Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model

View ORCID ProfileHans Kainz, View ORCID ProfileMichael H Schwartz
doi: https://doi.org/10.1101/2021.03.10.21253257
Hans Kainz
aCentre for Sport Science and University Sports, Department of Biomechanics, Kinesiology and Computer Science in Sport, University of Vienna, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Hans Kainz
  • For correspondence: hans.kainz@univie.ac.at
Michael H Schwartz
bCenter for Gait and Motion Analysis, Gillette Children’s Specialty Healthcare, St Paul, MN, USA
cDepartment of Orthopedic Surgery, University of Minnesota, Minneapolis, MN, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Michael H Schwartz
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Background Musculoskeletal models enable us to estimate muscle-tendon length, which has been shown to improve clinical decision-making and outcomes in children with cerebral palsy. Most clinical gait analysis services, however, do not include muscle-tendon length estimation in their clinical routine. This is due, in part, to a lack of knowledge and trust in the musculoskeletal models, and to the complexity involved in the workflow to obtain the muscle-tendon length.

Research question Can the joint angles obtained with the conventional gait model (CGM) be used to generate accurate muscle-tendon length estimates?

Methods Three-dimensional motion capture data of 15 children with cerebral palsy and 15 typically developing children were retrospectively analyzed and used to estimate muscle-tendon length with the following four modelling frameworks: (1) 2392-OSM-IK-angles: standard OpenSim workflow including scaling, inverse kinematics and muscle analysis; (2) 2392-OSM-CGM-angle: generic 2392-OpenSim model driven with joint angles from the CGM; (3) modif-OSM-IK-angles: standard OpenSim workflow including inverse kinematics and a modified model with segment coordinate systems and joint degrees-of-freedom similar to the CGM; (4) modif-OSM-CGM-angles: modified model driven with joint angles from the CGM. Joint kinematics and muscle-tendon length were compared between the different modelling frameworks.

Results Large differences in hip joint kinematics were observed between the CGM and the 2392-OpenSim model. The modif-OSM showed similar kinematics as the CGM. Muscle-tendon length obtained with modif-OSM-IK-angles and modif-OSM-CGM-angles were similar, whereas large differences in some muscle-tendon length were observed between 2392-OSM-IK-angles and 2392-OSM-CGM-angles.

Significance The modif-OSM-CGM-angles framework enabled us to estimate muscle-tendon lengths without the need for scaling a musculoskeletal model and running inverse kinematics. Hence, muscle-tendon length estimates can be obtained simply, without the need for the complexity, knowledge and time required for musculoskeletal modeling and associated software. An instruction showing how the framework can be used in a clinical setting is provided on https://github.com/HansUniVie/MuscleLength.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

No funding was received for this work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This study involved data previously collected for clinical purposes. Patients gave written consent for the use of their medical records in research and publication when the clinical services occurred. Data were recorded so that individuals could not be identified directly or through identifiers. The University of Minnesota Institutional Review Board (IRB) ruled that the study (STUDY00012420) was not research involving human subjects as defined by the Department of Health and Human Services and Food and Drug Administration regulations. To arrive at this determination, the IRB used WORKSHEET: Human Research (HRP-310).

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data are not publicly available due to them containing information that could compromise research participant privacy or consent. Explicit consent to release data was not obtained from the patients, and data were collected up to 15 years ago. Thus, the vast majority of patients cannot be asked to provide their consent for release of their data. The data that support the findings of this study are available from the last author (MHS) upon reasonable request and subject to data sharing agreements.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted March 12, 2021.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model
Hans Kainz, Michael H Schwartz
medRxiv 2021.03.10.21253257; doi: https://doi.org/10.1101/2021.03.10.21253257
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
The importance of a consistent workflow to estimate muscle-tendon lengths based on joint angles from the conventional gait model
Hans Kainz, Michael H Schwartz
medRxiv 2021.03.10.21253257; doi: https://doi.org/10.1101/2021.03.10.21253257

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Orthopedics
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (496)
  • Anesthesia (106)
  • Cardiovascular Medicine (1105)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (505)
  • Epidemiology (9792)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2326)
  • Geriatric Medicine (223)
  • Health Economics (463)
  • Health Informatics (1566)
  • Health Policy (737)
  • Health Systems and Quality Improvement (607)
  • Hematology (238)
  • HIV/AIDS (507)
  • Infectious Diseases (except HIV/AIDS) (11665)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (240)
  • Medical Ethics (67)
  • Nephrology (258)
  • Neurology (2151)
  • Nursing (134)
  • Nutrition (340)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (519)
  • Oncology (1184)
  • Ophthalmology (366)
  • Orthopedics (129)
  • Otolaryngology (221)
  • Pain Medicine (148)
  • Palliative Medicine (50)
  • Pathology (313)
  • Pediatrics (698)
  • Pharmacology and Therapeutics (302)
  • Primary Care Research (268)
  • Psychiatry and Clinical Psychology (2193)
  • Public and Global Health (4680)
  • Radiology and Imaging (784)
  • Rehabilitation Medicine and Physical Therapy (458)
  • Respiratory Medicine (625)
  • Rheumatology (275)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (211)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)