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Abstract 
 

Background  
A wide range of predictive models exist that predict risk of common lifestyle 

conditions. However, these have not focused on identifying pre-clinical higher risk groups that 

would benefit from lifestyle interventions and do not include genetic risk scores. In this study, 

we developed, validated, and compared the performance of three decision rule algorithms 

including biomarkers, physical measurements and genetic risk scores for incident coronary 

artery disease (CAD), diabetes (T2D), and hypertension in the general population against 

commonly used clinical risk scoring tools. 

 

Methods and findings  
Of all individuals recruited between 2006 and 2010 from the UK Biobank study for 

whom re-measurement data were available, 60782 were included in the analyses (mean age 

56.3 (7.59), 51.2% female). Follow-up data were available until 2016. Three decision rules 

models with three risk strata were developed and tested for an association with incident disease. 

Hazard ratios (HR with 95% confidence interval) for incident CAD, T2D, and hypertension 

were calculated from survival models. Model performance in discriminating between higher 

risk individuals suitable for lifestyle intervention and individuals at low risk was assessed using 

the area under the receiver operating characteristic curve (AUROC). 

From the initial baseline measurement until the follow-up re-measurements, 500 

incident CAD cases, 1005 incident T2D cases, and 2379 incident hypertension cases were 

ascertained. The higher risk group in the decision rules model had a 40-, 40.9-, and 21.6-fold 

increase in risk of CAD, T2D, and hypertension, respectively (P < 0.001 for all), and the risk 

increased significantly between the three strata for all three conditions (P < 0.05). Risk 

stratification based on decision rules identified both a low risk group which would not have 

benefited from lifestyle intervention (only 1.3% incident disease across all models), as well as 

a high risk group where 72%, 81.5%, and 74% of those who developed disease within 8 years 

would have been recommended lifestyle intervention. Based on genetic risk alone, we 

identified not only a high risk group, but also a group at elevated risk for all health conditions. 

This study was limited by the restricted number of participants with follow-up data, and the 

lack of ethnic diversity in the UK Biobank cohort. 
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Conclusion 
In this analysis of returning UK Biobank participants, we found that decision rule 

models comprising blood biomarkers, physical measurements, and polygenic risk scores were 

superior at identifying individuals likely to benefit from lifestyle intervention for three of the 

most common lifestyle-related chronic health conditions compared to commonly used clinical 

risk scores.  
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Introduction 
Developed countries have seen a consistent rise in life expectancy and overall 

improving trends in chronic disease outcomes [1]. In just six decades, this has translated to a 

global increase in life expectancy of over 20 years for both men and women [1]. Yet, longer 

life expectancy has been accompanied by an increase in the prevalence of common chronic 

diseases, such as coronary artery disease (CAD), type 2 diabetes (T2D), and hypertension, 

which pose a significant burden to societies and limit healthy life expectancy (HALE) [2,3].  

Preventive strategies which allow for earlier lifestyle intervention are a solution to 

tackle the growing burden of lifestyle-related health conditions. Indeed, lifestyle interventions 

such weight loss, limiting (saturated) fat intake, and 30 minutes of exercise per day are 

recommended across multiple guidelines to reduce the progression from prediabetes to T2D 

and cardiovascular disease [4,5]. Yet, implementing lifestyle as medicine interventions in a 

primary care setting and maintaining the results faces a variety of challenges [6]. Personalized 

lifestyle recommendations are essential to adherence and maintenance of health behaviour 

change. To provide targeted lifestyle recommendations, the first step is to adequately stratify 

risk in individuals in a pre-clinical state and prioritize which aspects of their health they ought 

to focus on. 

For the three prevalent chronic health conditions mentioned above, several risk 

assessment tools have been made available to primary care physicians, including the 

Framingham risk scores [7,8,9]. These risk scores incorporate clinical and laboratory 

parameters, and have been shown to perform comparably well in European populations to other 

risk scores [7,10]. However, over two thirds of models for cardiovascular risk are restricted to 

a mixture of demographics, medical history, blood pressure and lipid profile, and some lifestyle 

factors, such as smoking [11]. Given that these health conditions are known to be multifactorial 

in nature, and for instance, progression from prediabetes to T2D is accelerated by even modest 

increases in adiposity, in individuals at higher genetic risk, it is surprising that these models do 

not include physical measurements or genetic susceptibility [6]. Indeed, several studies have 

shown that the addition of genetic risk scores, as well as scores combining physical 

measurements and lifestyle factors, to demographic and biomarker data can improve risk 

stratification in preventive and primary care settings [11-17]. 

We investigated whether decision rules models assessing the presence and absence of 

established risk factors identified from literature and incorporating other routine biomarkers, 
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physical measurements, and genetic information can improve risk stratification for three 

prevalent lifestyle-related health conditions in the large population-based UK Biobank cohort.   
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Methods  
This study is reported in accordance with the Strengthening the Reporting of 

Observational Studies in Epidemiology (STROBE) guideline and was conducted under UK 

Biobank application 55495. Local Institutional Review Board ethics approval was not 

necessary for this study.  

 

Study population 
Only participants without any of the three health conditions diagnosed by a physician 

at recruitment and with follow-up data were included. Participants reporting T2D or 

hypertension, who reported a previous myocardial infarction, coronary artery bypass graft, or 

previous percutaneous coronary intervention (PCI) were excluded. In addition, individuals 

without diagnosed disease but who at baseline crossed a “clinical threshold” for any of the 

health conditions were also excluded from further analysis. These were individuals with a 

systolic blood pressure between 140 and 180 mmHg systolic or between 90 and 120 mmHg 

diastolic for hypertension [18], a fasting glucose value above 7.0 mmol/L for T2D [19], 

individuals with significantly impaired kidney function for cardiovascular disease [20]. 

Individuals for whom any of the variables in Table 1 were missing were also excluded. 

Additionally, preventive lifestyle interventions focus on primary prevention. Therefore, 

individuals who met different guidelines’ thresholds for secondary prevention or 

pharmaceutical intervention – for instance, with a LDL cholesterol above 4.9 mmol/L or total 

cholesterol above 8 mmol/L according to the ESC 2019 guidelines – were also not included in 

the analysis [21]. In total, 42 978 participants were included in the analysis for T2D, 36 913 

for CAD, and 33 541 for hypertension.  

 

Biomarkers, physical measurements and polygenic risk scores 
 To define the risk factors for each of the health conditions, a literature search was 

conducted in accordance with the 2009 Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) statement [21]. We searched for meta-analyses indexed in PubMed 

that were published between January 2014 and end of 2019 (additional details on the search 

strategy available in table S1, and PRISMA flowcharts in Figs S1-3). We also searched relevant 

national and international clinical guidelines not originally identified by the search. Biomarker 

information was retrieved from the blood biochemistry category, physical measurements from 
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the body size measurements and abdominal composition categories, and smoking status was 

ascertained based on the self-reported smoking status registered at recruitment. Family and 

medical history were retrieved from the respective categories.  

 
Coronary artery disease  

For coronary artery disease, the literature and additional guideline search identified 

total cholesterol [22], HDL cholesterol [7,23,24], LDL cholesterol [24], triglycerides [23,25, 

26,27], and high-sensitivity C-reactive protein (hs-CRP) [28,29,30] as relevant blood 

biomarkers. The Framingham Risk Score for 10-year coronary heart disease risk was used, 

which included information on treatment for hypertension and smoking status [7]. A polygenic 

risk score for coronary artery disease was calculated as described below. Individuals were 

classified as high risk for which intervention is advised if they met any of the following rules, 

all weighted equally: total cholesterol above 8 mmol/L, systolic blood pressure above 180 

mmHg, LDL cholesterol above 4.9 mmol/L, the incidence risk according to Framingham was 

high and the genetic susceptibility score being was “high”, or if biomarkers other than LDL 

were out of range. The no elevated risk profile was defined as no biomarkers being out of range, 

the genetic susceptibility score below the eighth decile, and negative family history. All others 

for which at least one risk factor was elevated were classified as intermediate risk.  

 

Diabetes  
Glycaemic variables (fasting glucose and HbA1c), blood lipids, markers of body 

composition, blood pressure, family history, gender, and smoking were identified as risk 

factors [8,31,32,33,34,35]. The Framingham Risk Score for diabetes was used, and a polygenic 

risk score for diabetes was calculated [8]. Participants were placed in the highest stratum if 

they met any of the following rules, all weighted equally: HbA1c was above 6.5%, fasting 

glucose was above 6.1mmol/L, either of the glycaemic variables was elevated (HbA1c between 

5.5% and 6.4% or fasting glucose between 5.6 mmol/L and 6.1mmol/L) and they were 

overweight/obese, their clinical risk was high, their glucose was unregulated and their genetic 

susceptibility was high, or if their clinical risk was elevated, they were older than 45, had a 

HDL cholesterol below 0.9 mmol/L, and triglycerides above 2.8 mmol/L [19]. Participants 

were classified as not being at elevated risk if all biomarkers were within normal range, the 

genetic susceptibility score was below the eighth decile, and clinical risk was not elevated. All 

others with at least one marker out of range were considered at intermediate risk. 
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Hypertension 
For hypertension, the literature and additional guideline search identified age [36], 

systolic and diastolic blood pressure [36,37,38,39,40], body mass index (BMI) [41,42], gender 

[43], and smoking status as relevant markers. The Framingham Risk Score for hypertension 

risk [9] was used, and a PRS for systolic blood pressure was calculated. Participants were 

classified as high risk if their systolic blood pressure was between 130-140 mmHg, or the 

diastolic between 80 and 90 mmHg. Equally, those with a high clinical risk, or an elevated 

clinical risk and a high PRS were stratified as high risk. The no elevated risk profile was defined 

as all biomarkers being within normal range, the genetic susceptibility score being below the 

eighth decile, and incidence risk according to the clinical score not being elevated. All others 

with at least one marker out of range were considered at intermediate risk.     

 

Polygenic risk scores 
Polygenic risk scores (PRS) were created following an additive model for CAD,  T2D and 

hypertension. Individuals were binned into deciles based on their PGS scores and the average 

disease incidence was calculated for each decile. The difference between individuals in the tenth 

risk decile, those in the nineth and eighth deciles, and all other deciles were assessed. To calculate 

the PRS, the LDpred tool was used following the typical workflow of coordinating the required 

files, adjusting SNP weights based on LD, and PRS calculation [44]. The genotyping data and 

data containing the tested phenotype outcomes were downloaded from the UKB. All variants 

with an imputation R2 < 0.4 were removed based on the reported R2 readily available in the 

downloaded genotyping files. Summary statistics files from three large GWAS studies were 

used to calculate PRS for CAD, T2D, hypertension [45,46,47]. These publicly available summary 

statistics were reformatted where necessary to be consistent with the format required by LDpred. 

All variants with a GWAS significance p-value below 0.01 were selected (table S4). In total, the 

T2D, CAD, and hypertension PRS included 199120, 139885 and 400016 SNPs, respectively. 

The PRS were also computed with and without adjustment of the following variables: 

genotyping array, first four principal components, age and sex. To assess the added predictive 

value of PRS over sex and age alone, we also added the predictions of a logistic regression 

model including only sex and age (table S2). Individuals were binned into deciles based on 

their PRS scores and the average disease incidence at each age was calculated for each decile 

(Fig S1).  
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Ascertainment of disease incidence 
Information regarding the variables used to calculate incidence for each of the health 

conditions can be found in table S2. In short, we used International Statistical Classification of 

Diseases and Related Health Problems (ICD) codes, and the self-reported diagnoses collected 

at recruitment and follow-up questionnaires. 

 

Statistical analysis 
Similar to the three strata of risk for the decision rules model, three risk strata (“low”, 

“intermediate” and “high”) were defined for the Framingham scores. For the coronary artery 

disease risk score, the bottom, middle, and top tertiles were used as risk categories [7]. For 

diabetes, categories were based on <3%, 3% to 8%, and >8% incidence risk at eight-years [8]. 

For hypertension, this was <5%, 5% to 10%, and >10% incidence risk [9].  

To evaluate the ability to discriminate higher risk individuals who would be suggested 

lifestyle intervention from those at no elevated risk, we used the area under the receiver 

operating characteristics (AUROC) curve computed from 2000 bootstrap iterations, which is 

akin to the C statistic for binary outcomes [48]. Sensitivity and specificity for each model is 

also presented. Cox proportional hazards models were used to test the association of risk strata 

defined by the decision rules model and the clinical scores with incident events of CAD, T2D, and 

hypertension. Hazard ratios (HRs) with 95% confidence intervals were calculated between risk 

strata and the reference group (“no elevated risk” group profile for the decision rules model, and 

low risk for Framingham). 

We considered a p-value <0.01 as statistically significant for differences in AUROC 

determined by DeLong’s nonparametric test and p-value <0.05 significant for differences in 

risk between strata [49]. All data analyses were performed using R software v4.0.3 and the 

“survival”, “survminer” and  “ggplot2” packages were used to conduct the survival analysis 

and generate graphs. 
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Results 
Population characteristics  

Complete data for the present analysis were available for 60782 participants in the UK 

Biobank. Table 1 shows the baseline characteristics of the study population. At follow-up, there 

were 500 incident CAD cases, 1005 incident T2D cases, and 2379 incident hypertension cases. 

Participants were aged 56.3 years on average, and slightly more participants were female 

(51.2%). Average values for all lipid markers were above general recommendations [21]. 

Similarly, physical measurements of BMI and waist circumference were above the existing 

thresholds for abdominal obesity, and both average systolic and diastolic blood pressure values 

crossed the stage 1 hypertension threshold [50,51].  

 

Table 1. Baseline characteristics table. 

Characteristic Mean (SD) or % 
Total, No. 60782 
Age, y 56.3 (7.59) 
Female 51.2%  
With CAD at follow-up 500 
With diabetes at follow-up 1005 
With hypertension at follow-up 2379 
Blood pressure, mm Hg 
Systolic 138 (19) 
Diastolic 82 (10) 
Smoking 
Ideal (never or stopped >1 y ago) 82.7% 
Intermediate (stopped <1 y ago) 0.3% 
Current smoker 5.6% 
Body composition 
BMI  26.8 (4.35) 
Waist circumference (cm) 88.7 (12.8) 
Waist-to-hip ratio 0.86 (0.09) 
Body fat percentage (%) 30.15 (8.29) 
Blood biomarkers 
Total cholesterol (mmol/L) 5.71 (1.1) 
LDL cholesterol (mmol/L) 3.58 (0.84) 
HDL cholesterol (mmol/L) 1.47 (0.38) 
Triglycerides (mmol/L) 1.68 (0.97) 
hs-CRP (mg/L) 2.17 (3.8) 
Fasting glucose (mmol/L) 5.02 (1.01) 
HbA1c (mmol/mmol) 35.21 (5.27) 
Albumin-creatinine ratio 2.42 (8.32) 
Family history 
No family history of diabetes 83.2% 
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Family history of diabetes (1 parent) 16.8% 
Family history of diabetes (both) 0.01% 
No family history of CAD 58.1% 
Family history of CAD (1 parent) 41.8% 
Family history of CAD (both) 0.07% 
No family history of hypertension 57.3% 
Family history of hypertension (1 parent) 42.7% 
Family history of hypertension (both) 0.08% 

Continuous variables are reported as mean and standard deviation (SD), and categorical 
variables as %. Abbreviations: CAD = coronary artery disease, BMI = body mass index, hs-
CRP = high-sensitivity C-reactive protein, HbA1c = glycated haemoglobin. 
 
Polygenic risk scores 

For all three health conditions, a higher PRS was strongly associated with a higher 

incidence rate (Fig 1). For the highest risk stratum compared to the rest of the population, this 

translated to a hazard ratio (HR) of 4.6 (95% CI 3.8-5.6), 2.9 (2.5-3.4), and 1.9 (1.7-2.1) for CAD, 

T2D, and hypertension, respectively (table 2). When comparing the highest risk individuals to those 

in the first seven deciles, the HRs were 7 (95% CI 5.7-8.7), 3.8 (3.2-4.4), and 2.2 (2.0-2.5) (table 

3). The risk for individuals in the ninth and eighth deciles was also significantly higher compared 

to individuals in the first seven deciles, with HRs of 3.4 (2.7-4.2) for CAD, 2.3 (2.0-2.7) for T2D, 

and 1.8 (1.7-2) for hypertension (table 3).  

 

Figure 1. Cumulative incidence in different risk strata. Risk classification conducted 

based on the logistic regression model of the PRS adjusted for age, sex, first four principal 

components and array type.  

 

Table 2. Risk increase for the individuals at high genetic risk (10th decile), compared to  

individuals at low genetic risk (1-7th decile) of population. Second and third column show 

hazard ratios calculated based on a logistic regression model adjusted for the respective 

variables. In all cases the difference with the remainder of the population was statistically 

significant (p-value < E-100). 

 
 Unadjusted PRS PRS adjusted 

for 4 PCs and 
array type 

PRS adjusted 
for 4 PCs, array 
type, sex and 
age 

Age and sex 

CAD 1.66 (0.93-2.35)  2.25 (1.39-3.11)  4.43 (3.14-5.74)  2.55 (1.63-3.47)  
T2D 1.86 (1.33-2.39)  2.61 (1.96-3.26)  2.81 (2.12-3.50)  1.47 (1.00-1.94)  
Hypertension 1.37 (1.06-1.62)  1.61 (1.30-1.92)  1.77 (1.45-2.09)  1.50 (1.21-1.79)  

CAD: coronary artery disease, T2D: Type 2 diabetes, PRS: polygenic risk scores, PC: genetic 
principal component. 
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Table 3. Area under the receiver operating characteristic (AUROC) curve for model 

discrimination of higher risk individuals amenable to lifestyle intervention assessed for 

the clinical risk score(s), PRS, and decision rules model. Number of individuals classified 

as low and higher risk and number of individuals who had developed disease at follow-up are 

also presented. 

 
 

Model and 
health 
condition 

N low risk 
individuals 

N low risk who 
developed 
disease 

N recommend 
lifestyle 
intervention 

N recommended 
lifestyle 
intervention who 
developed 
disease 

AUROC  
(95% CI) 

CAD (N = 21969 women, 167 cases; 14944 men, 333 cases) 
FRS women 7426 22 5680 99 0.67 (0.63-0.71) 
FRS men 5171 55 4431 165 0.60 (0.58-0.63) 
PRS 25839  173 3692 165 0.62 (0.60-0.64) 
Rule model 1521 0$ 14980 360 0.66 (0.64-0.68) 
Diabetes (N = 42978, 1005 cases) 
FRS 12305 39 12634 726 0.72 (0.71-0.73) 
PRS 30084 467 4298 239 0.57 (0.56-0.58) 
Rule model 8351 13 14169 819 0.75 (0.74-0.76) 
Hypertension (N = 33541, 2379 cases) 
FRS 3359 23 26587 2317 0.60 (0.59-0.60) 
PRS 23479 1327 3354 391 0.54 (0.53-0.54) 
Rule model 2274 17 12506 1759 0.70 (0.69-0.71)  

Abbreviations: N = number; FRS = Framingham risk score; PRS = polygenic risk score. 
AUROC reported with 95% confidence interval 
* indicates statistically significant difference in performance between decision rules model 
and PRS, # indicates statistically significant difference in performance between decision rules 
model and clinical risk score(s), $computed as 1 for statistical analysis purposes. 
 

Sensitivity analysis  
The Framingham scores achieved an AUROC of 0.67 (95% CI 0.63-0.71) for women 

and 0.60 (0.58-0.63) for men, 0.72 (0.71-0.73), and 0.60 (0.59-0.60) for CAD, T2D, and 

hypertension, respectively. Sensitivity and specificity for these models were 59.3% and 74.4%, 

49.5% and 70.8%, 72.2% and 71.6%, and 97.4% and 22.1%. The performance of the decision 

rules model was better than Framingham for CAD in men, T2D, and hypertension with an 

AUROC of 0.66 (0.64-0.68) for CAD, 0.75 (0.74-0.76) for T2D, and 0.70 (0.69-0.71) for 

hypertension (table 2, P < 0.01 for all). There was no difference in performance between the 

decision rules model and Framingham for CAD in women. The discriminatory power of the 

decision rules model was also superior to PRS alone (table 3). Specificity was higher for T2D 
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(68.2%, 67.7%-68.6%) and hypertension (65.5%, 65%-66%), with sensitivity also higher for 

T2D (81.5%, 79.1%-84%) and lower for hypertension (73.9%, 72.7%-75.7%). For CAD, the 

decision rules model achieved higher sensitivity (72.0%, 68.0%-76.0%) but lower specificity 

(59.8%, 59.3%-60.3%) than both Framingham models. For the decision rules models, positive 

predictive values were higher for T2D, hypertension and CAD in women, but lower than for 

the men’s model (table 4). Negative predictive values were extremely high for all models, with 

the highest being 99.58% (99.50%-99.65%) for the Framingham for CAD in women and the 

lowest 97.05% (96.85%-97.24%) for the decision rules for hypertension (table 4). 

 

Table 4. Sensitivity analysis for all models. Sensitivity, specificity, positive predictive value 

(PPV), and negative predictive (NPV) value all reported with 95% confidence interval. 

 
Model and health 
condition 

Sensitivity Specificity PPV NPV 

CAD 
FRS women 81.8% (73.8%-88.2%) 57.0% (56.2%- 57.9%) 1.7% (1.5%-2.0%) 99.6% (99.5%-99.7%) 
FRS men 75.0% (68.7%-80.6%) 54.5% (53.5%-55.5%) 3.7% (3.5%-4.0%) 98.9% (98.7%-99.2%) 

Rule model 72% (68%-76%) 59.8% (59.3%-60.3%) 2.5% (2.4%-2.6%) 99.4% (99.3%-99.5%) 

T2D 
FRS 72.2% (69.4%-75.0%) 71.6% (71.2%-72.1%) 5.7% (3.3%-3.5%) 99.1% (99.0%-99.2%) 
Rule model 81.5% (79.1%-84.0%) 68.2% (67.8%-68.6%) 5.8% (5.6%-6%) 99.4% (99.3%-99.4%) 

Hypertension 
FRS 97.4% (96.7%-98.0%) 22.1% (21.7%-22.6%) 8.7% (8.6%-8.8%) 99.1% (98.9%-99.3%) 

Rule model 73.9% (72.7%-75.7%) 65.5% (65.0%- 66.0%) 14.1% (13.7%-14.4%) 97.1% (96.9%-97.2%) 

 

Risk stratification and lifestyle advice recommendations 
The observed absolute risk for each health condition differed between the high, 

intermediate, and low risk strata for the decision rules model, but not for the clinical risk score 

(Fig 2). In terms of absolute risk, being classified as high risk by the clinical score translated 

to a 2.6% and 1.4% difference in absolute risk compared to not being at elevated risk for CAD 

in men (HR 3.8, 2.8-5.1) and in women (HR 6.8, 4.3-10.8), 2.1% for T2D (HR 3.7, 2.1-6.7), 

and 7.4% for hypertension (HR 14.1, 9.36-21.3). For the intermediate risk stratum, there was 

a risk difference for CAD in men and women, but not for T2D or hypertension. In comparison, 

the high-risk group in the decision rules model showed a 2.34% increase in absolute risk for 

CAD (HR 40, 5.6-283), 5.64% for T2D (HR 40.9, 23.7-70.8), and 12.4% for hypertension (HR 

21.6, 13.4-34.8). For the intermediate risk group, these differences were 0.62% (HR 4, 1.5-77), 

0.69% (HR 5.6, 3.2-9.9), and 2.4% (HR 4.5, 2.8-7.3), respectively. 
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Figure 2. Hazard ratios (HR) of disease incidence per risk stratum. The group with no risk 

factors is used as reference. Both the HR and the absolute risk are displayed for each decision rules 

model and clinical score for all three health conditions. CI = confidence interval. 
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Discussion 
We investigated the association of different risk categories of three decision rule models 

incorporating blood biomarkers, physical measurements, and genetic information, with 

incident disease for three common lifestyle-related health conditions and compared its 

performance to currently used clinical risk calculators in 60782 returning participants in the 

population-based UK Biobank study. Individuals classified as high risk who would be 

recommended lifestyle intervention by the decision rules model had a 40-, 41- and 22-fold 

higher 8-year risk of CAD, T2D, and hypertension compared to those who were classified as 

not having elevated risk. All decision rules models either outperformed the respective 

Framingham clinical score or showed improvement in the detection of cases likely to benefit 

from lifestyle intervention.  

We showed that adding other biomarkers, physical measurements, and genetic risk to 

traditional clinical risk scores leads to moderate improvement in their performance. As 

mentioned initially, there is an abundance of clinical risk scores for risk estimation of 

cardiometabolic health conditions such as CAD, T2D and hypertension [10,11]. We chose to 

compare our decision rules models to the Framingham risk scores due to their extensive 

validation across multiple cohorts. Compared to the clinical scores, which we found to 

performed comparably or slightly worse in this UKB population than reports from other 

studies, all three decision rules model improved either the detection of cases likely to benefit 

from lifestyle intervention or of those least likely to do so [52,53]. The slight improvement in 

performance of the rules model for diabetes is not surprising, as unregulated HbA1c is a risk 

factor for disease development in prediabetics despite not being part of the diagnostic criteria, 

and specific insulin resistance phenotypes are linked to central adiposity. Similarly, there is 

growing evidence for genetics playing a more central role in the diabetes burden than 

previously thought [54,55]. For hypertension, the addition of genetic data also likely explains 

the improved performance of the rules model, with the inferior performance of the Framingham 

model compared to other studies likely being due to the substantially lower number of 

prehypertensive individuals and mean blood pressure values in these cohorts (below 120 

mmHg systolic and 75 mmHg diastolic) compared to our population [56,57]. With superior 

performance, including comparable sensitivity and better PPV, the decision rules classified 

only 37.3% of all individuals as high risk, compared to the 79.3% of Framingham. Lastly, the 

c-statistic for the decision rules improved that of Framingham for CAD in men, but not in 

women, where it showed better PPV and NPV nonetheless. These results are similar to that 
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found in North American and Dutch populations (0.63 to 0.67), but lower than in the best 

original validation studies (0.66 to 0.83) [58,59]. While modest in magnitude, these differences 

in performance between the different models would have significant practical implications. If 

all individuals in the higher risk group were recommended lifestyle intervention as a 

consequence of their baseline measurements, 40.6%, 33%, and 37.2% of all individuals would 

be recommended lifestyle intervention for CAD, T2D and hypertension with the decision rules 

model. For T2D and hypertension, this is 41.6% and 53% less than if the clinical risk scores 

were used, while detecting as many cases for T2D and only 561 fewer for hypertension. For 

CAD, 14980 (40.6%) of individuals would have been recommended intervention by the 

decision rules, compared to 10111 (27.4%) for Framingham. This represents a difference of 

detecting and advising intervention to 72% of all those who eventually developed disease, as 

opposed to 53.2%. In addition, 15.4% of those who ended up developing CAD were classified 

as low risk by Framingham, compared to 0.2% for the decision rules model. As preventive 

health programs should consider the health risks of individuals holistically across a spectrum 

of mental and physical health, these models have the potential to increase the impact of such 

programs in two ways. On the one hand, it would make them more effective, as more 

individuals who eventually developed the disease would be recommended intervention, which 

would lead to more prevented cases if the interventions were successfully implemented. On the 

other hand, cardiometabolic health issues are highly prevalent. By also accurately identifying 

individuals less likely to benefit from a cardiometabolic health intervention in the short-term, 

these models can be combined with models for other physical and mental health conditions and 

help low risk individuals to prioritize lifestyle changes in other aspects of their health. With 

recent studies showing that programs as short as three to five months can trigger diabetes 

remission and improve [60,61,62], the use of these stratification mechanisms for a periodic risk 

assessment across varied lifestyle conditions would be a valuable tool for optimizing return on 

investment in personalized preventive medicine programs.  

With regards to the addition of genetic risk to clinical scores, our findings support 

recent studies that suggested adding genetic susceptibility scores to clinical scores for CAD 

and T2D, as well as stroke or cardiovascular disease led to improvements in risk prediction 

[12,64,66]. There is substantial discussion surrounding the implementation of PRS for 

estimating disease risk in both clinical and primary care settings [17]. More than the 

improvement in predictive performance associated with adding a PRS to established clinical 

risk factors shown in several studies in the UK Biobank and other cohorts, it’s the translation 

of genetic risk to policy and interventions which remains unclear [65,66]. Here, we used 
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summary statistic files from large, high-quality GWASs to compute a PRS for each health 

condition [45,46,47]. Based on genetic risk alone, we identified a group of high risk individuals 

with hazard ratios of 4.6-, 2.9-, and 1.9 for CAD, T2D and hypertension. However, we also 

encountered differences between the top risk decile and the ninth and eighth deciles, and 

between these and the rest of the population. In comparison, Khera et al. identified a similar 

risk increase only in the top 8% and 3.5% of individuals in the UKB, for CAD and T2D 

respectively, and the top 5% individuals in the Finnish cohort of Mars et al. were at 2.62-fold 

increased risk of CAD and 3.28-fold for T2D (table S3, Fig S3) [12,13]. This effectively 

demarcates not only a “high risk”, but also an “elevated risk” group in these two deciles, 

compared to the “no elevated risk” group comprising the rest of the population. 

One of the barriers to the implementation of risk models in preventive and primary care 

has been the belief that such algorithms have an actual low impact on decision-making in 

apparently healthy individuals, and mostly generate demand for “unnecessary” care [67,68, 

69]. In this study, we make two significant contributions to help overcome this issue. First, we 

showed that easily interpretable decision rules models including genetic risk can better identify 

individuals at low risk unlikely to benefit from lifestyle interventions in the short-term than 

traditional clinical scores. Models based on risk factor burden are easy to interpret and 

communicate, and a simple metric such as the absence or presence of more than one risk factor 

is associated with substantial differences in lifetime risk of cardiometabolic health conditions 

[70]. By including genetic risk in risk factor burden calculations in an additive way, we can 

identify individuals at genetically elevated or high risk with normal demographic and blood 

risk factors. This is of special importance to implementation in preventive care, where risk 

stratification starts with younger, healthier populations. Second, the large sample size of the 

UK Biobank even after exclusion of individuals without follow-up, allowed us to extrapolate 

the value of these models for preventive lifestyle intervention at large scale. In the Netherlands, 

more than 16000 people enrolled themselves in a combined lifestyle intervention program 

between January 2019 and April 2020 alone. In a UKB population at least twice that, 9000 and 

14000 fewer people would have been recommended lifestyle intervention by the decision rules 

compared to the clinical risk scores for T2D and hypertension. These models therefore 

represent a more viable, less resource intensive framework for recommending lifestyle 

interventions in preventive and primary care. 

This study also presented some limitations. Firstly, the list of risk factors included is 

not exhaustive, due to both the high level of evidence required for inclusion in the model (most 

studies considered were meta-analyses) as well as the non-availability of other relevant 
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variables in the UK Biobank data repository. Secondly, being a decision rules model, our 

proposed model does not provide individual risk predictions. While this increases the 

interpretability and applicability of the model (especially in a primary and preventive care 

setting), individuals within the same stratum may have different actual risk. Thirdly, we 

conducted the analysis with the assumption that all individuals classified as high risk who 

would have been recommended lifestyle intervention would not only have started it, but also 

achieved some degree of success. With a growing offer of consumer health and wellbeing 

programs, as well as employer-sponsored health programs, it is easier than ever before for 

individuals to preventively implement lifestyle changes [71]. However, many factors not 

accounted for here play a role in determining the actual effectiveness of these programs, so 

prospective validation in a study setting as well as in the market is required to assess the actual 

impact of these models on the effectiveness of preventive health interventions. Lastly, both the 

GWAS for the three PRS used in this study, as well as the UK Biobank cohort itself, are very 

ethnically homogeneous, with more than 90% of total participants being of white ethnicity and 

European descent. Therefore, the PRS results for UK Biobank participants of other ethnicities 

may be sub-optimal, and PRS and model validation will be required in cohorts with more 

diverse ethnical background. 

In conclusion, in this prospective population-based cohort study of 60782 people, we 

developed and validated three easily interpretable, decision rules risk stratification models for 

three prevalent chronic conditions. Adding other blood markers, physical measurements and 

genetic susceptibility scores to currently used clinical risk scoring tools resulted in moderate 

improvements in performance and in the identification of individuals likely to benefit from 

lifestyle intervention. 
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