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Abstract
Background: Chest pain is the second leading reason for emergency department (ED)
visits and is commonly identified as a leading driver of low-value health care. Accurate
identification of patients at low risk of major adverse cardiac events (MACE) is
important to improve resource allocation and reduce over-treatment.

Objectives: We sought to assess machine learning (ML) methods and electronic health
record (EHR) covariate collection for MACE prediction. We aimed to maximize the
pool of low-risk patients that are accurately predicted to have less than 0.5% MACE
risk and may be eligible for reduced testing.

Population Studied: 116,764 adult patients presenting with chest pain in the ED and
evaluated for potential acute coronary syndrome (ACS). 60-day MACE rate was 1.9%.

Methods: We evaluated ML algorithms (lasso, splines, random forest, extreme
gradient boosting, Bayesian additive regression trees) and SuperLearner stacked
ensembling. We tuned ML hyperparameters through nested ensembling, and imputed
missing values with generalized low-rank models (GLRM). We benchmarked
performance to key biomarkers, validated clinical risk scores, decision trees, and logistic
regression. We explained the models through variable importance ranking and
accumulated local effect visualization.

Results: The best discrimination (area under the precision-recall [PR-AUC] and
receiver operating characteristic [ROC-AUC] curves) was provided by SuperLearner
ensembling (0.148, 0.867), followed by random forest (0.146, 0.862). Logistic regression
(0.120, 0.842) and decision trees (0.094, 0.805) exhibited worse discrimination, as did
risk scores [HEART (0.064, 0.765), EDACS (0.046, 0.733)] and biomarkers [serum
troponin level (0.064, 0.708), electrocardiography (0.047, 0.686)]. The ensemble’s risk
estimates were miscalibrated by 0.2 percentage points. The ensemble accurately
identified 50% of patients to be below a 0.5% 60-day MACE risk threshold. The most
important predictors were age, peak troponin, HEART score, EDACS score, and
electrocardiogram. GLRM imputation achieved 90% reduction in root mean-squared
error compared to median-mode imputation.

Conclusion: Use of ML algorithms, combined with broad predictor sets, improved
MACE risk prediction compared to simpler alternatives, while providing calibrated
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predictions and interpretability. Standard risk scores may neglect important health
information available in other characteristics and combined in nuanced ways via ML.

Keywords: chest pain, clinical predictive model, prognostic modeling, interpretable
machine learning, ensemble learning, variable importance, accumulated local effects,
generalized low-rank models

ii

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.08.21252615doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252615
http://creativecommons.org/licenses/by/4.0/


The omission of prediction from the
major goals of basic medical science
has impoverished the intellectual
content of clinical work, since a
modern clinician’s main challenge in
the care of patients is to make
predictions.

Alvan Feinstein, 1983

1

1 Introduction 2

Chest pain is the second leading reason for emergency department visits (Rui et al. 3

2016) and is commonly identified as a leading driver of low-value health care. Workup 4

protocols in patients with chest pain are designed to diagnose the potential for major 5

adverse cardiac events (MACE). Missed diagnoses of MACE can be cause for 6

medico-legal action, which may encourage conservative testing without health benefit. 7

Accurate identification of patients at low risk of MACE is important to improve 8

resource allocation and reduce overtreatment (Amsterdam et al. 2010). Risk scores aim 9

to identify patients eligible for early discharge, avoiding additional stress testing and 10

cardiac imaging that is unlikely to be of benefit (Greenslade et al. 2018). The primary 11

biomarkers used for initial triage are elevated cardiac troponin, a sensitive marker of 12

cardiac injury measured serially, and repeated electrocardiograms. 13

Previous work has focused on the development and validation of additive risk scores 14

as decision aids for risk stratification. Such risk scores examine a small number of 15

biomarkers and demographics, summarize those predictors into qualitative levels, and 16

use a weighted sum to allocate patients into risk categories. Standard risk scores are 17

HEART (History, ECG, Age, Risk factors and Troponin) and EDACS (Emergency 18

Department Assessment of Chest Pain Score - Than, Flaws, et al. 2014). HEART is 19

most commonly used in North America, although EDACS has similar performance 20

characteristics (Mark et al. 2018). Effective risk scores will stratify patients across risk 21

levels such that the qualitative “low risk” group will have sufficiently low risk of 22

short-term MACE that those patients can be discharged without additional workup. An 23

ineffective or ill-calibrated risk score would underestimate the risk in the “low risk” group 24

and lead to an overly optimistic early discharge policy that results in increased future 25

MACE. But given multiple risk scores that are well-calibrated, scores with improved 26

discrimination could theoretically result in a larger percentage of low-risk patients. 27

1.1 Background and Objectives 28

It remains debated whether machine learning methods can exhibit statistically and 29

substantively significant benefits for risk prediction compared to logistic regression, 30

decision trees, or additive risk scores (Goldstein, Navar, and Carter 2016; Goldstein, 31

Navar, Pencina, et al. 2016). A recent meta-analysis, for example, did not find 32

systematic benefit from machine learning in comparison to logistic regression 33

(Christodouloua et al. 2019). Yet there is also optimism about the potential for artificial 34

intelligence methods in medicine (He et al. 2019) in general, as well as cardiology 35

specifically (Johnson et al. 2018). 36

Building on Mark et al. 2018, we sought to assess the performance of machine 37

learning (ML) methods at predicting MACE among emergency department patients 38

with chest pain. Could ML improve upon existing validated risk scores through a more 39

complex integration of predictors that can better estimate MACE risk? To what extent 40

is hyperparameter optimization necessary to achieve strong ML performance? 41
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Our clinical objective was to maximize the pool of low-risk patients that are 42

accurately predicted to have less than 0.5% MACE risk and may be eligible for reduced 43

testing. The primary threshold of 0.5% risk has previously been identified as an 44

acceptable risk by a majority of emergency physicians for early discharge (Than, 45

Herbert, et al. 2013). Using a risk of 0.5% as the test threshold will inherently lead to a 46

negative predictive value of greater than 99.5%, provided that the risk prediction is 47

well-calibrated in the target population. We also examined secondary thresholds of 1.0% 48

and 2.0%. 49

A reasonable assessment of ML performance could only be made in comparison to 50

realistic alternative options. We compared ML performance to simpler indicators of risk: 51

key biomarkers (troponin, electrocardiogram), validated clinical risk scores (History, 52

ECG, Age, Risk factors and Troponin [HEART] and Emergency Department 53

Assessment of Chest pain Score [EDACS]), decision trees, and logistic regression. 54

If machine learning can demonstrate improved discriminative performance compared 55

to logistic regression and related methods, along with appropriate calibration, its next 56

hurdle for adoption is to provide interpretability. Clinicians may be willing to forgo 57

maximum predictive accuracy for the sake of understanding how individual predictors 58

influence the output of the algorithm. With analytical effort it may be possible to 59

provide sufficient interpretability for clinicians to accept the complication of machine 60

learning and the benefit of the (potentially) improved predictive accuracy. To facilitate 61

interpretation, we explained the models through prediction-based variable importance 62

ranking and accumulated local effect visualization. If simpler algorithms remain 63

preferred, the ML results can at least approximately the best achievable performance, 64

and so serve as benchmark standards when considering more restrictive algorithms. 65

Certain analytical characteristics would be important to arrange in order for ML to 66

potentially improve upon simpler options. First, it was important to extract a broader 67

set of granular predictor variables than were used by existing scores. Extensive 68

predictor sets give ML the potential to capture interactions and nonlinear relationships 69

that are missed by linear or additive approaches, perhaps relevant only to certain 70

subgroups of patients. Further, ML may statistically identify novel predictors that have 71

been missed by existing scores or the broader literature, or whose predictive impact was 72

too small, in too complex a form, or underrepresented in terms of sample size to be 73

detected by non-ML methods. The expansion of electronic health records (EHRs) also 74

makes broader covariate collection more feasible and relevant than was possible prior to 75

EHRs, while also facilitating more granular measurement of variables (E. H. Kennedy 76

et al. 2013). 77

It is also important for variables be measured on a fine-grained scale, which gives 78

ML the opportunity to detect novel cut-points or thresholds that improve performance. 79

Variables should be kept as their original continuous measurements rather than 80

dichotomized or discretized into qualitative levels (Senn 2005). For example, a predictor 81

such as body mass index (BMI) loses substantial information when it is dichotomized 82

into an indicator of high-BMI or the absence of high-BMI. A single threshold chosen for 83

for that dichotomization may not be optimal for certain subgroups or regions of risk. 84

One of the benefits of ML is that it can identify thresholds in a data-adaptive way, 85

allowing it to better approximate unknown or ill-understood physiological processes. 86

That said, very high cardinality variables can result in overfitting and slow down the 87

training of certain machine learning algorithms, such as decision trees, that test each 88

unique value as a possible subgroup splitting threshold. It may be beneficial to reduce 89

the cardinality of granular continuous variables through histogram binning that scales 90

with the dataset size, e.g. sample size / 1000 or log(sample size) * 10. 91
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2 Data and Methods 92

2.1 Source of data 93

Our study was sourced from the electronic health record (EHR) of 21 emergency 94

departments (EDs) within Kaiser Permanente Northern California, an integrated health 95

care delivery system with over 1 million annual ED visits. patient visits to 96

2.2 Participants 97

All adult patients were retrospectively included if they had received cardiac troponin 98

testing in the emergency department and either presented with a chief complaint of 99

chest pain or chest discomfort, or whose ED physician had assigned them a primary or 100

secondary ICD-coded diagnosis of chest pain. The later inclusion criterion is important 101

because patients may complain of “anginal equivalents” (such as shortness of breath) in 102

lieu of overt chest pain (Amsterdam et al. 2010). The initial inclusion pool had a 60-day 103

MACE rate of 8.0%. Patients were excluded if they had a MACE diagnosis in the ED or 104

within 30 days prior to ED visit, alternative non-ACS diagnoses at index visit (e.g. 105

pneumonia, pneumothorax, or traumatic injury), could not be tracked due to lack of 106

active health plan membership during the study (except in cases of death), or had a 107

troponin I > 99th percentile upper limit of normal given the dominant predictive value 108

of elevated troponin values for adverse outcomes in both patients with acute coronary 109

syndromes and in the general population (Bonaca et al. 2010; De Lemos et al. 2010). 110

Patients were excluded if their smoking status was unknown, which was viewed as a key 111

marker of low-quality data. The final study cohort consisted of 116,764 patients with a 112

60-day MACE incidence of 1.88%. A fourth-generation troponin assay was used during 113

the study period (AccuTnI+3, Beckman-Couleter, Brea, CA, USA). 114

2.3 Outcome 115

Our primary outcome was cumulative MACE incidence within 60 days of the index visit. 116

We defined MACE as myocardial infarction, cardiogenic shock, cardiac arrest, or death. 117

2.4 Predictors 118

We used a total of 74 predictors sourced from the electronic health record, including 119

vitals, labs, history, qualitative interpretation of ECG imaging, regular expression-based 120

extraction of features from clinical notes, demographics, and missingness indicators (20). 121

These predictors are detailed in Table ??. 122

2.5 Missing data 123

Missingness rates for each predictor are listed in Table ??. We created missingness 124

indicators for each predictor, which marked the observations that were missing a value. 125

Inclusion of missingness indicators often improves predictive performance (Agor et al. 126

2019). That matrix of missingness indicators was analyzed for perfect collinearity, and 127

duplicate indicators were dropped. 128

Missing predictor values were imputed by factorizing the raw data matrix with 129

generalized low-rank models (GLRM) (Schuler et al. 2016; Udell et al. 2016). GLRM is 130

a generalization of principal component analysis and matrix completion methods and is 131

designed for mixed type data frames that include continuous, categorical, ordinal, and 132

binary variables. GLRM decomposes (factorizes) the original data frame into an X 133

matrix of reduced components and Y matrix of archetypes, including possible penalty 134
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terms that can induce sparsity (L1) or simply denoise (L2 or quadratic). Multiplying 135

these two factor matrices reconstructs the original data frame, imputing any data 136

entries with missing values. The method used for missingness provides few constraints 137

on the resulting fit and also permits prediction from future data with missing values. 138

The GRLM hyperparameter settings were chosen through a grid search in which 139

each model was trained on 75% of the data and evaluated on the remaining 25% for 140

accuracy at reconstructing the original observed data matrix. Missingness indicators 141

were not included in the GRLM imputation analysis. Our final GLRM settings were: 50 142

components, quadratic regularization on X with weight 4, and L1 regularization on Y 143

with weight 24. Cells with missing data were then replaced with the reconstructed data 144

matrix from GLRM using the optimal settings.1 145

GLRM imputation greatly increased the number of unique values (cardinality) for 146

continuous variables, which would have a negative performance impact on tree-based 147

algorithms that test every unique value for a potential split. To avoid that performance 148

drop, we using penalized histogram binning to bin imputed predictors with high 149

cardinality into up to 200 unique values (Rozenholc et al. 2010). 150

Multiple imputation was not necessary because our scientific goal was to characterize 151

predictive performance for the unimputed outcome variable, rather than to estimate 152

statistical parameters for covariates that were imputed, such as linear regression 153

coefficients (Steyerberg 2009; Wang et al. 1992). 154

2.6 Prediction algorithms 155

Dozens if not hundreds of other prediction algorithms would be possible to evaluate, but 156

computational time limitations forced us to choose a finite set with reasonable 157

performance expectations. We chose well-known prediction algorithms that have shown 158

strong performance in prior research, including both linear and decision tree-based 159

estimation. The tree-based prediction algorithms were random forest (Breiman 2001), 160

extreme gradient boosting (XGBoost) (Chen et al. 2016), and Bayesian additive 161

regression trees (Chipman et al. 2010). The linear prediction algorithms were 162

generalized additive models (T. J. Hastie et al. 1990) using thin plate splines (Wood 163

2003), and lasso (Tibshirani 1996). 164

Splines have shown competitive performance with tree-based algorithms in prior 165

clinical prediction work due to their ability to identify non-linear, but smooth patterns 166

(Austin 2007). The lasso algorithm (or its generalization the elastic net) is a helpful test 167

of sparsity in the covariates, and a faster & more nuanced variable selection method 168

than best subset or stepwise selection (T. Hastie et al. 2017). Better performance for 169

lasso compared to logistic regression would indicate that feature selection could be 170

helpful for other algorithms, while equal performance could indicate that the extraction 171

of predictors from the EHR was overly restrictive and should be broadened. 172

2.7 Benchmarks 173

When evaluating complex algorithms it is important to contextualize their performance 174

by comparing to simpler alternative approaches or benchmarks. If the benchmark 175

algorithms can achieve similar performance then the extra complexity of the statistical 176

machine learning algorithms may not be worthwhile. The improvement of a novel 177

prediction method over standard benchmarks is known as the skill of the prediction 178

method (Brier 1950; Murphy et al. 1977; F. Sanders 1963). In clinical prediction the 179

primary alternatives to statistical machine learning are relatively inflexible fits, which 180

1Here X refers to the reduced components after GLRM transformation, and Y refers to the comple-
mentary matrix that transforms those components back to the original covariate space. It does not refer
to the outcome variable.
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include logistic regression, ordinary least squares, individual decision trees, and 181

stratification on key clinical covariates. We tested each of these options, where key 182

covariates were defined as peak troponin, qualitative ECG reading, EDACS score, and 183

HEART score. As a complement to stratification on different subsets of key covariates, 184

we also evaluated logistic regression and decision trees when restricted to these key 185

covariates. 186

2.8 Stacked ensembling: SuperLearning 187

When comparing a variety of algorithms an initial choice is to use cross-validation to 188

select the algorithm with the best out-of-sample performance. A more nuanced decision 189

would be to consider a weighted average of multiple algorithms - creating a team of 190

algorithms whose contribution to the prediction is based on optimizing out-of-sample 191

performance on a certain statistic. That is the nature of stacked ensembles (Breiman 192

1996; Wolpert 1992), sometimes referred to as the Super Learner algorithm (van der 193

Laan et al. 2007). Rather than restrict our prediction machine to a single algorithm, we 194

create a weighted average across all tested algorithms, and estimated weights based on 195

an optimization goal so that they minimize a chosen performance statistic on test data. 196

We chose to optimize the Brier score (i.e. mean-squared error) in our ensemble, using 197

convex weights based on a non-negative least squares meta-learner. Optimizing on Brier 198

score includes a focus on both discrimination and calibration for the ensemble (Murphy 199

et al. 1977). A convex combination of algorithm weights ensures that predictions fall 200

within the convex hull of the constituent learners, while also inducing sparsity - i.e. 201

algorithms can have zero weight. 202

2.9 Hyperparameter tuning 203

Prediction algorithms often have multiple hyperparameter settings that adjust the 204

estimation procedure in different ways. Those hyperparameters are not estimated from 205

the data, but rather must be specified a priori by the analyst. While software 206

implementations will typically provide a default value for each hyperparameter, there is 207

no reason to believe that the default values are effective for the current dataset. 208

Customizing the hyperparameter configuration to the current dataset can allow the 209

algorithms to adapt to the available sample size, number of predictor variables, 210

measurement error in the predictors, sparsity in predictor relevance, and correlation 211

structure of the predictors. Hyperparameters are often chosen by fitting the algorithm 212

with different configurations and selecting the configuration that maximizes accuracy on 213

held-out data, such as through cross-validation. The benefit of hyperparameter tuning 214

is believed to vary by algorithm, which is referred to as the tunability of the algorithm 215

(Probst, Boulesteix, et al. 2019). Random forest, for example, is believed to work well 216

with default hyperparameters but also can benefit from hyperparameter tuning, 217

particularly to reduce overfitting (Probst, Wright, et al. 2019; Segal et al. 2011). 218

Hyperparameter tuning is inherently a computationally intensive process, as it 219

involves fitting the algorithms many different times, and varies based on the number of 220

hyperparameters (dimensionality) as well as number of the unique values tested for each 221

hyperparameter (resolution). Further complexity is involved if one considers that some 222

hyperparameters may be more important than others for a given algorithm. Given the 223

role of hyperparameters in modifying the performance of prediction algorithms, caution 224

is warranted when generalizing algorithm performance characteristics from individual 225

studies (e.g. algorithm X outperforms algorithm Y), particularly when hyperparameters 226

are left at their default values and therefore are not customized to the given dataset. 227

For this work we adopted a hyperparameter tuning approach using nested 228

ensembling. Much as using a weighted ensemble of different algorithms may be 229
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preferable to selecting the single best-performing algorithm, using a weighted ensemble 230

of hyperparameter settings for a given algorithm may yield improved performance 231

compared to selecting a single set of hyperparameters. With that concept in mind we 232

created small grids of hyperparameter configurations and estimated a SuperLearner 233

ensemble for a given algorithm in which the ensemble weights selected the 234

hyperparameter settings that maximized out-of-sample performance. This ensemble of 235

hyperparameter settings could potentially rely on a single configuration due to the 236

sparsity induced by the convex combination, or the optimization could distribute the 237

weighting across multiple configurations if such a weighting improved performance over 238

a single selected configuration. Another benefit of the nested ensembling is that it limits 239

the number of learners that are analyzed in the outer SuperLearner ensemble, which can 240

conserve power and mitigate overfitting in the meta-learning process (i.e. allocation of 241

weights in the convex combination). 242

We used the ensemble hyperparameter tuning approach for random forests, xgboost, 243

and individual decision trees. The random forest grid consisted of 9 configurations: 244

minimum node size ∈ {5, 20, 60} × covariates sampled ∈ {4, 8, 16} 2. The xgboost grid 245

consisted of 8 configurations: number of trees ∈ {250, 1000} × maximum tree depth ∈ 246

{2, 4} × shrinkage ∈ {0.05, 0.2}. The decision tree grid consisted of 12 configurations: 247

complexity parameter ∈ {0, 0.01} × minimum split ∈ {10, 20, 80} × maximum tree 248

depth ∈ {10, 30}. 249

2.10 Evaluation 250

We evaluated alternative options for risk prediction based on their discrimination, 251

calibration, and clinical utility. Nested cross-validation with 5 folds was used to conduct 252

the discrimination and calibration analyses. While bootstrap estimation has been 253

promoted for evaluation of clinical prediction models (Austin and Tu 2004; Steyerberg, 254

Harrell Jr, et al. 2001), recent work has shown that the bootstrap can be biased for 255

evaluating the performance of highly adaptive ML algorithms estimators such as 256

random forests (Benkeser et al. 2019). 257

2.10.1 Discrimination 258

We chose area under the precision-recall curve (PR-AUC, also known as average 259

precision) as our primary performance metric for evaluating discrimination, because it 260

highlights performance differences that may be missed by ROC-AUC with imbalanced 261

data (Cook 2007; Saito et al. 2015). We included area under the receiver operating 262

characteristic curve (ROC-AUC or the concordance statistic) as our secondary 263

performance metric, which remains highly popular and interpretable (Janssens et al. 264

2020). As an exploratory metric we also estimated the adjusted Brier score (index of 265

prediction accuracy) which integrates discrimination and calibration into a single metric 266

(Kattan et al. 2018). We visualized improvements in discriminative performance using 267

density plots of the calibration slope (Steyerberg, Vickers, et al. 2010). We did not 268

conduct a reclassification analysis due to recognized limitations (Hilden et al. 2014; Kerr 269

et al. 2014; Leening et al. 2014; Pepe et al. 2015). 270

2.10.2 Calibration 271

Our clinical use case was centered on a risk threshold of 0.5% to classify patients as “low 272

risk” in order to qualify for early discharge. Because of that scientific goal, it was 273

especially important to compare the model’s predicted risks to the observed risks, i.e. 274

2The number of covariates sampled (i.e. mtry) was based on the formula: floor({0.5, 1, 2} ·√p) where
p is the total number of covariates.
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its calibration (Lichtenstein et al. 1981) - also known as reliability (Brier 1950; Murphy 275

et al. 1977) or external correspondence (Yates 1982). We assessed the calibration of 276

predicted probabilities in two ways: 1) calibration curve visualization, 2) calculation of 277

the index of prediction accuracy (IPA), a transformation of the Brier score (Kattan 278

et al. 2018). We did not conduct a Hosmer-Lemeshow group-based calibration test due 279

to its recognized limitations and recommendations against its use (Kramer et al. 2007; 280

Van Calster et al. 2019). 281

2.10.3 Clinical utility 282

The planned clinical use of the prediction model was first to assess eligibility for early 283

discharge among low-risk patients. Accurately estimating the risk of MACE for patients 284

would allow those low-risk patients to be discharged and avoid additional unnecessary 285

workup, freeing up resources (clinical attention, testing capacity, etc.) for higher risk 286

patients. Low risk was generally defined as being below a 0.5% well-calibrated 287

probability of MACE within 60 days, with less conservative thresholds of 1% and 2% as 288

additional options. 289

Our model needed to balance two trade-offs: 1) false “negatives” in which a patient 290

was identified as low-risk but whose true risk of MACE within 60 days was above the 291

threshold, and 2) false “positives” in which patients were believed to be above the given 292

threshold but whose true risk was less than the threshold. Errors in the first category 293

have a greater cost than those in the second category, because there is a greater 294

potential detriment to those patients who were discharged early but whose true risk 295

exceeded the threshold. Patients incorrectly estimated to be above the risk threshold, 296

but who are truly low risk, have comparatively minor costs of additional workup, use of 297

clinical resources, and potential to be overtreated. Yet these possible errors are not 298

quite the same as false negative or false positives typically used to assess predictive 299

models: we care about the true, but unknown, risk rather than the observed outcome. 300

Under this decision-making calculus a patient whose true risk is correctly predicted to 301

be below the clinical threshold, and is therefore discharged without additional workup, 302

but who ends up having a MACE would still have been managed appropriately. 303

This suggests that the absolute or squared error of the patient’s predicted risk versus 304

true risk, particularly near the clinical threshold, would be reasonable loss functions to 305

translate into clinical utility. Miscalibration near the clinical threshold needs to be 306

avoided, whereas miscalibration away from the threshold does not affect the decision. 307

As the expected value of that loss approaches zero we would see that the number of 308

false negatives and false positives (in terms of risk above or below a threshold rather 309

than the observed outcome) also approaches zero. We could target a specific threshold 310

by focusing on patients on the incorrect side of the threshold and averaging the error in 311

their risk prediction, possibly including differential weights for each side of the threshold 312

to account for different costs to the patient. Such a “miscalibration-around-a-threshold” 313

loss function might look as follows: 314

loss(Yi, Ŷi | Xi) =ω11(P0(Yi | Xi) < τ)g
(
f̂(Xi)− τ

)
+ (1)

ω21(P0(Yi | Xi) > τ)g
(
τ − f̂(Xi)

)
where: 315

• Y is the observed outcome and X is the set of predictors, 316

• i indexes each patient in the sample, 317

• P0(Yi | Xi) is the true risk of patient i, 318
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• f̂(Xi) is the predicted risk of patient i from a given estimator f̂ , 319

• τ is the clinical threshold (e.g. 0.5%), 320

• g is a function such as the identity, squared value, or absolute value function, 321

• ω1 is the differential cost for low-risk patients who are kept for further workup, 322

• ω2 is the differential cost for high-risk patients who are incorrectly discharged 323

early, 324

We do not know the true risk for any patients, but we can estimate it within our 325

sample by fitting a semi-parametric smooth function (e.g. lowess) to estimate the true 326

probability of the outcome given the estimated predicted probability, equivalent to what 327

is done during calibration analysis. 328

If multiple decisions were to be made based on the estimated risk, we might sum this 329

loss over each decision. Alternatively we might use a threshold-free loss function, such 330

as: 331

loss(Yi, Ŷi | Xi) =g
(
f̂(Xi)− τ

)
(2)

332

In this work we focus on the threshold-free loss with absolute value as the 333

transformation function g. 334

2.11 Interpretability 335

Beyond the statistical performance of a clinical prediction, it can be important to 336

provide an explanation or overview of how a model generates its predictions. 337

Interpretation is desirable first because it can provide evidence that the model is 338

working as expected, which can improve the trustworthiness of its predictions for 339

clinicians, patients, or collaborators. Interpretation may also lead to scientific insights 340

about how predictors are related to the outcome, which could be conceptualized as 341

causal pathways, data generating processes, or biological mechanisms. Interpretation 342

can further inform the data export and cleaning processes, such as identifying extreme 343

values, data entry errors, or outliers, or suggesting additional predictor variables to 344

incorporate into the model. 345

Methods of interpretation can be model-specific or model-agnostic. For models 346

within the family of linear regression, one might provide the estimated beta coefficients 347

for each predictor, along with their associated confidence intervals and p-values. 348

Interpretation becomes less straightforward as models become more complex, such as 349

with interaction or polynomial terms in a regression, random forest or boosted tree 350

models with hundreds or thousands of non-linear decision trees, or splines in which 351

ranges of a given predictor might have different coefficients. 352

In this work we focus on two complementary forms of model interpretability: 353

variable importance ranking and accumulated local effect plots, as described below. 354

2.11.1 Variable importance ranking 355

Prediction-oriented variable importance rankings order the predictor variables by their 356

contribution to a model’s prediction, providing evidence as to which predictors were 357

relied upon the most by the algorithm. Such rankings could be used as a form of 358

confirmatory analysis if a hypothesized ranking were created prior to data analysis, 359

which could formally identify predictors that differed from their expected importance. 360
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2.11.2 Accumulated local effects 361

It may also be helpful to understand how a model’s prediction varies over the values of 362

individual predictors, particularly continuous predictors with a wide range or large 363

number of unique values. Partial dependence plots (PDPs) as proposed by Friedman 364

(2001) are commonly used to provide this type of interpretability, but they can yield 365

flawed results because they make a key unrealistic assumption that features are 366

statistically independent of each other (Molnar 2020, p. 5.1.3). Accumulated local effect 367

(ALE) plots are a recently developed method that avoids that limitation of PDPs, by 368

counterfactually modifying observations that lie within a nearby kernel neighborhood of 369

the current predictor’s value of interest (Apley et al. 2019). Following the variable 370

importance ranking, we visualize the contribution of high-importance continuous 371

variables using accumulated local effect plots. 372

3 Results 373

3.1 Model performance 374

3.1.1 Discrimination 375

Figure 1 displays the estimated precision-recall area under the curve (PR-AUC) 376

PR-AUCs and 95% confidence intervals for each combination of features and estimation 377

algorithm. The MACE mean on the training sample represents the baseline PR-AUC, 378

which was 1.88%. The SuperLearner ensemble achieved the highest estimated PR-AUC 379

(0.148, 95% CI [0.126, 0.170]), followed by the random forest with hyperparameter 380

tuning (0.144, [0.125, 0.164]), the default random forest (0.143, [0.122, 0.165]), and the 381

tuned XGBoost (0.138, [0.116, 0.160]). By comparison the PR-AUC for logistic 382

regression was 0.120 [0.103, 0.137], noticeably lower than the ensemble. Point estimates 383

and confidence intervals are listed in Supplemental Table ??. 384
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Figure 1. Comparison of cross-validated discriminative performance using PR-AUC
metric, with 95% confidence intervals.
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Figure 2. Comparison of cross-validated discriminative performance using precision-
recall curves for a subset of learners.
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For our secondary discrimination metric, cross-validated ROC-AUC was calculated 385
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and is displayed in Figure 3 (LeDell et al. 2015). The SuperLearner ensemble again 386

achieved the highest performance (ROC-AUC = 0.866, 95% CI [0.859, 0.873]), followed 387

by tuned random forest (0.860, [0.853, 0.867]), tuned XGBoost (0.859, [0.852, 0.866]), 388

and BART (0.859, [0.852, 0.866]). The ROC-AUC for logistic regression (0.842, [0.834, 389

0.850]) was significantly lower than the ensemble (p = X). Point estimates and 390

confidence intervals are listed in Supplemental Table ??. 391

Figure 3. Comparison of cross-validated discriminative performance using ROC-AUC
metric, with 95% confidence intervals. The simple mean had a standard AUC of 0.5 and
is omitted from the plot.
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We reviewed the distribution of learner weights in the SuperLearner ensemble to 392

examine which algorithms were used most heavily. The weight distribution of learners 393

that were included at least once (i.e. maximum weight greater than 0) is reported in 394

Table 1. Four algorithms were always incorporated into the ensemble: default random 395

forest (average weight = 0.25), tuned random forest (average weight = 0.25), default 396

XGBoost (average weight = 0.20), and BART (average weight = 0.18). The remaining 3 397

learners were sometimes incorporated into the ensemble, with average weights ranging 398

from 0.08 to < 0.01 and a maximum individual weight of 0.18. 399

3.1.2 Calibration 400

We visually compared the predicted risk of the SuperLearner ensemble to the 401

lowess-smoothed observed risk in figure 4. The red line is the target calibration in which 402

predicted risk is equal to observed risk. The blue line shows the lowess-smoothed 403

observed risk for each value of the predicted risk. 404
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Table 1. Distribution of algorithm weights across ensemble cross-validation replications

# Learner Mean SD Min Max

1 Random forest 0.2516 0.0765 0.1815 0.3749
2 Random forest tuned 0.2488 0.0828 0.1449 0.3737
3 XGBoost 0.1959 0.0378 0.1506 0.2378
4 BART 0.1824 0.0535 0.0993 0.2316
5 Splines 0.0748 0.0685 0.0000 0.1764

6 Logistic reg. 0.0429 0.0309 0.0000 0.0720
7 Stratification (trop., ECG, EDACS) 0.0036 0.0080 0.0000 0.0178

Figure 4. Calibration plot comparing predicted risk to observed risk

The median predicted risk was 0.64%, with a first quartile of 0.2% and third quartile 405

of 2%. Our primary threshold of scientific interest was 0.5% for possible early discharge. 406

Given those low risk levels, it would be best to “zoom in” our visual calibration review 407

to that region. We show a zoomed calibration plot as Figure 5. 408
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Figure 5. Zoomed calibration plot comparing predicted risk to observed risk. Clinical
thresholds of 0.5%, 1%, or 2% risk are noted by blue vertical lines.

Finally, we include a exponential-scale calibration plot (Figure 6) with calibration 409

confidence intervals after grouping patients into 10 groups based on predicted risk, 410

consistent with TRIPOD guideline recommendations (Collins et al. 2015). Due to the 411

substantial class imbalance the exponential scaling of axes allows easier comparison 412

across the probability range, although it may be less intuitive due to the shifting of 413

scales. For example, the width of confidence intervals is counterintuitive for visual 414

comparison due to the dynamic scaling, but the amount of information provided is 415

visually consistent throughout the plot. 416

Figure 6. Exponential-scale calibration plot comparing predicted risk to observed risk
with grouped 95% confidence intervals. Clinical thresholds of 0.5%, 1%, or 2% risk are
noted by blue vertical lines.
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Table 2. Comparing missing value imputation using GLRM versus median/mode

Variable Missingness Error GLRM Error Median Percent reduction

HbA1c 59.8 0.088 1.628 94.6
Triglycerides 46.9 0.039 0.528 92.6
HDL 43.5 1.077 14.815 92.7
Total Chol. 42.7 7.961 45.762 82.6
LDL 38.8 4.158 37.291 88.8

GFR 8.8 0.286 11.699 97.6
Trop. 3HV 2.7 0.001 0.008 90.2
ECG 1.8 0.000 0.729 100.0
BMI 1.6 0.645 7.508 91.4
Obese 1.4 0.769 0.640 -20.1

Respiration 0.4 0.020 2.909 99.3
O2 Saturation 0.3 0.020 2.515 99.2
Pulse 0.2 0.680 18.446 96.3
Pulse Peak 0.2 0.703 18.553 96.2
SBP 0.1 0.586 22.843 97.4

Lowest SBP 0.1 0.458 18.673 97.5

As a statistical complement to the visual examination, we also calculated mean 417

absolute error (MAE). MAE is the sample mean of the absolute difference between the 418

smoothed observed risk (Risk0) and the predicted risk (RiskP ). 419

1

n

n∑
i=1

| RiskO(i)− RiskP (i) | (3)

We found an MAE of 0.19% with a lowess smoothing span of 0.05 (low smoothing), 420

and an MAE of 0.14% with a smoothing span of 0.20 (moderate smoothing). These 421

statistics indicate that the ensemble risk prediction was typically miscalibrated by about 422

0.17 percentage points. 423

3.1.3 Missing data imputation 424

We evaluated the benefit of the more complex GLRM-based imputation by comparing 425

the imputed value to the known value, among variables with missingness. The root 426

mean-squared error metric was calculated for each variable, and for both GLRM and 427

median/mode imputation methods. We could then estimate the percentage improvement 428

in RMSE for the GLRM imputation. Results in Table 2 show a notable improvement in 429

RMSE for every variable, with the exception of the obesity binary variable. 430

3.2 Interpretation 431

3.2.1 Variable importance ranking 432

As discussed earlier, our objective for the variable importance analysis was to 433

understand which variables were most influential on the prediction of our final model. 434

Providing that ranking could improve the interpretability of the risk prediction, 435

allowing for confirmation that the results are reasonable and possibly yielding 436

additional scientific insights. However, our final model is quite complex: it is a weighted 437

average of multiple versions of random forests, xgboost models, bayesian additive 438

regression trees, etc. In this work we provide rankings for the top two estimation 439
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algorithms: random forest and xgboost. We used the optimal hyperparameter settings 440

from cross-validated analysis. 441

Table 3. Variable importance rankings

Random Forest importance ranking

Variable
Mean

Decrease
Accuracy (%)

1. Age 0.262
2. EDACS 0.188
3. HEART 0.117
4. CAD 0.117
5. Troponin 3HV 0.111

6. LDL 0.104
7. Total Cholesterol 0.102
8. Missing Triglcyerides 0.083
9. Missing Total Cholesterol 0.080
10. Missing LDL 0.076

11. Missing HDL 0.073
12. Pulse 0.071
13. Peak pulse 0.070
14. BMI 0.051
15. Diabetes 0.047

16. Hypertension 0.045
17. HDL 0.044
18. HbA1c 0.043
19. Peak troponin 0.041
20. Triglycerides 0.039

XGBoost importance ranking

Variable Gain

1. Peak troponin 0.3288
2. HEART 0.1591
3. High EDACS 0.0712
4. EDACS 0.0457
5. High HEART 0.0444

6. ECG 0.0415
7. Peak pulse 0.0320
8. Age 0.0282
9. BMI 0.0234
10. SBP 0.0217

11. Myocardial infarction 0.0210
12. CAD 0.0198
13. Aortic athero. 0.0175
14. Troponin 3HV 0.0165
15. HDL 0.0159

16. Respiration 0.0135
17. O2 saturation 0.0131
18. GFR 0.0130
19. Exertion 0.0127
20. Lowest SBP 0.0091

Interestingly we see rather different results between the two algorithms, which 442

supports the hypothesis than an ensemble of multiple algorithms could achieve better 443

performance than selecting a single estimation algorithm. Both algorithms place high 444

emphasis on the EDACS and HEART risk scores, demonstrating the benefit of 445

including those scores along with the underlying predictors. Different versions of the 446

cardiac troponin predictor are emphasized by the two algorithms: random forest focuses 447

on 3-hour troponin whereas xgboost focuses on peak troponin. ECG reading is 448

emphasized by xgboost but not random forest. Both algorithms make use of lipid profile 449

predictors (LDL, HDL) and vital signs (pulse, respiration) that are not included in the 450

existing risk scores. The random forest makes use of certain missingness indicators, 451

which are often indicative of the quality of a patient’s records, while xgboost does not. 452

Also noteworthy is the lack of pain-related characteristics sourced from clinical notes in 453

the top predictors, a difference from prior work highlighting their importance at 454

predicting MACE (Amsterdam et al. 2010). 455

3.2.2 Accumulated local effects 456

The accumulated local effect method visualizes the conditional relationship of top 457

predictors to the ensemble’s prediction, across their range of values. 458
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Figure 7. Accumulated local effect plots of key continuous predictors

25 50 75 100

0.00

0.02

0.04

0.06

0.08

Age

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

−10 0 10 20 30

0.00

0.02

0.04

0.06

0.08

EDACS

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

0 2 4 6 8

0.00

0.02

0.04

0.06

0.08

HEART

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

6 9 12 15

0.00

0.02

0.04

0.06

0.08

HbA1c

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

0 50 100 150 200 250

0.00

0.02

0.04

0.06

0.08

Pulse

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

100 200

0.00

0.02

0.04

0.06

0.08

Pulse peak

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

0.00 0.01 0.02 0.03 0.04

0.00

0.02

0.04

0.06

0.08

Trop. peak

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

0.00 0.02 0.04 0.06 0.08

0.00

0.02

0.04

0.06

0.08

Trop. 3HV

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

20 40 60 80

0.00

0.02

0.04

0.06

0.08

Body mass index

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

0 200 400

0.00

0.02

0.04

0.06

0.08

LDL

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

0 300 600 900

0.00

0.02

0.04

0.06

0.08

Total cholesterol

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

0 50 100 150 200

0.00

0.02

0.04

0.06

0.08

HDL

A
LE

 o
f .

y
S

am
pl

e
D

en
si

ty

4 Discussion 459

The next step in model evaluation is to conduct one or more external validations of the 460

discrimination and calibration of the model predictions. This validation might include 461

future retrospective cohorts at the current study location (temporal validation), 462

although preferably cohorts sourced from other regions or EHRs (geographical or 463

institutional validation) (Moons et al. 2012). We hope to collaborate in the future with 464

groups interested in such validations. 465

In future work we plan to expand the machine learning in several ways. The 466

ensemble weighting could specifically optimize PR-AUC. Incorporating feature selection 467

may benefit the simpler algorithms by removing unhelpful predictors. Feature 468

engineering might be beneficial as well, such as creation of interaction terms or even 469

incorporation of the principal components from the GLRM imputation. Due to 470

computational limitations we were not able to conduct hyperparameter tuning on the 471

BART learner, which likely would provide some performance benefit. We are optimistic 472

that random search or model-based search (e.g. Bayesian optimization) rather than grid 473

search could provide even stronger tuning of algorithm hyperparameters across a higher 474
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number of dimensions. Evaluation of the GLRM imputation could be further 475

contextualized through comparisons to additional imputation methods, especially 476

principal component analysis, k-nearest neighbors,multiple imputation, and 477

variable-specific supervised models (e.g. OLS or random forest). Additional machine 478

learning algorithms could be explored, such as LightGBM, extremely randomized trees, 479

and multivariate adaptive regression splines. The variable importance ranking could be 480

streamlined through a Random Forest-style permutation importance analysis of the 481

SuperLearner ensemble itself, or through a targeted learning method such as vimp 482

(Williamson et al. 2017) or varimpact (Hubbard et al. 2018). 483

The model might also benefit from a broader sample that includes higher risk 484

patients, which were not included in this study. Calibration might be improved through 485

targeted learning-based adjustment (Brooks et al. 2012). Cross-validated estimation of 486

discrimination performance could be improved through cross-validated targeted 487

maximum likelihood estimation (Benkeser et al. 2019). 488

5 Conclusion 489

In this work we explored the benefit of complex machine learning algorithms at 490

predicted major adverse cardiac events in patients with chest pain. We found that the 491

ML algorithms were able to achieve improved discrimination compared to simpler 492

baselines such as logistic regression, decision trees, or stratification on individual 493

predictors. Combining multiple algorithms into an ensemble estimator yielded the best 494

performance, and rather than select optimal hyperparameters we created an ensemble of 495

algorithms across different hyperparameters. We demonstrated the surprising 496

effectiveness of generalized low-rank models for imputation of missingness in 497

EHR-sourced patient data. Finally, we provided interpration of how the ensemble’s 498

prediction is generated through two methods: ranking the predictors by their 499

contribution to predictive performance, and visualizing the dose-response effect of 500

continuous predictors with accumulated local effect plots. 501

The cleaning and analysis code for this project has been translated to use a public 502

dataset and is available online at 503

https://github.com/ck37/Predictive-Modeling-in-R. Functions to calculate 504

PR-AUC, ROC-AUC, index of prediction accuracy (IPA), and Brier scores for 505

cross-validated SuperLearner ensembles are provided in the open source R package 506

ck37r (C. J. Kennedy 2020). 507
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