Rationale and design of the Learning Implementation of Guideline-based
decision support system for Hypertension Treatment (LIGHT) Trial and
LIGHT-ACD Trial

Short Title:
Rationale and design of LIGHT and LIGHT-ACD Trials

Authors:
Jiali Song, MD; Xiu-Ling Wang, MD; Bin Wang, MD; Yan Gao, MA; Jia-Min Liu, MD;
Hai-Bo Zhang, MD; Xi Li, MD, PhD; Jing Li, MD, PhD; Ji-Guang Wang, MD, PhD; Jun
Cai, MD, PhD; Jeph Herrin, PhD; Jane Armitage, FRCP, FFPH†; Harlan M. Krumholz,
MD, SM‡; Xin Zheng, MD, PhD‡; on behalf of the LIGHT Collaborative Group

‡Joint senior authors
†Corresponding authors

Author Affiliations:
National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory
of Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union
Medical College, Fuwai Hospital, National Center for Cardiovascular Diseases,
Beijing, China (Song, X.L. Wang, B. Wang, Gao, Liu, Zhang, X. Li, J. Li, Zheng);
Hypertension Center, State Key Laboratory of Cardiovascular Disease, Chinese
Academy of Medical Sciences and Peking Union Medical College, Fuwai Hospital,
Beijing, China (Cai); The Shanghai Institute of Hypertension, Ruijin Hospital,
Shanghai Jiaotong University School of Medicine, Shanghai, China (J.G. Wang);
Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of
Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Roosevelt Drive, Oxford, OX3 7LF, UK (Armitage); MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK (Armitage); Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, Connecticut, United States (Krumholz); Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, United States (Herrin, Krumholz); Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut, United States (Krumholz).

Correspondence:

Dr. Xin Zheng, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, 167 Beilishi Road, Beijing 100037, People’s Republic of China; Tel: +86 10 6086 6719; Email: xin.zheng@fwoxford.org
Background: Computerized clinical decision support systems (CDSS) are low-cost, scalable tools with the potential to improve guideline-recommended antihypertensive treatment in primary care. Uncertainty remains about the optimal initial antihypertensive therapy in the settings of real practice.

Methods: The Learning Implementation of Guideline-based decision support system for Hypertension Treatment (LIGHT) trial is a pragmatic, cluster-randomized controlled trial of CDSS versus usual care conducted in 100 primary care practices in China. The primary outcome is the proportion of hypertension visits with appropriate (guideline-recommended) antihypertensive treatment. Among patients recruited from primary care practices of the intervention group in the LIGHT trial, we further conducted a sub-study, the LIGHT-ACD trial, to compare the effects of initial antihypertensive therapy by randomizing individual patients to receive different antihypertensive regimens of initial monotherapy or dual therapy. The primary outcome of the sub-study is the absolute change in blood pressure from baseline to 9 months.

Results: We hypothesize that the use of CDSS will result in a higher proportion of appropriate antihypertensive treatments being prescribed during visits for hypertension control in the LIGHT trial, and that particular choices of monotherapy or combinations of dual therapy lead to greater blood pressure change in the LIGHT-ACD trial.

Conclusion: These nested trials will provide reliable evidence on the effectiveness of CDSS for improving adherence to guidelines for hypertension management in primary care, and data on the effectiveness of different initial antihypertensive regimens for blood pressure reduction.

Registration number: LIGHT (NCT03636334) and LIGHT-ACD (NCT03587103).
INTRODUCTION

Hypertension is the leading modifiable risk factor of death globally.\(^1\) Over the past decades, the number of individuals with hypertension is estimated to have increased by 90%, with the majority of the increase occurring in low- and middle-income countries (LMICs).\(^2\) In China, an estimated 244.5 million adults have hypertension, and only about 15% of these individuals have adequate blood pressure control, resulting in major health and economic burdens.\(^3\)

Improving the performance of primary care providers who play a key role in managing hypertension, and reducing the heterogeneity of antihypertensive treatments are public health priorities in China.\(^4\) Despite decade-long efforts to improve the primary care system,\(^5\) there is still a lack of adequately qualified providers.\(^4,6\) Moreover, underuse of antihypertensive medications persists.\(^6\)

Traditional strategies, including training sessions, have focused on improving the performance of providers, but most have only yielded modest effects.\(^7\) Furthermore, such interventions are often difficult to implement widely because retraining of providers is resource-intensive.\(^6\) These barriers to adequate management of hypertension in China have led to calls for the implementation of computerized clinical decision support system (CDSS) to aid compliance with guidelines.\(^4,6\) Such systems are characterized by computerized algorithms which generate guideline-based recommendations, and hence have the potential to improve appropriate medication prescribing. However, few studies have assessed this effect, especially in resource-constrained settings. Most studies of CDSS were based on blood pressure
levels or target attainment, and had shown mixed results. Systematic reviews had aimed to summarize the literature but the heterogeneity of systems made it difficult to draw firm conclusions. Understanding whether and to what extent a CDSS causally affects adherence to guidelines for hypertension management in primary care could provide important information for policy makers to develop effective strategies for mitigating the burden of hypertension in China.

Equally important to hypertension control is the treatment regimen but uncertainty exists in the optimal initial antihypertensive therapy, particularly in the settings of real practice. There are several initial guideline-based treatment options based on previously published clinical trials or meta-analysis, such as thiazide diuretics, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, or calcium channel blockers. The blood pressure lowering effects of these antihypertensive medication classes are well understood. However, there are differences in tolerability, which combinations to use for patients with uncontrolled blood pressure after initial therapy are also not clear. Assessing the effectiveness and tolerability of different antihypertensive regimens of initial therapy for blood pressure reduction may help physicians refine the choice of medication, which is of great consequence in terms of health outcomes and the cost of patients.

Accordingly, we have developed a CDSS for hypertension management and designed a pragmatic, cluster-randomized controlled trial, the Learning Implementation of Guideline-based decision support system for Hypertension Treatment (LIGHT) trial, to assess its effectiveness on improving appropriate
antihypertensive treatment in China. In the framework of LIGHT trial, we are also
conducting a sub-study, the LIGHT-ACD trial, to determine the optimal initial therapy
for blood pressure reduction.

METHODS

Overview of the LIGHT and LIGHT-ACD trials
The LIGHT trial is a pragmatic, parallel-group, multi-stage, cluster-randomized
controlled trial assessing the effectiveness of CDSS-based intervention, with primary
care practices as the unit of randomization. For each stage, we randomize all the sites
to the intervention and control groups based on the data collected during a 3-month
baseline period. The trial’s intervention duration is 12 months, including 3 months of
recruitment and 9 months of follow-up. After recruitment, all eligible patients are asked
to come to the clinic for follow-up at least every 3 months (Figure 1). The visit interval
is in line with recommendations in the Chinese guideline for the management
of hypertension in primary care18. The LIGHT-ACD trial is applied through the CDSS
in the intervention sites of LIGHT trial. This sub-study randomizes patients to various
initial antihypertensive therapies and compares blood pressure changes across these
groups (Figure 2).

Both trials are being conducted in 100 sites in China. There will be 4 stages in
total, and the intervention of the first stage began on 21 August 2019. All sites will
complete the 9-month follow-up by the beginning of 2022. In the first half of 2020, the
implementation of both trial was affected by the outbreak of COVID-19 in China. We
extended the follow-up and recruitment period of the first and second stage of the trial respectively. By July 2, 2020, twenty-seven sites (including 3701 patients) had been randomized in the first two stage of the LIGHT trial and 380 participants in the LIGHT-ACD trial.

The LIGHT (NCT03636334) and LIGHT-ACD (NCT03587103) trials are registered on www.clinicaltrials.gov. The ethics committee of Fuwai Hospital approved both trials. All sites accepted this ethics approval or obtained local approval by internal ethics committees as appropriate. Informed consent for implementing the CDSS in both trials was waived given that CDSS, which provides guideline-based recommendations, was considered to have minimal risk for the patients. Written informed consent for participants was acquired for the purpose of sending a text message as a brief medical record (e.g., blood pressure, prescriptions and follow-up reminders) after each visit.

The LIGHT trial

Site selection

Primary care practices with outpatient clinics for hypertension are eligible if they have: (1) at least one agent available from each of the four classes of antihypertensive medications (angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, beta-blockers, calcium channel blockers, and diuretics); (2) routine use of an electronic health record (EHR) for hypertension management; and (3) at least 100 patients with hypertension being routinely seen.
Randomization

Primary care practices (clusters) were randomly allocated to the intervention (i.e., installation of the CDSS into the EHR) or control arm (usual care) in a 1:1 ratio using random numbers. Stratified randomization was performed separately for each stage. The stratification factors include baseline appropriate (guideline-recommended) antihypertensive treatment rates and site characteristics, including the hospital to which a primary care practice is affiliated, geographical region, or type of primary care practice (as appropriate to the stage).

Patient recruitment

Local residents aged ≥18 years with established essential hypertension are eligible for the LIGHT study if they are taking ≤2 classes of antihypertensive medications. Major exclusion criteria include: (1) systolic blood pressure (SBP) ≥180 mmHg or diastolic blood pressure (DBP) ≥110 mmHg; (2) history of coronary heart disease, heart failure, or chronic kidney disease; and (3) intolerance to ≥2 classes of antihypertensive medications (Table 1). As the visit is the observation unit for the primary and secondary outcomes, both scheduled and unscheduled visits of eligible patients for hypertension or other cardiovascular disease are eligible for inclusion in these outcomes’ denominator (Supplement 1).

Intervention development and testing

The CDSS was integrated into the EHR of the intervention sites and consisted of three core components: (1) point-of-care decision support for antihypertensive
therapy with regard to the class and dose of antihypertensive medication; (2) alerts for referral, contraindications, and underdose or overdose of antihypertensive medication; and (3) alerts for re-evaluation of the antihypertensive therapy if a physician does not follow the CDSS recommendation.

The CDSS was developed by a multidisciplinary team including clinicians and information technology (IT) experts. Clinicians and academics developed the CDSS algorithm which provides patient-specific medication recommendations and alerts. The algorithm was developed mainly based on hypertension management guidelines for primary care in China.\(^{18}\) Other guidelines from the USA and Europe were also considered.\(^{19-21}\)

After the algorithm had been finalized, IT experts worked together to translate the algorithm into computational logic. The CDSS logic was tested using simulated patient data to trigger each possibility of the algorithm. After internal testing, the CDSS was provided for clinicians for further validation.

We retrieved alerts and medication recommendations of CDSS for the patient and compared them with the recommendation given by clinicians. The IT experts were notified when any discrepancies were found so that the programming errors could be identified. This process was repeated until no errors were observed in all test cases. The user interface was tested by doctors in two excluded primary care practices specifically to ensure the usability of CDSS.

Data collection, quality control and data management
1 Data collection

2 Sociodemographic characteristics (age, gender, education, and health insurance),

3 physical measurements (blood pressure, heart rate, waist circumference, height, and

4 weight), cardiovascular risk factors and co-morbidities, current medications,

5 medication adherence, prescriptions, information on self-reported home monitoring

6 blood pressure, and side-effects related to antihypertensive medications of

7 participants are collected via EHR. Blood pressure is measured with the patient

8 seated, using the same validated automated sphygmomanometer (Omron

9 HBP-1300) after at least a 5-minute rest at each visit. Two blood pressure readings

10 are taken 1–2 minutes apart and the average value is recorded. For primary care

11 practices in the intervention arm, if doctors do not follow the recommendations of

12 CDSS, the relevant reasons will be recorded.

13 Data management

14 All data are securely transmitted to the central server through automatic

15 electronic transfer and securely stored in an encrypted and password-protected

16 database. The database can be accessed only by approved staff members. At the

17 local sites, all staff members must use their own usernames and passwords to log into

18 the EHR, which will create an audit trail of all data entered or changed. Data

19 confidentiality policies on data collection, storage, and analysis have been strictly

20 imposed in order to ensure the confidentiality of personal information.

21 Quality control

22 We developed a web-based platform to monitor real-time project progress and
quality, and to provide management support for primary health care practice staff.

On-site monitoring of recruitment, physical measurements, and accuracy of the data documentation are regularly conducted by trained staff to ensure the quality of data collection. All automated sphygmomanometers are calibrated annually. In addition, to ensure the accuracy of the blood pressure value, research staff will randomly audit at least one blood pressure values documented in the EHR against the recording in the electronic blood pressure monitor from all sites on a daily basis.

Outcomes

The primary outcome is the proportion of hypertension visits with appropriate treatment. Appropriate treatment is defined as the prescription compliant with all the pre-specified evidence-based recommendations. These recommendations mainly include titrating or switching treatment for patients with poor blood pressure control, using a particular antihypertensive medication for patients with specific clinical indications or without compelling contraindications or intolerance to their use. Detailed recommendations specifications are shown in Supplement 2.

The secondary outcomes include the average change in systolic blood pressure, blood pressure control rate at 9 months, and the proportion of hypertension visits with acceptable treatment. Acceptable treatment is defined as either appropriate treatment or non-appropriate treatment with reasons for failing to titrate treatment. Exploratory outcomes include a composite of cardiac death, non-fatal stroke, and non-fatal myocardial infarction. (Table 2)
Statistical analysis

We initially assumed that at least 10 primary care practices are randomized to the intervention arm and 10 to the control arm, and the baseline appropriate treatment rate is 55% with maximum type II error of $\alpha=0.05$. With 20 practices, assuming a moderate intra-site correlation of 0.05, a within-patient correlation of 0.1, and a statistical power of 90%, we needed 3 hypertension visits per patient for 50 patients at each site in order to detect a 18% absolute difference in appropriate treatment rate between the two arms.

Although we based our initial planning and site recruitment on this sample size calculation, we currently have 100 sites that are or will be randomized. Under the same assumptions as above but with 50 intervention and 50 control sites, we will be able to detect a 4% absolute difference in appropriate treatment rate between arms.

The analyses and reporting of the results will follow the Consolidated Standards of Reporting Trials guidelines for cluster randomized controlled trials. All the intervention evaluations will be performed on an intention-to-treat basis. Multiple imputation by chained equations will be used to account for missing values, for both explanatory and outcome variables.

The baseline characteristics of patients will be analyzed to assess cluster differences between the intervention and control groups. We will summarize continuous variables as median with interquartile ranges and categorical variables as frequency with percentage. With all comparative outcomes, absolute differences with
95% CIs will be presented and adjusted by patient and site baseline characteristics. Implementation stages will be treated as strata, with adjustment for calendar time to account for secular trends. The analysis of both primary and secondary outcomes will account for the clustering effect using mixed-effects models with primary care practice as a random effect. The consistency of treatment effects on the primary outcome will be explored in predefined subgroups, including age, gender, education, implementation stage, and tertile of cluster-level endpoints. All statistical tests will be performed using 2-sided tests at the 0.05 level of significance.

The LIGHT-ACD trial

Patient recruitment

The LIGHT-ACD trial aims to include all participants in the intervention sites of the LIGHT trial who are not taking antihypertensive medication or taking only one medication which is not a beta-blocker and with a SBP ≥ 140 mm Hg. Key exclusion criteria includes diabetes mellitus and intolerance to at least one class of antihypertensive medications (Table 1).

Participants in the LIGHT-ACD trial are categorized into 2 subpopulations. Participants with a SBP of 140–159 mm Hg, and not taking any antihypertensive medication are categorized as Population 1, the reminder as Population 2.

LIGHT-ACD randomization

Populations 1 and 2 are randomized separately. Six three-step protocols are integrated into the algorithm of CDSS. Population 1 are randomized to receive one of
the initial monotherapies of A (angiotensin-converting enzyme inhibitor or angiotensin receptor blocker), C (calcium channel blocker), or D (diuretics). Subsequently, the participants initiated with A are randomized to add C or D following protocol A-AC-ACD or A-AD-ADC, respectively, if necessary, to achieve blood pressure control. Similar randomization procedures are applied in participants initiated with C or D. Population 2 are randomized to receive one of the three initial dual therapies of AC, AD, or CD, and then D, C, or A is added to achieve blood pressure control, respectively (Figure 2). Minimized randomization is used to ensure balance by age, gender and education level among the three arms of the two populations. Neither participants nor physicians are blinded to treatment allocation but the allocation is concealed within the CDSS.

LIGHT-ACD treatment

The assignment of treatment is presented as the medication recommendation (class and dose) by the CDSS. The specific agent within each class is at the physician’s discretion based on the available medications at the primary care practices. For each case, the titration of antihypertensive medications is performed automatically by CDSS according to the assigned treatment protocol. Participants who are unable to follow their protocols because of a new onset of complications (e.g., coronary heart disease) receive usual care. Those who are unable to follow their regimen because of medication intolerance, are assigned to a new protocols.
automatically by CDSS.

LIGHT-ACD outcomes

The primary outcome is the change in blood pressure from baseline to 9 months of different regimens of initial therapy. Secondary outcomes include the proportion of individuals with SBP <140 mm Hg and DBP <90 mm Hg at 9 months; the proportion of individuals with SBP <160 mm Hg and DBP <100 mm Hg at 9 months; the proportion of individuals who received monotherapy (only in Population 1), dual therapy, triple therapy, and referral at 9 months; the proportion of individuals reported to have antihypertensive drug related side-effects; and the proportion of individuals transferred to usual care for any reasons. The exploratory outcome is the change in blood pressure from baseline to 9 months of different protocols. (Table 2)

LIGHT-ACD statistical analysis

We assume approximately 25% of the LIGHT intervention patients are in Population 1 and 75% in Population 2, with an 80% follow-up rate for the primary outcome. For each population, we estimate the detectable difference in SBP between treatment groups across a similar range of the intervention participants and statistical power. We assume that the standard deviation in SBP is \(\sigma = 10 \) mmHg, and that the within-patient SBP correlation is \(R^2 = 0.2 \) with a maximum type II error that is Sidak-corrected for three comparisons, \(\alpha = 0.017 \). With 100 LIGHT sites, we estimate at least 2100 eligible LIGHT-ACD participants overall with complete follow-up. Under
these assumptions, we estimate that for Population 1 comparisons we will have 80% power to detect a difference of 3.5 mm Hg in SBP, and for Population 2 comparisons, we have 80% power to detect a difference of 2 mm Hg in SBP.

All the intervention evaluations will be performed on an intention-to-treat basis. Multiple imputation by chained equations will be used to account for missing values, for both explanatory and outcome variables. We will use frequencies with percentages to describe categorical variables and means with SDs to describe continuous variables unless skewed, which we present as medians and interquartile ranges. The differences between the three groups will be assessed either by univariate analyses of variance (ANOVA) or by χ^2 tests. For pairwise testing of primary outcomes, multiple Student t tests or Mann-Whitney U tests will be used; P values will be adjusted for multiple comparisons by using the Sidak method. As secondary analyses, the primary end points will be adjusted for baseline blood pressure values by analysis of covariance (ANCOVA). For secondary outcomes, log-binomial regression will be used to compare groups and calculate relative risk of outcomes at 9 months.

Additionally, we will perform pre-specified subgroup analyses of outcomes by age, sex, education, smoking status, and tertile of baseline blood pressure.

DISCUSSION

The LIGHT trial, to the best of our knowledge, is the largest pragmatic randomized trial showing the feasibility and effectiveness of a new model of delivering
high-quality care for hypertension in primary care settings. Moreover, by adopting a streamlined study design, we embed a patient-randomized controlled trial (LIGHT-ACD study) into a cluster-randomized trial through an algorithm-enabled CDSS tool, representing a contemporary paradigm of clinical research to improve the efficiency of the trial and accelerate the generation of evidence through electronic health systems, standardized treatment regimens, and decision support systems.

Our studies have several strengths. First, we developed a usable CDSS, which can seamlessly integrate into clinical routine workflow and provide tailored antihypertensive recommendations at the point of care. These features are highly correlated with effective CDSS for improving process of care and patient outcomes. The use of a CDSS in primary care may reduce the heterogeneity of care due to the lack of qualified doctors for hypertension management in China. As recommendations and alerts of CDSS are generated automatically by the built-in algorithm, which was developed based on current guidelines, this approach can thus assist primary care doctors, even those with less training, in making informed and evidence-based medical decisions.

Second, we have built a streamlined framework for a clinical trial that enables us to compare the effectiveness of several guideline-based initial antihypertensive therapies. Earlier randomized clinical trials such as the ALLHAT and ACCOMPLISH trials, had provided a direct comparison among several monotherapies or dual therapies. In contrast with these standalone trials, the conduct of the LIGHT-ACD trial is embedded into the existing framework of the LIGHT trial. We
have incorporated a series of stepped treatment protocols into the CDSS, whereby

the randomized allocation of recommended medication can be performed

automatically by following the algorithm-consistent order at each encounter where
decision support is delivered. While assessing the effectiveness of CDSS, we can
also compare the effectiveness of common initial antihypertensive monotherapies or
dual therapies in an unobtrusive manner.16,27,29,30

Third, the pragmatic design of both trials, are built on the infrastructure of the
electronic health records already routinely used in primary care practices. Although
traditional explanatory trials remain a key tool for demonstrating the efficacy of
intervention/treatment in highly controlled settings, the pragmatic design can deliver
real-world effectiveness with greater external validity.31,32 In contrast to trials with
study-specific visits, the enrollment and follow-up of patients, and the collection of
outcome data in our trial are incorporated into routine clinical practice. Moreover, the
exclusion criteria are kept to a minimum to enroll a diverse spectrum of the population.
These considerations improve the efficiency of trials and enhance generalizability of
the study results.32

Fourth, the two studies are further distinguished by their efforts to build a learning
decision support tool. Apart from basic functions of CDSS such as medication
recommendation and alerts, the tool itself can generate new knowledge in terms of
the effectiveness of treatment strategies embedded in the CDSS from the ongoing
delivery of care. These study results, in turn, can be used to adaptively improve CDSS
by shifting the randomization ratio of stepped antihypertensive protocols toward the
more effective group. The updated CDSS can also be iteratively implemented,

tested, and improved.

Our study has some potential limitations. First, our study outcomes are focused
on surrogate outcomes instead of clinical outcomes such as death or vascular events.
To examine the effectiveness on clinical events, a much larger and longer trial would
be required. However, it is expected that improvements in blood pressure control over
time would favorably affect clinical outcomes. Second, given the nature of CDSS,
which delivers its recommendation directly to physicians, blinding was not feasible in
both studies. We minimized the potential bias by using objective measures as primary
and secondary outcomes. Third, due to the limited timeframe of the study, an
extended follow-up period was not included following the 12-month intervention to
measure persistence of effects after the intervention ceases.

In conclusion, these two trials will provide reliable evidence regarding the
effectiveness of CDSS on improving adherence to guidelines for hypertension
management in primary care, and data on the effectiveness of different initial
antihypertensive regimens for blood pressure reduction in the real-world setting.
REFERENCES

14. The Allhat O, Coordinators For The Allhat Collaborative Research G. Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs

Arterial Hypertension of the European Society of Hypertension (ESH) and of

21. National Collaborating Centre for Chronic C. National Institute for Health and
Clinical Excellence: Guidance. In: *Hypertension: Management in Adults in
Primary Care: Pharmacological Update.* London: Royal College of Physicians
(UK); Royal College of Physicians of London.; 2006.

blood pressure monitor based on auscultation in children and adults. *BMC
Cardiovasc Disord.* 2016.

24. ZK. Š. Rectangular Confidence Regions for the Means of Multivariate Normal

25. Kawamoto K, Houlihan CA, Balas EA, Lobach DF. Improving clinical practice
using clinical decision support systems: a systematic review of trials to identify

Hydrochlorothiazide for Hypertension in High-Risk Patients. *New England

ACKNOWLEDGMENTS

We appreciate the steering committee member of the study: Robert Clarke from University of Oxford, Sharon-Lise T. Normand from the Harvard T.H. Chan School of Public Health, Frederick A. Masoudi from University of Colorado School of Medicine, Songtao Tang from the Community Health Center of Liaobu County, Wenjun Ma from the Fuwai Hospital, and Jian Xu from the Center for Chronic Disease Control of Shenzhen for their support and advice. We thank Lawrence J. Fine and George A. Mensah from National Institutes of Health for their contributions in study design. We appreciate the multiple contributions made by study teams at the National Clinical Research Center of Cardiovascular Diseases in the realms of study design and operation, particularly site management and coordination by Bo Gu, Yilan Ge, Fuyu Jing, Lei Bi, Huijun Jin, Teng Li, and Liyuan Sui, and IT development and maintenance by Shuyang Hua and Mengnan Zhu. We thank the local sites in the collaborative network for their support and data collection.

CONTRIBUTORS

HMK, JA, and XZ designed the study. XZ acted as the principle investigator to take responsibility for all respect of the study. JS, HMK, JA, and XZ conceived of this article. JS wrote the manuscript with further contributions from XZ, JA, HMK, JH, JW, JC, JL, XL, HZ, JL, BW, XW and YG. JH calculated the sample size and provided advice in randomization method of the study. YG performed daily data monitoring and completed all the statistical analysis. XZ, LJ, HZ, JS, XW, and BW developed the
algorithm of the CDSS. All authors contributed to critical revisions and approved the final version of the article.

PATIENT AND PUBLIC INVOLVEMENT

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

FUNDING SOURCES

This project was supported by the CAMS Innovation Fund for Medical Science (2016-I2M-1-006) and the 111 Project (B16005) from the Ministry of Education of China.

CONFLICTS OF INTEREST

Dr. Krumholz works under contract with the Centers for Medicare & Medicaid Services to support quality measurement programs; was a recipient of a research grant, through Yale, from Medtronic and the US Food and Drug Administration to develop methods for post-market surveillance of medical devices; was a recipient of a research grant with Medtronic and is the recipient of a research grant from Johnson & Johnson, through Yale University, to support clinical trial data sharing; was a recipient of a research agreement, through Yale University, from the Shenzhen Center for Health Information for work to advance intelligent disease prevention and health promotion; collaborates with the National Center for Cardiovascular Diseases in
Beijing; receives payment from the Arnold & Porter Law Firm for work related to the Sanofi clopidogrel litigation, from the Martin/Baughman Law Firm for work related to the Cook IVC filter litigation, and from the Siegfried and Jensen Law Firm for work related to Vioxx litigation; chairs a Cardiac Scientific Advisory Board for UnitedHealth; was a participant/participant representative of the IBM Watson Health Life Sciences Board; is a member of the Advisory Board for Element Science, the Advisory Board for Facebook, and the Physician Advisory Board for Aetna; and is the founder of HugoHealth, a personal health information platform, and co-founder of Refactor Health, an enterprise healthcare AI-augmented data management company. Dr. Jing Li discloses that she is a recipient of research grants from the government of China, through Fuwai Hospital, for research to improve the management of hypertension and blood lipids, and to improve care quality and patient outcomes of cardiovascular disease; is a recipient of research agreements with Amgen, through National Center for Cardiovascular Diseases (NCCD) and Fuwai Hospital, for a multi-centre trial to assess the efficacy and safety of Omecamtiv Mecarbil, and for dyslipidemic patient registration; is a recipient of a research agreement with Sanofi, through Fuwai Hospital, for a multi-centre trial on the effects of sotagliflozin; is a recipient of a research agreement with University of Oxford, through Fuwai Hospital, for a multi-centre trial of empagliflozin; and was a recipient of a research agreement, through NCCD, from AstraZeneca for clinical research methods training.
FIGURE LEGEND

Figure 1. Overview of the multi-stage design of the LIGHT trial

Figure 2. Infrastructure of the LIGHT and LIGHT-ACD trials
Figure 1. Overview of the multi-stage design of the LIGHT trial

<table>
<thead>
<tr>
<th></th>
<th>3m</th>
<th>6m</th>
<th>9m</th>
<th>12m</th>
<th>15m</th>
<th>18m</th>
<th>21m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Baseline
- Enrollment
- Follow-up

CC-BY-NC-ND 4.0 International license
The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Figure 2. Infrastructure of the LIGHT and LIGHT-ACD trials

Population-1: Participants with systolic blood pressure (SBP) of 140–159 mm Hg, and were not taking any antihypertensive medication.

Population-2: Participants with SBP ≥ 160 mm Hg and were not taking any antihypertensive medication or taking one antihypertensive medication which was not beta-blocker, or those with SBP 140–159 mm Hg and were taking one antihypertensive medication which was not beta-blocker.

A: angiotensin-converting enzyme inhibitor or angiotensin receptor blocker; C: calcium channel blocker; D: diuretic.
Table 1. Inclusion and exclusion criteria of participants for LIGHT and LIGHT-ACD trials

<table>
<thead>
<tr>
<th>Criteria</th>
<th>LIGHT*</th>
<th>LIGHT-ACD#</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inclusion</td>
<td>Local residents aged ≥18 years diagnosed with essential hypertension</td>
<td>Participants from intervention sites of LIGHT study with systolic blood pressure ≥140 mm Hg at the screening visit</td>
</tr>
<tr>
<td></td>
<td>Taking ≤2 classes of antihypertensive medications</td>
<td>Not taking antihypertensive medication or taking only one which was not beta-blocker</td>
</tr>
<tr>
<td>Exclusion</td>
<td>Systolic blood pressure ≥180 mmHg or diastolic blood pressure ≥110 mmHg at the screening visit</td>
<td>Known/diagnosed diabetes mellitus</td>
</tr>
<tr>
<td></td>
<td>History of coronary heart disease†, heart failure, and chronic kidney disease</td>
<td>Intolerance to ≥1 class of antihypertensive medications</td>
</tr>
<tr>
<td></td>
<td>Intolerance to ≥2 classes of antihypertensive medications</td>
<td>Home blood pressure (if available) below 135/85 mm Hg</td>
</tr>
<tr>
<td></td>
<td>Serious medical conditions (e.g., malignant cancer and hepatic dysfunction)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Currently in an acute episode of disease</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Currently pregnant or breastfeeding, or planning a pregnant or breastfeeding during the study</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cognitive or communication disorders</td>
<td></td>
</tr>
</tbody>
</table>

*Participants who were not eligible for the LIGHT study at the first screening visit were re-assessed for eligibility at the subsequent visits until the end of recruitment.

#Participants who were not eligible for the LIGHT-ACD study at the first screening visit would not be re-assessed for eligibility at the subsequent visits.

† Including angina, myocardial infarction, coronary artery bypass grafting, percutaneous coronary intervention, >50% stenosis of coronary artery,
Table 2. Outcomes of LIGHT and LIGHT-ACD studies

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>LIGHT</th>
<th>LIGHT-ACD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Appropriate treatment rate among all post-randomization hypertension visits</td>
<td>Absolute change in blood pressure at 9 months of different regimens of initial therapy</td>
</tr>
<tr>
<td>Secondary</td>
<td>Absolute change of systolic blood pressure at 9 months</td>
<td>Proportion of individuals with SBP <140 mm Hg and DBP <90 mm Hg at 9 months</td>
</tr>
<tr>
<td></td>
<td>Blood pressure control rate at 9 months</td>
<td>Proportion of individuals with SBP <160 mm Hg and DBP <100 mm Hg at 9 months</td>
</tr>
<tr>
<td></td>
<td>Acceptable treatment rate among all post-randomization hypertension visits</td>
<td>Proportion of individuals who received monotherapy*, dual therapy, triple therapy, and referral at 9 months</td>
</tr>
<tr>
<td>Exploratory</td>
<td>A composite of cardiac death, non-fatal stroke, and non-fatal myocardial infarction</td>
<td>Absolute change in blood pressure at 9 months of different protocols*</td>
</tr>
</tbody>
</table>

SBP, systolic blood pressure; DBP, diastolic blood pressure.
Primary and secondary outcomes of LIGHT-ACD were assessed among initiating therapies; exploratory outcomes of LIGHT-ACD were assessed among protocols.
*Only assessed in Population 1, who are not currently taking any antihypertensive medication with systolic blood pressure 140–159 mm Hg, and initiated with monotherapies