genes involved in MMR (Fig. 3H). These results suggest that subsets of HL 

exist with defects in HR, MMR or both and that the respective mutational process contributes 

fittingly to the mutations observed in these patient subsets. 

Somatic copy number variations 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.16.21253679doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253679


11 

 

We used cnvkit46 and Gistic 2.047 to identify focal and arm-level recurrent somatic copy 

number variations (sCNV). Overall, we identified 16 recurrent gains and 34 losses (q<0.25) 

(Fig. 4A-B, Fig. S4A). The most common recurrent gains were 19p13.2 (65%), 2q31.2 

(62%), 12q13.3 (STAT2, STAT6) (62%), 2p16.1 (REL) (61%), and 9p24.1 (JAK2, CD274) 

(55%). We also observed frequent gains of regions including NFKB1, MLL5 and PIK3CG 

(Fig. 4C). The most common recurrent losses were 6q23.3 (TNFAIP3, ECT2L) (61%), 9q13 

(59%), 13q32.3 (59%), 6q22.31 (58%) and 15q15.1 (57%). Of note, we also observed 

frequent losses of regions including B2M, HIST1H1E, HIST1HIB, and the HLA locus, 

underscoring the functional relevance of histone genes and immune escape in HL (Fig. 4D). 

A separate, arm-level analysis using Gistic 2.047, was consistent with these findings, 

identifying 2p, 2q, 5p, 9p, 10p, 12p, 12q as recurrent arm-level gains and, among others, 4q, 

6p, 6q, 7q, 11q, 17p, 18p, 18q and 22q as recurrent arm-level gains. Both, recurrent, arm-

level gains and losses, were observed on 17q, 19p and 19q. (Fig. S4B). 

Detection of viral and bacterial associations 

We used a previously developed pipeline48 built around KRAKEN49 to identify viral and 

bacterial associations with HL by liquid biopsy. We detected Epstein-Barr-Virus (EBV) and 

Human Herpesvirus 6B (HHV6B), both known to be associated with HL50, in 17 (15.3%) and 

7 (6.3%) patients, respectively (Fig. S5A-B). Validating our findings, we found that EBV DNA 

in plasma as measured by our pipeline corresponded very well to EBV status of the tumor 

cells assessed by LMP1 staining of infiltrated HL lymph nodes (Fig. S5C). HL cases 

associated with EBV were older (37.2 vs. 31.1 years of age, p=0.0414) (Fig. S5D) and less 

likely to have mutations in genes involved in NF-kappa B signaling (OR=0.35, p=0.0696) 

(Fig. S5E), in line with previous reports describing histological EBV detection associated with 

older HL patients51 and fewer mutations in TNFAIP334. Also, our observation may be related 

to the notion that EBV-infected B-cells rely on NFkB for survival52. In contrast to previous 

reports14,33, we detected no association between mutational burden and EBV in our cohort 

(6.0 vs. 7.3 mutations/Megabase (Mb), EBV+ vs. EBV-, p=0.3418).  

HL cases associated with HHV6B were older (42.2 vs. 31.3 years of age, p=0.0144) (Fig. 

S5F), more likely to have extranodal involvement (OR=5.17, p=0.0443) (Fig. S5G) and had a 

higher proportion of SBS6 detection (OR=6.22, p=0.0105) (Fig. S5H). The identified 

associations of HHV6B with a distinct HL phenotype have not been described previously. Of 

note, EBV and HHV6B were not detected in any of the healthy control or matched germline 

samples (Supplementary Table 8). 

We also detected a number of bacterial taxa in the plasma of HL patients after extensive 

filtering to exclude false positives (see methods for details): Streptococcus mitis, 
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Burkholderia cepacia, Dolosigranulum pigrum, Mycobacteroides salmoniphilum, 

Ruminococcus gnavus and Neisseria mucosa (Supplementary Table 9, Fig. S5I). It is 

possible that detection of some species, such as Streptococcus mitis as a common colonizer 

of humans, was increased in cfDNA due to HL-mediated immunosuppression53. Of note we 

also detected Moraxella catarrhalis in a single plasma sample with no detection in the 

matched germline sample (Supplementary Table 10). An uncontrolled IgD+ B cell response 

to Moraxella catarrhalis infection has recently been described as a possible early oncogenic 

driver in nodular lymphocyte-predominant Hodgkin lymphoma54. 

HL phenotypes are characterized by distinct genotypes 

Our cohort included 40 patients with a large mediastinal mass. These patients were 

characterized by a higher frequency of B2M (OR=4.39, p=0.0009) (Fig. S6A) and IKBKB 

(OR=3.78, p=0.0337) (Fig. S6B) mutations, as well as more mutations in genes involved in 

Interferon signaling (OR=3.05, p=0.0095) (Fig. S6C) and JAK-STAT signaling (OR=2.43, 

p=0.0577) (Fig. S6D). These alterations have a high overlap with those recently reported in 

primary mediastinal B-cell lymphoma (PMBL)55. Taken together with the notion that a 

disease continuum stretching from mediastinal HL via grey zone lymphoma to PMBL 

exists56, these findings are suggestive of a biological subgroup of HL with a proclivity to 

mediastinal growth biologically and phenotypically close to PMBL. 

Probing age-genotype associations, we found EZH2 mutations to be associated with 

younger (21.8 vs. 32.4 years, p<0.0001) (Fig. S6E) and IRF4 mutations to be associated 

with older patients (44.8 vs. 31.3 years, p=0.0488) (Fig. S6F). 

Furthermore, patients with any mutations in genes involved in transcriptional regulation by 

p53 (267 vs. 226 U/l, p=0.0111) (Fig. S6G) had higher baseline LDH levels, suggesting 

higher tumor burden or tumor cell turnover in these patients. 

 

Association between HL genotypes and treatment response 

Biological predictors of response are currently not established in HL. Therefore, we 

examined associations of somatic mutations and sCNVs with early PET response after 2 

treatment cycles. Mutations in IRF8 (OR=5.97, p=0.0324) (Fig. S7A), PIM1 (OR=5.97, 

p=0.0324) (Fig. S7B), TP53 (OR=4.88, p=0.0280) (Fig. S7C) and NOTCH1 (OR=4.63, 

p=0.0799) (Fig. S7D) were associated with inferior response. Whereas copy number gains 

peaking at 12q13.3 (STAT2, STAT6) (OR=0.38, p=0.0215) (Fig. S7E) and losses peaking at 

7q34 (BRCA, EZH2, SMO) (OR=0.33, p=0.0285) (Fig. S7F) and 10q26.3 (MGMT) 

(OR=0.28, p=0.0148) (Fig. S7G) were associated with superior response. Both, BRCA loss57 
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and MGMT loss58 might predispose to increased sensitivity to DNA-damaging agents which 

were used as part of the patient’s treatment. 

We did not observe a relationship between baseline cfDNA concentration in plasma and 

treatment response assessed by PET (Deauville 1-3 vs. Deauville 4-5: 13.4 vs. 18.3 ng/ml, 

p=0.5470) (Fig S7H). 

Mutational burden (MB) was highly heterogeneous (Fig. S8A-B) and did not correlated with 

cfDNA concentration in plasma excluding a technical bias where high ctDNA amounts allow 

for detection of more variants (Fig. S8C). B2M mutations (10.0 vs. 5.9 mutations/Mb, 

p=0.0002) (Fig. S8D), HLA locus losses (8.6 vs. 5.9 mutations/Mb, p=0.0103) (Fig. S8E) and 

9p24.1 gains (8.1 vs. 5.9 mutations/Mb, p=0.0343) (Fig. S8F) were associated with higher 

mutational burden, suggesting that high MB HL selected for these immune escape variants 

during development. In line with this, any mutation in MHC class I antigen presentation 

genes was associated with higher MB (9.4 vs. 4.1 mutations/Mb, p<0.0001) (Fig. S8G. 

These results suggest that a subset of HL exists that has a higher mutational burden and 

therefore immune escape variants had a selective advantage in its evolution and became 

dominant. 

Clonal structure of Hodgkin lymphoma 

ctDNA sequencing can be used to deconvolute the spatial and temporal clonal structure of 

cancer. We used PyClone59 to differentiate between main clone mutations likely present in 

all HL cells and subclonal mutations likely only present in a fraction. Some OGs and TSGs 

harbored mainly main clone mutations (e.g. GNA13, XPO1, NFKBIE, IKBKB, CSF2RB, 

B2M), while some mainly subclonal mutations (e.g. PRBM1, NOTCH2, CHD2, BCR) (Fig. 

5A). Some important HL OGs and TSGs (STAT6, SOCS1, TNFAIP3) harbored a mixture of 

main clone and subclonal mutations (Fig. 5A). Clonal structure allows inferring timing of 

mutations with main clone mutations likely occurring earlier in oncogenesis. Thus, the 

diversity in observed clonal structure suggests that mutational processes in HL oncogenesis 

are likely ongoing without a clear temporal order of genes important in early versus late 

oncogenesis. 

To disentangle the contribution of mutational processes to early versus late HL oncogenesis, 

we compared mutational signatures in subclonal versus main clone mutations. SBS3 

(defective HR), contributed more to main clone mutations compared to subclonal ones, 

whereas SBS15 (defective MMR) contributed more to subclonal mutations (Fig. 5B). This 

suggests that defective homologous recombination plays a bigger role in early HL 

oncogenesis, whereas defective DNA mismatch repair contributes more to ongoing 

mutational processes after initial malignant transformation. 
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Minimal residual disease 

Highly sensitive methods for response assessment that are predictive of treatment outcome 

are lacking in HL. Therefore, we aimed to use our ctDNA sequencing platform to measure 

MRD in HL, by following individual mutational fingerprints over time15–17. First, we examined 

the relationship between MRD at different timepoints and interim PET-imaging after 2 cycles 

of chemo-, immune- or combined chemoimmunotherapy in 43 follow-up samples15. MRD 

trajectories were markedly different between interim PET-response groups (Fig. 6A). Of 

note, MRD trajectories separated very early on, with clear differences already observable 

after 1 week (Fig. 6B). PET- and MRD-response measured after 2 cycles correlated in 

general (Fig. 6C-D) but differed sufficiently to underscore the potential for synergistic 

response assessment by PET and MRD as illustrated by individual patient MRD trajectories 

(Fig. 6E). Dichotomizing MRD assessment at the limit of detection, positive MRD after 1 

week differentiated with 100% accuracy between Deauville 1-3 and Deauville 4-5 patients 

(Fig. 6F). Similarly, negative MRD after 2 cycles was associated with negative interim PET at 

the same timepoint (Fig. 6G). 

To validate our findings in an independent cohort, we assessed MRD in 10 newly diagnosed 

HL patients with 54 samples collected and processed independently in another institution 

(Cancer Center Amsterdam). Sampling density was higher in the validation cohort allowing 

for more detailed time-course analysis of MRD. Interim-PET (2 cycles of chemotherapy) 

negative (Deauville 1-3) patients had quicker resolution of MRD compared to interim PET-

positive (Deauville 4) patients (Fig. 6H-I). 2 patients experienced relapse and never achieved 

MRD-negativity with one patient each being PET-negative and positive after first-line 

treatment (Fig. 6H-I). 

To showcase MRD monitoring with our assay, we highlight two patients. The first patient 

(Fig. 6J) is a 39-year-old male with advanced-stage HL treated with 6 cycles BEACOPPesc. 

At the end of treatment, PET showed a complete response, while MRD assessment was still 

positive. One and a half years after treatment, the patient relapsed. Both at relapse and, 

importantly, already 1 month prior to relapse, MRD assessment was positive. Compared to 

the MRD measurement directly after first-line treatment, the MRD level increased 

approximately 15-fold, even before imaging detected relapse. During second-line treatment 

(DHAP and autologous stem cell transplantation), the first MRD assessment was negative. 

At the end of salvage therapy, the patient was interim PET negative, however slightly MRD 

positive. After autologous stem cell transplantation, the patient remained in complete 

response and MRD assessment turned negative. This case highlights the possibility of our 

MRD assay to predict relapse after first-line treatment, detect it before imaging and aid in 
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guiding treatment during second-line treatment. The second patient (Fig. 6K) is a 52-year-old 

male with advanced-stage HL treated with 6 cycles of BreECADD. MRD assessment was 

negative after 1 cycle and remained negative throughout treatment. PET based interim 

analyses, showed a discordance between local center assessment (complete metabolic 

response) and central image review (partial metabolic response), illustrating that MRD 

assessment may function as an auxiliary tool in more complex cases. 
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Discussion 

Here, we present the largest genomic landscape of HL to date and introduce our targeted 

ctDNA sequencing platform that allows for accurate genotyping using pre-treatment samples 

and highly sensitive MRD detection in samples collected during and after treatment. While 

applied to HL, this study serves as a blueprint for other cancers with similar therapeutic 

challenges. 

The low tumor DNA content in bulk HL tissue due to the scarcity of HRS cells in primary 

lymph node biopsies60 has resulted in comparatively few genomic characterization studies in 

HL. Available knowledge is obtained from small studies with limited clinical data which relied 

on cumbersome sorting methods to enrich for HL-derived DNA. The three major studies in 

the field included only 10, 23 and 34 patients respectively12,33. Reichel et al.12 and Wienand 

et al.14 used flow cytometry sorting to separate malignant from non-malignant cells in primary 

lymph node biopsies. Tiacci et al.33 used laser microdissection to achieve the same. 

Recently, two studies introduced ctDNA sequencing in HL as a tool to genotype adult or 

pediatric HL22,23. Compared to both studies, our approach has several advantages. First, our 

target region is approximately 10x larger than the one used in both studies while at the same 

time, sequencing is performed at comparable depth. Second, our optimized bioinformatics 

process for error reduction and usage of UMIs results in highly reduced error rates, 

facilitating more accurate genotyping and orders of magnitude more sensitive MRD 

detection. Third, our bioinformatics platform allows for comprehensive genotyping including 

copy number variations and, if within the target region, structural variants. These advantages 

result in a higher proportion of patients with variants and a higher number of variants 

detected per patient. Therefore, we are convinced that our platform has the potential to 

become the state-of-the-art ctDNA pipeline in HL and in addition has wide applicability 

beyond HL only requiring modifications of the target region. For example, it has recently 

been shown that improved sequencing protocols and bioinformatics can facilitate highly 

accurate genotyping in lung cancer25 or diffuse-large B-cell lymphoma26. Importantly, our 

patient samples were collected in ancillary studies accompanying clinical trials across many 

treatment centers, showing that decentralized sample collection and centralized processing 

and analysis of liquid biopsies is feasible in hematological malignancies. 

In our study, we made several novel findings with relevance to HL pathogenesis. First, we 

identify novel recurrent mutations in HL, such as Y641 EZH2 mutations and mutations in 

IRF4 and IRF8. Interestingly, Y641 EZH2 mutations have recently been shown to be able to 

modulate the germinal center niche towards lymphomagenesis, by reducing survival 

dependency of germinal center B-cells on T-cell help and driving expansion of germinal 
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center centrocytes61. Second, we disentangle the contribution of different mutational 

processes in HL pathogenesis at high resolution, suggesting an important role of 

homologous recombination and offering first evidence that COSMIC SBS25 might indeed be 

a HL signature observable in patients. Third, we link, for the first time, HL genotypes to 

phenotypes and show that mutations in some genes, such as TP53 or NOTCH1, are 

associated with a high-risk phenotype, while other alterations, such as BRCA1 or MGMT 

loss are associated with a low-risk phenotype possibly mediated by increased sensitivity to 

commonly used cytotoxic drugs. Fourth, we identify a distinct genotype of large mediastinal 

mass HL with remarkable biological similarities to PMBL providing further evidence that an 

overlapping continuity between both entities exist while identifying large mediastinal mass 

HL for the first time as a HL subgroup more closely linked to PMBL than other classical HLs.  

Fifth, we classify HL as a disease with high heterogeneity of mutational burden and link high 

mutational burden HL with an immune escape genotype. It is possible that these patients will 

respond differently to immune checkpoint inhibition.  

In a different use of our ctDNA sequencing platform, we show that it can be used for 

extremely sensitive MRD detection. It is especially worth mentioning that our MRD detection 

method can predict treatment response as early as one week after treatment initiation and 

predict relapse in PET-negative cases. Furthermore, MRD increases precede relapse 

detected by imaging. Other disease biomarkers, such as thymus and activation regulated 

chemokine (TARC)62 or exosomal miRNA63 have been evaluated in HL with some success, 

however patient numbers in these studies are low and preclude definitive conclusions. TARC 

has also been evaluated in conjunction with PET-CT imaging suggesting synergy64. ctDNA 

has been evaluated as a response biomarker in HL as well, for example in a study that 

looked at normalization of somatic copy number variation signatures in plasma21. However, it 

is likely that our approach is more sensitive as shown in the technical validation presented 

here. It is unlikely that other available methods for MRD detection in HL can detect a 

remaining plasma tumor burden of 0.00714% (less than 1 in 14,000 DNA molecules), 

although a head-to-head comparison is currently missing. In addition to synergy between 

MRD evaluation based on ctDNA sequencing and PET-CT, there might also be synergy 

between MRD evaluation based on ctDNA sequencing and protein-based biomarkers such 

as TARC in HL. The idea of combining protein-based and DNA-based biomarkers has been 

tested in other cancers with remarkable success65 and similar studies in HL are needed. 

Future enhancements of our assay could be the inclusion of real or in silico cfDNA size 

selection66, phased variant enrichment67 or duplex sequencing68. 

In summary, we present the largest comprehensive genomic profiling study of HL to date 

utilizing our novel ctDNA sequencing platform and show that it can be used to accurately 
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genotype HL at baseline and measure MRD with extremely high sensitivity. Our results pave 

the way for prospective clinical trials to evaluate prognostic genomic profiling by liquid biopsy 

and MRD-guided treatment in HL. 
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Methods 

Samples and patients 

324 samples from 121 patients were used in this study. 270 samples from 111 patients were 

used as the primary cohort in all analyses. 54 samples from 10 patients were used as a 

validation cohort in the MRD analyses only. Patients were de-identified. Samples for the 

primary cohort were collected within two German Hodgkin Study Group (GHSG) clinical 

trials: HD21 (n=44, ClinicalTrials.gov Identifier: NCT02661503) and NIVAHL (n=69, 

(ClinicalTrials.gov Identifier: NCT03004833). HD21 is a trial for newly diagnosed advanced 

stage HL patients. NIVAHL is a trial for newly diagnosed early-stage unfavorable HL 

patients69. Samples for the MRD validation cohort were routine care samples from 

Amsterdam University Medical Centers. Samples for the MRD validation cohort were 

collected within the BioLymph-study (2017-2019, VUmc METc registration number: 

2017.008). The study is registered in the Dutch CCMO-register (toetsingonline.nl, 

NL60245.029.17). A part of this set of Amsterdam UMC samples (2014-2017), prior to the 

BioLymph study, has been collected through biobanking registered at the Biobank approval 

committee of VUmc, Amsterdam (2018.359). 

Ethical considerations 

All patients provided written informed consent to allow the collection of peripheral blood for 

research purposes. All human subject research was performed in accordance with approved 

protocols by the local ethics committees and the Declaration of Helsinki. 

Statistical methods 

Discrete variables were compared using Fisher’s exact test. Two continuous variables were 

compared using the student’s t-test if normality of variables could be assumed or the Mann-

Whitney test if not. Multiple continuous variables were compared using one-way ANOVA 

with Welsh correction if normality of variables could be assumed or the Kruskal-Wallis test if 

not. Normality of variables was assessed heuristically examining the distribution of variable 

values. Statistical tests used are indicated when performed. 

Sample collection and processing 

Blood samples were collected as part of an ancillary study to the main clinical trials. Samples 

were collected at predetermined time points within each trial. Samples were either collected 

in 6 or 9 ml EDTA tubes and processed within 2 hours, or in 10ml Streck cell-free DNA tubes 

(Streck, Omaha, NE) or 10ml PAXgene blood ccfDNA tubes (Qiagen, Hilden, Germany) and 

processed within 3 days. In case Streck cell-free DNA or PAXgene Blood ccfDNA tubes 
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were used, they were first centrifuged at 1900g for 15 minutes at room temperature to 

separate the plasma. For further plasma purification, the plasma layer was pipetted into a 

clean 15ml LoBind tube (Eppendorf, Hamburg, Germany) and centrifuged at 1900 g for 

another 10 minutes. Plasma was then aliquoted into 2-5ml cryotubes and stored at -80°C. 

The cell pellet fraction remaining after the first centrifugation step was also aliquoted into 2-

5ml cryotubes and stored along with plasma samples at -80°C for use as a germline control. 

In case EDTA tubes were used, the same protocol was followed, but the first centrifugation 

step was performed at 900g for 7 minutes at room temperature and the second 

centrifugation step was performed at 2500g for 10 minutes at room temperature. 

DNA extraction 

To extract cell-free DNA from plasma samples, the QIAamp Circulating Nucleic-Acid Kit 

(Qiagen) was used according to manufacturer's instructions but the Proteinase K incubation 

at 60°C was lengthened to 2 hours. All samples were extracted manually using a vacuum 

manifold (Qiagen). 2-4ml of plasma were used as input. To extract germline DNA from cell 

pellets, the Qiagen QIAamp DNA Blood Mini Kit (Qiagen) was used according to 

manufacturer's instructions (spin protocol). 200µl of cell pellet was used as input. For DNA 

extraction from Formalin-Fixed Paraffin-Embedded (FFPE) lymph node samples 10 µm thick 

slides were cut. DNA extraction was done with the GeneRead DNA FFPE Kit (Qiagen) 

according to manufacturer's instructions.  

DNA processing, quality control and sequencing 

For target enrichment we used customized RNA baits designed with the SureSelect platform 

(Agilent, Santa Clara, CA). Our target panel has evolved throughout the study, so we used 3 

different versions of RNA bait designs targeting 3.847 Mb (version 1), 2.981 Mb (version 2) 

and 2.997 Mb (version 3). Supplementary Table 11 shows which RNA bait design was used 

for which sample. Supplementary Table 12 shows the regions included in each design. For 

each sample, individual library preparations, hybridizations and captures were performed. 

For a first quantification of input DNA, the Qubit fluorometer (Invitrogen, Waltham, MA) was 

used. We used 25ng of DNA for library preparation where available but required a minimum 

amount of 15ng. For a more detailed quantification of input DNA considering the size 

distribution and as part of our quality control, the TapeStation 2200 System (Agilent) was 

used to quantify input DNA amounts in the size window of interest for cell-free DNA (50-

700bp). We required a minimum of 25% of total input DNA to be in the correct size window. 

TapeStation DNA quantifications restricted to the size window of interest for cell-free DNA 

(50-700bp) were used for all further calculations requiring DNA amounts as input such as 

MRD quantification. Libraries were prepared using the SureSelectXT HS Automated Target 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.16.21253679doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253679


21 

 

Enrichment (Agilent) for Illumina paired-end multiplexed sequencing protocol including a 

unique molecular identifier (UMI) sequenced with an additional index read and the Agilent 

Bravo automated liquid handling platform (Agilent). After quality control using the 2200 

TapeStation System and quantification using the Qubit System (Thermo Fisher, Waltham, 

MA), pools of libraries were generated. These pools were then sequenced on an Illumina 

NovaSeq6000 sequencing system (Illumina, San Diego, CA) using S1, S2 or S4 flow cells 

and 2 x 100 bp read length or an Illumina HiSeq4000 sequencing system (Illumina) with 2 x 

75 bp read length. 

Basic data processing 

Bcl2fastq2 software (v2.20, Illumina) was used to demultiplex bcl raw data. We used default 

settings to demultiplex the forward R1 and reverse R3 reads (--mask-short-adapter-reads 22 

--minimum-trimmed-read-length 35 --barcode-mismatches 1 --adapter-stringency 0.9). Fastq 

files were trimmed with the bcl2fasq2 software. The UMI R2 reads were demultiplexed in a 

separate run using the following settings: --mask-short-adapter-reads 0 and --minimum-

trimmed-read-length 0 without any adapter trimming. Raw reads were mapped to the human 

genome reference-build hg19 using the Burrows Wheeler Aligner (BWA) alignment algorithm 

with a base quality threshold of 15 for read trimming (parameter: -q 15)70. The resulting BAM 

files were further processed by a pipeline specifically designed for this project. Briefly, 

AddUMIsToBam (https://github.com/mbusby/AddUMIsToBam) was used to assign UMIs 

originating from every read to each aligned read in each BAM file. Fgbio’s 

(http://fulcrumgenomics.github.io/fgbio/) GroupReadsByUmi function was then used to group 

UMIs using the adjacency strategy with a maximum of 1 edit allowed. Next, Fgbio’s 

CallMolecularConsensusReads function was used to call a consensus read for each group 

of reads likely originating from the same molecule as identified by the same mapping and 

UMI with standard settings and accepting also one read of each unique input molecule to 

define that molecule’s sequence. Finally, reads are realigned using BWA mem using 

standard settings70. MPILEUP files are generated using Samtools71 ignoring overlaps 

(parameter: -x), adjusting mapping quality for reads containing excessive mismatches 

(parameter: -C 50), considering only reads with a minimum mapping quality of 40 

(parameter: -q 40) and considering only bases with a minimum base quality of 30 

(parameter: -Q 30). The MPILEUP file was limited to the genomic region captured during 

library preparation (parameter: -l). 

Somatic single base substitution calling 

To improve sensitivity and specificity, somatic single base substitution calling was aided by 

comparative error suppression (CES). For this procedure, cell-free DNA from a cohort of 10 
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healthy donor patients was prepared and sequenced as described above. Post UMI-

processing consensus reads aligned to hg19 by BWA mem70 were used as input. Using 

customized scripts, all positions with a non-reference (hg19) allele frequency > 5%, likely 

representing germline single nucleotide polymorphisms, were set to a non-reference allele 

frequency of 0 in the reference cohort. Next, TNER27 was used to compile a database of 

position-specific average background error rates for each position in the target region using 

the healthy donor controls as input. This database was used as input to TNER27 to polish 

each cell-free DNA MPILEUP generated from post UMI-processing consensus reads aligned 

to hg19 by BWA mem70 as described above with the polish strength parameter set to 0.05 

(parameter: input.alpha = 0.05). Briefly, TNER27 uses tri-nucleotide error rates in the healthy 

reference cohort to suppress likely sequencing errors, thus reducing tri-nucleotide error rate 

profiles to suppress stochastic sequencing errors. Additionally, stereotypical sequencing 

errors at positions with high error rates were suppressed using customized scripts. To this 

end, each potential variant position was compared against the position-specific average 

background error rate profile generated above. If the average background error at a specific 

position was >0.5%, this position was blacklisted for variant calling as a position with a high 

rate of sequencing errors. 

Next, this error-corrected dataset generated for each cell-free DNA sample was used as 

input for a customized variant calling pipeline. A variant was called at a position, when the 

following criteria were met: the minimum sequencing depth at a position was 50, at least 11 

reads are supporting the variant, the variant has support on both the plus and the minus 

strand, the relative variant allele frequency of the variant is at least 0.1%, the variant has a 

relative variant allele frequency in the germline sample of less than 1%, the relative allele 

frequency in the cell-free DNA sample is at least 3 times larger than in the germline sample, 

a Fisher’s exact test on a 2 x 2 contingency table including the variant versus reference and 

the cell-free DNA versus the germline reference sample has a p-value < 0.05 and finally a 

one-tailed binominal test with the alternative hypothesis that the observed variant allele 

frequency is higher than the background error rate at that position has a p-value < 0.05. As 

an additional filter, we checked each variant for its frequency in ExAC72. Variants with a 

frequency above 0.01 in ExAC version 0.372 were excluded. Furthermore, we excluded 

single base substitutions that were in close proximity (<6 base pairs) to an identified InDel. 

Variants were annotated and classified using ANNOVAR and databases ExAC version 0.3 

(parameter: protocol -exac03) dbNFSP version 3.0a (parameter: -protocol dbnsfp30a) and 

dbSNP version 147 (parameter: -protocol avsnp147)73. 

Somatic small InDel calling 
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We used Varscan274 to call small somatic insertions and deletions (InDels) and customized 

scripts for filtering identified variants. We used MPILEUP files generated as described above 

from post UMI-processing consensus reads aligned to hg19 by BWA mem70 as input.  First, 

a comprehensive, unfiltered list of all potential InDels was generated using Varscan274 with 

the following settings: minimum coverage of cell-free DNA sample file 1 (parameter: --min-

coverage), minimum coverage of corresponding germline file 1 (parameter: --min-coverage-

normal 1), minimum relative allele frequency 10-9 (parameter: --min-var-freq), minimum 

frequency to call a variant homozygous 0.75 (parameter: --min-freq-for-hom), minimum 

somatic p-value 0.99 (parameter: --somatic-p-value) and strand filter off (parameter: --

strand-filter 0). Of note, the parameters were deliberately chosen to be very loose as more 

stringent filtering was supposed to take place in the next step. 

Using customized scripts, we filtered each raw InDel call file so only calls fulfilling the 

following criteria survived filtering: relative allele frequency of the matched germline < 0.5%, 

somatic p-value of call <0.01, absolute allele frequency of the matched germline < 4, not 

called as loss of heterozygosity by VarScan274, at least 11 reads supporting the variant, at 

least one read on the plus strand and one read on the minus strand supporting the variant 

and minimum sequencing depth of 50 at the variant location in the cell-free DNA sample. As 

an additional filter, we checked each variant for its frequency in ExAC72. Variants with a 

frequency above 0.01 in ExAC version 0.372 were excluded. Variants were annotated and 

classified using ANNOVAR and databases ExAC version 0.3 (parameter: protocol -exac03) 

dbNFSP version 3.0a (parameter: -protocol dbnsfp30a) and dbSNP version 147 (parameter: 

-protocol avsnp147)73. 

Somatic copy number calling 

A pipeline was developed to identify somatic copy number changes based on CNVKit46. 

First, cell-free DNA from a cohort of 10 healthy donor patients was prepared and sequenced 

as described above. This healthy control cohort was used as a reference set to define an 

average technical background, against which somatic copy number changes of a specific 

sample were measured. The target region input for CNVKit46 was defined as the region that 

was covered by the RNA baits for the respective panel design. CNVKit’s batch function46 

was then run for each cell-free DNA sample, using post UMI-processing consensus reads 

aligned to hg19 by BWA mem70 as input. Access data provided by CNVKit46 for hg19 and the 

drop low coverage (parameter: --drop-low-coverage) option were used in all runs. Standard 

parameters were used for all other settings. Segmented copy number calls were generated 

and an amplitude threshold of 0.02 or -0.02 was used to define a segment as a somatic copy 

number gain or loss, respectively. We did deliberately not try to infer absolute somatic copy 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.16.21253679doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253679


24 

 

number changes, because (I) cell-free DNA is not purely tumor-derived and, sometimes 

heavily, diluted by background germline DNA reducing sensitivity, and (II) cell-free DNA-

derived somatic copy number changes represent an average of individual tumor cells 

somatic copy number states in the body which are, especially in the case of HL, known to be 

very variable between individual tumor cells75,76. 

To derive arm-level and focal recurrent and thus potentially biologically relevant somatic 

copy number changes, GISTIC 2.0.47 was used. Segmented copy number calls were used 

as input and GISTIC 2.0. was run including the whole sample cohort with the following 

settings: cytoband and gene location information was taken from hg19, gain threshold 0.02 

(parameter: -ta), loss threshold 0.02 (parameter: -td), calculate significance by gene 

(parameter: -genegistic 1), including broad-level analysis (parameter: -broad 1), threshold to 

distinguish broad from focal events 0.98 (parameter: -brlen), confidence level 0.75 

(parameter: -conf), q-value threshold 0.25 (parameter: -qvt), performing arm peel off 

(parameter: -armpeel 1) and collapse method extreme (parameter: -gcm). Standard 

parameters were used for all other settings. Broad arm-level plots, gain and loss q-plots and 

copy number heatmap plots were generated from resulting output using GISTIC’s47 built-in 

plotting functions. 

Additional variant filtering 

For some analyses, mutations were only included if they occurred in the coding region of the 

genome. This is indicated in the respective analysis. 

To identify recurrently mutated genes which are likely driver genes32 and thus relevant for HL 

pathogenesis either as tumor suppressor genes or as oncogenes, we applied a slightly 

modified version of the Vogelstein rule32, which is a deliberate choice for a rather 

conservative approach tending to underestimate cancer driver genes32. Furthermore, the 

20/20 rule originally described by Vogelstein et al.32  and derived, ratiometric methods such 

as the 20/20+ algorithm have been shown to highly reliably predict functionally validated, 

known cancer driver genes and have a high stability across datasets77. We used customized 

scripts to identify a gene as a tumor suppressor gene, if the ratio of the combined number of 

splice site and nonsense mutations as well as frameshift insertions and deletions to all 

coding mutations was ≥ 0.25. A gene was identified as an oncogene if it was not a tumor 

suppressor gene and the ratio of mutations leading to an amino acid change that is shared 

with at least one other mutation leading to an amino acid change to all mutations leading to 

an amino acid change was ≥ 0.20. Evaluation of genes as potential tumor suppressor genes 

or oncogenes was performed for all genes with at least 5 mutations in the cohort. 

Technical and clinical validation and Quality control 
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For technical validation we spiked well-characterized reference DNA (NA12878)28,29 

fragmented to approximately cfDNA size into healthy donor cfDNA at proportions of 10%, 

1%, 0.1%, 0.05%, 0.025%, 0.01% and 0%. Based on an allele frequency of 50% for 

heterozygous variants, these spike-in samples represented technical cfDNA validation 

samples with an expected mutated variant allele frequency of 5%, 0.5%, 0.05%, 0.025%, 

0.0125% and 0.005%, respectively. Spike-ins of 5%, 0.5% and 0% were used to technically 

validate variant calling, whereas spike-ins of 0.1%, 0.05%, 0.025%, 0.01% and 0% were 

used to technically validate minimal residual disease detection. All spike-in samples were 

sequenced and bioinformatically processed as described above. Processing was identical to 

actual patient samples. For selected analyses UMI-based error suppression, CES or both 

were omitted. To calculate error profiles of sequencing with or without one or both error 

suppression methods, we used the 0% spike-in sample and randomly chose 1000 positions 

that were both not single nucleotide polymorphisms (SNPs) in NA12878 and the healthy 

donor sample – and should thus have zero non-reference bases detected at each position – 

and calculated each positions error rate as the combined variant allele frequency of all non-

reference bases at the respective position. We modelled the error rate of different error 

suppression strategies as a decay process after sorting the error rates from high to low with 

Y denoting the modelled error rate, Y0 denoting the highest observed error rate, K the 

estimated decay rate and X the position in the high-to-low sorted error rate profile: 

� � �� � �����  

For technical validation of variant calling, we compiled a positive truth set of mutations 

(n=42) by identifying 22 cancer gene census genes78 that were (I) covered by our panel, (II) 

had at least one consensus variant identified in NA12878 and (III) were called in the 10% 

spike-in sample and thus in principle covered by our sequencing panel. Similarly, we 

compiled a negative truth set of non-mutated positions (n=1527) by randomly choosing one 

position in each genomic region covered by our panel of each of the 22 cancer gene census 

genes defined above that were both not single nucleotide polymorphisms (SNPs) in 

NA12878 and the healthy donor sample and including this position and both positions 3 

bases up- and downstream, given they were also not single nucleotide polymorphisms 

(SNPs) in NA12878 and the healthy donor sample, into the negative truth set. The full 

positive and negative truth sets are available in Supplementary Table 10. We then 

performed variant calling in the 0.5% spike-in sample with or without UMI-based error 

suppression, CES or both and calculated sensitivity and specificity to detect variants with an 

allele frequency of 0.5% based on these truth sets. 
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For technical validation of minimal residual disease detection, we slightly modified the 

above-described positive truth set by limiting it to variants detected with an absolute variant 

allele frequency > 29 resulting in 40 variants. We calculated minimal residual disease as 

described above using this truth set as the technical validation baseline sample for the 0.1%, 

0.05%, 0.025%, 0.01% and 0% spike-in samples with or without UMI-based error 

suppression, CES or both. To assess the contribution of UMI-based error suppression, CES 

or its combination to our assay’s sensitivity for minimal residual disease detection, we 

compared measured minimal residual disease in our technical validation spike-in samples 

with expected minimal residual disease based on expected mutated allele frequency in the 

spike-ins. We calculated bootstrap confidence intervals using R79 and the package boot80 

based on 1000 bootstrap replicates. We calculated the limit of blank of our assay for minimal 

residual disease detection based on standard protocols for assay validation30 using the 0% 

spike-in sample as the blank sample and the 0.01% spike-in sample as a low-level sample. 

The limit of blank was defined as the mean blank minimal residual disease value + 1.645 x 

the 1000 replicate based bootstrap standard deviation of the blank sample’s mean minimal 

residual disease value. The limit of detection was defined as the mean blank minimal 

residual disease value + 1.645 x the 1000 replicate based bootstrap standard deviation of 

the low-level sample’s mean minimal residual disease value. 

For clinical validation of variant calling, we subjected 8 corresponding Formalin-Fixed 

Paraffin-Embedded (FFPE) tumor biopsies to our sequencing and bioinformatics pipeline 

and compared called variants detected in the tumor biopsies with those detected in cfDNA.  

For further clinical validation of the specificity of minimal residual disease detection, we tried 

to detect minimal residual disease in 10 healthy donor samples, which we used as minimal 

residual disease negative samples. We used variant call from 6 patients and subjected these 

10 healthy donor samples to the standard minimal residual disease detection workflow using 

each patient’s variant call set, resulting in 60 independent experiments. 

To calculate mean per gene coverage we calculated the mean coverage across all locations 

of single base substitutions in a given gene across the whole cohort. To calculate mean per 

patient coverage, we calculated the mean coverage across all locations of single base 

substitutions in a given patient. 

Clustering of mutations within 3-dimensional protein structures  

Mutation3D35 was used to cluster variants within 3-dimensional protein structures in all 

identified oncogenes with at least 8 variants in our cohort as this was heuristically identified 

as the minimum number of variants needed to perform a meaningful analysis for the 

respective oncogene. For each analyzed oncogene, all amino acid sequence changes 
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caused by identified variants where used as input to Mutation3D35, which was run in 

advanced mode. Settings were chosen to include all ModBase homology models with a 

ModPipe quality score (MPQS) ≥ 1.1, requiring at least three mutations and at least one 

unique amino acid change per cluster and allowing a maximum intracluster distance 

between mutations of 25Å. We considered an identified cluster sufficiently likely to be truly 

present if its p-value < 0.1.  

Mutual exclusivity and Co-occurrence of mutations analysis 

To test if oncogenes or tumor suppressor genes co-occur or are mutually exclusive, we used 

DISCOVER40. We calculated the background matrix using all mutations and small InDels but 

limited our analysis to amino acid sequence altering mutations in oncogenes and tumor 

suppressor genes. We used a p-value of 0.05 as a threshold to detect mutual exclusivity or 

co-occurrence. 

Mutational burden 

Mutational burden was calculated by dividing the number of mutations occurring within the 

target region for a given patient by the target region size. 

Mutational signatures 

Mutational signatures were identified using R79 and deconstructSigs42. We deconstructed the 

mutations in each patient and for each gene with >30 mutations in our cohort into mutational 

signatures with the COSMIC single base substitution signatures as reference signatures41. 

Trinucleotide context normalization was based on trinucleotide context observations in the 

coding exome (parameter: tri.counts.method = ‘exome’). We considered a mutational 

signature detected in a patient or gene if its associated weight was > 0.1. Mutational 

signatures detected in at least 10% of patients in our cohort were considered to be recurrent 

mutational signatures present in HL (COSMIC single base substitution signatures 1, 3, 6, 9, 

15 and 25). For both patients and genes, the proportion of mutations not explained by any of 

these signatures was classified as other/not assigned.  

Pathway associations 

We assigned KEGG81, GO82,83 or REACTOME84 pathways to identified oncogenes and tumor 

suppressor genes using g:Profiler85.  

Detection of viral and bacterial associations 

To detect viral and bacterial associations of HL by liquid biopsy, we used a previously 

developed pipeline48 built around KRAKEN49. In brief, we used post UMI-processing 
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consensus reads aligned to hg19 by BWA mem86 from all baseline cfDNA and germline 

control samples as input to KRAKEN49 and generated output reports which we filtered with 

KRAKEN’s built-in confidence scoring function with a confidence score of 0.25 (parameter: --

confidence 0.25). We used the KRAKEN standard database including viral and bacterial 

reference genomes for our analysis. Next, we arranged and filtered the output reports in a 

way that (II) excluded all human-aligned reads, (II) included only species-level hits, (III) 

excluded all species with > 4 cumulative alignments in our healthy control cohort to account 

for misalignments and common sequencing contaminants and (IV) excluded all species that 

had > 2 germline samples with > 4 reads aligned to it. In general, a species was determined 

to be detected in a cfDNA sample, if > 4 reads aligned to it. However, for EBV (HHV4) we 

used 33 as a threshold, as low-level EBV DNA is commonly detected in blood of healthy 

humans in highly sensitive assays87. To further exclude likely false-positive taxa, we 

excluded common sequencing contaminants compiled within one of our previous studies48, 

taxa that are common sources of biotechnological products (e.g. enzymes), such as bacteria 

from the Thermaceae family and thus also more likely to be contaminants and finally taxa 

that do not colonize mammalian hosts (See Supplementary Table 10 for details). 

Analysis of clonal structure of mutations 

PyClone59 was used to analyze clonal structure of mutations. All identified single base 

substitutions in a patient were used as input. Normal copy number was set to 2. As absolute 

copy number information was not available, minor copy number and major copy number 

were set to 0 and 2, respectively. Prior was set to total copy number (parameter: --prior 

total_copy_number). Minimum cluster size was set to 3 (parameter: --min_cluster_size 3). 

Burnin was set to 1000 (parameter: --burnin 1000). Default settings were used for all other 

parameters. As a cleaning step, starting from the cluster with the highest mean cellular 

prevalence, clusters were pooled with the next cluster in order of decreasing mean cellular 

prevalence until a cluster size of at least 3 mutations was reached.  Subsequent analyses of 

clonal structure were only performed for patients with at least 2 identified clones. To derive 

the cancer cell fraction (CCF) of each mutation, the cellular prevalence of the respective 

mutation was divided by the mean cellular prevalence of the cluster with highest mean 

cellular prevalence after cleaning as described above. The CCF of mutations in the main 

clone was set to 1. For subsequent dichotomized analyses, a mutation with a CCF > 0.75 

was considered to be a main clone mutation and all other mutations were considered 

subclonal.  

To analyze the relationship between mutational signatures and main clone versus subclonal 

mutations, deconstructSigs42 was run separately on all genes in which > 70% of mutations 
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were main clone mutations (main clone dataset) and all genes in which > 80% of mutations 

were subclonal (subclone dataset).  

Minimal residual disease assessment 

Minimal residual disease assessment was performed using customized R scripts. We used 

only single base substitution variant calls from baseline samples excluding non-coding RNA 

regions as input. Follow up samples were processed as described above including UMI-

based and CES. Our process scans each follow up dataset at each variant position in the 

baseline dataset and identifies the sequencing depth and count of mutated alleles including 

only counts of the variant base identified in the baseline sample at each such position in the 

follow up sample. Then, it calculates preliminary MRD, defined as the sum of the count of all 

variant alleles defined as above in the follow up sample divided by the combined sequencing 

depth at these positions in the follow up sample. Next, we included a dusting step based on 

the assumption that mutated alleles should distribute evenly across all variants in the 

baseline file and outliers have a higher likelihood of being false tumor-derived somatic 

variant calls, for example CHIP variants88 not captured in the sample’s germline control 

leading to higher MRD detected than is truly present. We populated a Poisson distribution for 

each variant position with the expected number of events defined as: ����	
	���
 ��� �
�������	�� ����� �� ���	��� ���	�	�� 	� ������ �� ��
���. We then derived the Poisson-

likelihood that the observed or a higher number of mutated alleles at this position occurs. If 

this likelihood was < 10-5, we assumed this variant position had a higher than tolerable for 

MRD detection likelihood of being a false (e.g. non-tumor-derived) call and omitted it. After 

this dusting process we calculated final MRD as the sum of the remaining count of all variant 

alleles defined as above in the follow up sample divided by the combined remaining 

sequencing depth at these positions after the dusting process in the follow up sample. 

To evaluate response in patients, we calculated the log10 reduction in MRD from baseline for 

a sample. We corrected for changes in cfDNA concentration between samples analogous to 

a method outlined before89. The log10 reduction was calculated according to the following 

formula: 

��� ������	�� � �����  � �����		�
 �
 ���
	� �  ����� ����������	����		�
 �
 ���
	�������� � ����	��� ���
	� � ����� ����������	������	��� ���
	�

! 

If MRD in a follow up sample was below the limit of blank, we denoted this as MRD not 

detected. For the purpose of statistical calculations within this manuscript we set MRD not 

detected to the midpoint between 0 and the MRD reduction of a fictitious average sample 

analogously to a previously described method90 with: 
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 ���
	� � ���.  ����� ����������	�� �� ��� ������ �� ��
���� 

������� � ����	��� ���
	� � ���. �  �� ��� "����	�� ��
����, and 

����� ����������	������	��� ���
	� � ���. ����� ����������	�� �� ��� "����	�� ��
����. 

Fluorescence in situ hybridization 

FISH analyses were performed according to standard protocols. Briefly, bacterial artificial 

chromosome (BAC) clones were selected from the UCSC Genome Browser and ordered 

from Thermo Fisher. The BAC DNA was extracted from LB-Cultures according to standard 

protocols and labeled with Fluorescent Dye using the Nick Translation DNA Labeling System 

2.0 (ENZO, New York, New York) according to manufacturer’s recommendations.  The 

following BAC clones and labeled dUTPs (Fluorescent Dyes) were used: PD-L1/upstream: 

RP11-963L3 & RP11-12D24 (green 496 dUTP, ENZ-42831); PD-L2/downstream: RP11-

207C16 & RP11-845C2 (orange 552 dUTP, ENZ- 42842); centromere near control probe 

CTD-2024L1 & RP11-203L2 (aqua 431 dUTP, ENZ- 42853).  

To analyze genetic alterations in 9p24.1 we used a combination of CD30 IHC and FISH 

assay. We produced serial slides for CD30 IHC and FISH. For evaluation, we used the 

Bioview System (Abbott Molecular, Chicago, Illinois). We produced scans of the IHC slide 

and marked regions of interest (ROIs) containing large amounts of CD30-positive HRSC. 

Likewise, a scan of the FISH slide with the DAPI filter was recorded. Both of the scanned 

images (IHC and FISH) were matched at equivalent points and an overlay was produced. 50 

tumor cells per case were analyzed in several of the previously selected ROIs.  

Code Availability 

Custom scripts and code are available upon request. 

Data Availability 

Primary sequencing data cannot be deposited publicly due to legal requirements and patient 

data protection. Upon entering a collaboration agreement and in consultation with the local 

ethics committee access to primary sequencing data might be granted. All secondary data 

derived from primary sequencing data is available within the article, supplementary 

information, or supplementary data files or available from the authors upon reasonable 

request. 
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Figures 

 

Figure 1: Technical and clinical validation of ctDNA sequencing platform 

(A) error profile of indicated error suppression methods across 1000 random non-mutated 

bases. Dots indicate observed error rate at a base. Lines indicate a one-phase decay model 

of the respective error rate. (B) average error rate of indicated error suppression methods 

across 1000 random non-mutated bases, (C) error-free rate of indicated error suppression 
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methods across 1000 random non-mutated bases, (D-E) technical validation of variant 

calling: shown is the proportion of correctly called mutations across 42 truly mutated bases 

(D) and the proportion of correctly called non-mutated bases across 1527 random non-

mutated bases (E) for the indicated error suppression methods, (F) technical validation of 

minimal residual disease assessment with linearity test for indicated error suppression 

methods (n=24). The dotted line indicates true linearity (the measured allele frequency (AF) 

in technical spike-in controls equals the expected (spiked-in) AF (G) comparison between AF 

of variants identified in cfDNA that were validated in FFPE-tissue and those that were not 

(n=8 clinical validation samples), (H) validation rate of variants identified in cfDNA in FFPE 

tissue samples shown separately across 8 sample pairs and summarized for all sample 

pairs, (I) comparison between HRS cell CD274/PD-L1 copies assessed by FISH in tissue 

and copy number z-score in corresponding cfDNA samples (n=51). Error bars show 

bootstrap confidence intervals for (D) and (E) and s.e.m. for (B), (G) and (I). One-way 

ANOVA (B), t-test with Welch correction (G) and one-way ANOVA with trend test (I) were 

used. 
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Figure 2: Mutational landscape of Hodgkin lymphoma 

(A) waterfall plot of oncogenes and tumor suppressor genes identified in the patient cohort 

(n=109, 2 patients without identified mutations not shown). The chart on the left shows the 

genes and proportions of patients with mutations. The chart on top shows the mutational 

burden per patient. Color codes indicate the type of mutation in a patient and proportion of 

synonymous vs. non-synonymous mutations in genes (left chart) and patients (top chart), 

respectively. (B) cumulative plot of patients and number of mutations in identified oncogenes 

and tumor suppressor genes (n=111), (C) number of mutations in identified oncogenes and 

tumor suppressor genes per patient (n=111), (D) cloud figure of affected pathways by 

mutations in oncogenes and tumor suppressor genes. Percentages indicate proportion of 

patients affected by at least one mutation in indicated pathway. Shown identified oncogenes 
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(green) and tumor suppressor genes (red) are color coded, (E) 3D protein models of 

oncogenes with significant spatial clustering of mutations. Red, blue, and yellow dots 

indicate separate spatial clusters. The charts below the 3D models depict linear 

representations in which arrows with the same colors as in the 3D models indicate position 

of spatial clusters on this linear representation of the protein sequence. Error bars show 

s.e.m. 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.16.21253679doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.16.21253679


Figure 3: Mutational signatures in Hodgkin lymphoma 

(A) mutational profile of mutational signatures identified in Hodgkin lymphoma (Figure 

adapted from https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). (B) contribution of 

identified mutational signatures to single patients sorted by contribution of SBS1 (n=109), 

(C) contribution of identified mutational signatures to indicated genes, (D) comparison of 

patient age between patients with or without significant detection of SBS25 (n=109), (E) 

comparison of lactate dehydrogenase (LDH) at diagnosis between patients with or without 

significant detection of SBS 5 (n=68), (F) comparison of elevated erythrocyte sedimentation 

rate (ESR) between patients with or without significant detection of SBS15 (n=109), (G) 

comparison of SBS3 contribution between patients with and without mutations in genes 

involved in homologous recombination, (H) comparison of combined SBS6 + SBS15 

contribution between patients with and without mutations in genes involved in mismatch 

repair. Error bars show s.e.m. T-test (D-E), Fisher’s exact test (F) and Mann-Whitney test 

(G-H) were used. 
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Figure 4: Copy number variations in Hodgkin lymphoma 

(A) Recurrent copy number gains (red) and losses (blue) in patient cohort (n=111). The x-

axis shows the chromosomes, the y-axis shows the GISTIC q-values. Each peak indicates a 

recurrent copy number gain or loss with the width of the peak corresponding to the size of 
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the recurrent region and the height to the q-value. Selected genes within recurrent regions 

are annotated, (B) distribution of number of detected copy number gains and losses in 

patient cohort (n=111), (C) most frequently detected recurrent copy number gains in patient 

cohort (n=111), (D) most frequently detected copy number losses in patient cohort (n=111). 
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Figure 5: Clonal structure of Hodgkin lymphoma 

(A), clonal structure is shown for all oncogenes and tumor suppressor genes (n=42) 

including all patients where clonal structure could be derived (n=51). The left chart shows 

percentage of patients with mutations in the indicated gene where at least one of the 

mutations in the indicated gene is in the main clone (cancer cell fraction (CCF) > 0.75). The 

right chart shows detailed CCFs. Each dot represents the CCF in the indicated gene in one 

patient where clonal structure could be assessed. The mean CCF for each gene is also 
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shown, (B) contribution of single base substitution signatures to mutations in genes mainly 

mutated in main clones or subclones. Error bars show s.e.m.  
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Figure 6: Detection of minimal residual disease 

(A) mean reduction of minimal residual disease (MRD) during treatment depending on early 

interim PET-response (n=68 samples). Dotted lines indicate s.e.m., (B) difference in mean 

reduction of MRD 1 week after treatment initiation between interim PET-response groups 
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(n=12 samples), (C) correlation between MRD after 2 cycles of treatment and time-matched 

interim PET-response (n=24 samples), (D) difference in mean reduction of MRD after 2 

cycles of treatment between interim PET-response groups (n=48 samples), (E) single patient 

reduction of minimal residual disease (MRD) during treatment depending on early interim 

PET-response (n=68 samples). Each line represents MRD over time in one patient, (F) 

difference in MRD positivity or negativity 1 week after treatment between interim PET-

response groups (n=12 samples), (G) difference in MRD positivity or negativity after 2 cycles 

of treatment between interim PET-response groups (n=48 samples), (H) single patient 

reduction of MRD in validation cohort. Each line represents MRD over time in one patient, (I) 

comparison of days to MRD negativity across patients in the validation cohort with either 

interim PET-negativity, interim PET-positivity, or relapse, (J-K) MRD and PET-imaging (PET 

images were also used for other studies that included the same patients) over time for two 

selected patients. The annotations below the PET-images correspond to the MRD timepoints 

named identically in the MRD chart. The color of the frame of the annotation indicates PET-

positivity (red), ambiguity (yellow) or negativity (green). The line indicates MRD not detected. 

Error bars show s.e.m. T-test (B and I) and one-way ANOVA (D) were used. n.d.: MRD not 

detected. 
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Supplementary Figure 1: quality control measures, cfDNA and sequencing statistics 

(A) distribution of raw read counts and uniquely mapped reads by patient (n=111), (B) 

duplication rate by patient (n=111), (C) distribution of deduplicated coverage by patient, (D) 

distribution of deduplicated coverage by gene (n=407), (E) distribution of cfDNA 

concentration in ng/ml of plasma (n=111), (F) distribution of cfDNA concentration by sex 
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(n=111), (G) distribution of cfDNA concentration by clinical stage (n=111), (H) distribution of 

cfDNA amount concentration by international prognostic score (IPS) (n=111), (I) number of 

mutations detected by patient (n=109, 2 patients had no mutations detected), (J) absolute 

number of mutations of indicated categories detected in patient cohort (n=111). Error bars 

show s.e.m. Mann-Whitney test (F) and Kruskal-Wallis test (G-H) were used. 
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Supplementary Figure 2: Mutational landscape of Hodgkin lymphoma (supplementing 

figure 2) 

(A) waterfall plot of most commonly mutated genes identified in the patient cohort (n=109, 2 

patients without identified mutations not shown; miRNAs, ncRNAs and predominantly 

intronic mutated genes (BCL6, CIITA) - the intronic loci were intentionally targeted by our 

baits as common targets of AID – are excluded from plot). The chart on the left shows the 
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genes and proportions of patients with mutations. The chart on top shows the mutational 

burden per patient. Color codes indicate the type of mutation in a patient and proportion of 

synonymous vs. non-synonymous mutations in genes (left chart) and patients (top chart), 

respectively. (B) most frequently mutated genes in patient cohort (n=111) excluding 

synonymous, intronic and intergenic mutations, (C) distribution of number of identified 

mutations of indicated type by patient in patient cohort (n=111), (D) cumulative plot of 

patients and number of mutations in any gene in patient cohort (n=111). Error bars show 

s.e.m. 
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Supplementary Figure 3: co-occurring and mutually exclusive mutations in Hodgkin 

lymphoma 

(A) co-occurring mutations (n=111 patients), (B) mutually exclusive mutations (n=111 

patients). The number in the overlap of the two oval shapes indicates the number of patients 

in which mutations in both indicated genes occur. The numbers in each of the oval shapes 

indicate the number of patients in which only a mutation in the indicated gene without a 

mutation in the other gene occurs. The number outside the two oval shapes indicate the 

number of patients without a mutation in any of the two indicated genes. 
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Supplementary Figure 4: Copy number variations in Hodgkin lymphoma 

(supplementing figure 4) 

(A) plot of copy number profiles in each individual patient in patient cohort (n=111). The x-

axis shows the chromosomal location, the y-axis shows the patients, (B) visualization of arm-

wide copy number variations. Blue indicates recurrent arm-wide copy number losses, red 

indicates recurrent arm-wide copy number gains, pink indicates chromosomal arms that 

show both, recurrent copy number gains and losses. 
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Supplementary Figure 5: The plasma metagenome of Hodgkin lymphoma 

(A) proportion of patients with detection of EBV above threshold (33 reads) in plasma (n=111 

patients), (B) proportion of patients with detection of HHV6B above threshold (5 reads) in 

plasma (n=111 patients), (C) comparison of EBV reads / ml plasma between patients with 

and without detection of EBV in tumor cells of  HL infiltrated lymph nodes by LMP1 

immunohistochemistry (n=44),  (D) comparison of patient age between patients with our 

without detection of EBV above threshold in plasma (n=111 patients), (E) comparison of 

proportion of patients with any mutation in the NF-kappa B signaling pathway in patients with 
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or without detection of EBV above threshold in plasma (n=109 patients), (F) comparison of 

patient age between patients with our without detection of HHV6B above threshold in plasma 

(n=111 patients), (G) comparison of proportion of patients with extranodal disease in 

patients with or without detection of HHV6B above threshold in plasma (n=111 patients), (H) 

comparison of proportion of patients with significant detection of SBS 6 in patients with or 

without detection of HHV6B above threshold in plasma (n=109 patients), (I) most commonly 

detected viruses and bacteria in the plasma metagenome of the patient cohort (threshold 5 

reads, n=111 patients). Error bars show s.e.m. T-test (C-D and F) and Fisher’s exact test (E 

and G-H) were used. 
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Supplementary Figure 6: Genotype-phenotype associations in Hodgkin lymphoma 

(A-B) comparison of proportion of patients with B2M (A) or IKBKB (B) mutations between 

patients with or without a large mediastinal mass (n=111 patients), (C-D) comparison of 

proportion of patients with any mutation in interferon signaling (C) or JAK-STAT signaling (D) 

between patients with or without a large mediastinal mass (n=111 patients), (E-F) 

comparison of patient age between patients with or without EZH2 (E) or IRF4 (F) mutations 

(n=111 patients), (G) comparison of lactate dehydrogenase (LDH) at diagnosis between 

patients with or without any mutation in genes involved in transcriptional regulation by TP53 

(n=111 patients). Error bars show s.e.m. Fisher’s exact test (A-D) and t- tests (E-G) were 

used. 
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Supplementary Figure 7: Association between genotypes and treatment response 

(A-D) comparison of proportion of patients with IRF8 (A), PIM1 (B), TP53 (C) or NOTCH1 

(D) mutations between patients with different early treatment response as indicated (n=111 

patients), (E-G) comparison of proportion of patients with 12q13.3 gain (E), 7q34 loss (F) or 

10q26.3 loss (G) between patients with different early treatment response as indicated 

(n=111 patients), (H) comparison of baseline cfDNA concentration between patients with 
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different early treatment response as indicated (n=111 patients). Error bars show s.e.m. 

Fisher’s exact test (A-G) and t- test (H) were used. 
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Supplementary Figure 8: Mutational burden and associated genotypes 

(A) Mutational burden by patient (n=111), (B) absolute number of mutations in oncogenes or 

tumor suppressor genes by patient (n=111), (C) correlation between mutational burden and 

cfDNA concentration in baseline samples (n=111 patients), (D) comparison of mutational 

burden between patients with or without B2M mutations (n=111 patients), (E) comparison of 

mutational burden between patients with or without HLA locus loss (n=111 patients), (F) 

comparison of mutational burden between patients with or without 9p24.1 gain (n=111 

patients), (G) comparison of mutational burden between patients with or without any 

mutation in genes involved in Class I MHC mediated antigen processing and presentation 

(n=111 patients). Error bars show s.e.m. T-tests (D-G) were used. 
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