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Abstract 18 

The coronavirus disease 2019 (COVID-19) is heterogeneous and our understanding of the 19 
biological mechanisms of host response to the novel viral infection remains limited. Identification 20 
of meaningful clinical subphenotypes may benefit pathophysiological study, clinical practice, and 21 
clinical trials. Here, our aim was to derive and validate COVID-19 subphenotypes using machine 22 
learning and routinely collected clinical data, assess temporal patterns of these subphenotypes 23 
during the pandemic course, and examine their interaction with social determinants of health 24 
(SDoH). We retrospectively analyzed 14418 COVID-19 patients in five major medical centers in 25 
New York City (NYC), between March 1 and June 12, 2020. Using clustering analysis, four 26 
biologically distinct subphenotypes were derived in the development cohort (N = 8199). 27 
Importantly, the identified subphenotypes were highly predictive of clinical outcomes (especially 28 
60-day mortality). Sensitivity analyses in the development cohort, and re-derivation and 29 
prediction in the internal (N = 3519) and external (N = 3519) validation cohorts confirmed the 30 
reproducibility and usability of the subphenotypes. Further analyses showed varying 31 
subphenotype prevalence across the peak of the outbreak in NYC. We also found that SDoH 32 
specifically influenced mortality outcome in Subphenotype IV, which is associated with older age, 33 
worse clinical manifestation, and high comorbidity burden. Our findings may lead to a better 34 
understanding of how COVID-19 causes disease in different populations and potentially benefit 35 
clinical trial development. The temporal patterns and SDoH implications of the subphenotypes 36 
may add new insights to health policy to reduce social disparity in the pandemic.  37 
 38 

 39 
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[Main text] 40 

Introduction 41 

The outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 42 

syndrome coronavirus 2 (SARS-CoV-2) infection, has led to a pandemic that imposed 43 

tremendous pressure on healthcare systems globally1. As the pandemic continues and the 44 

second wave has emerged in the US and many other countries, research is still needed to 45 

understand how SARS-CoV-2 causes the wide spectrum of COVID-19 disease. Previous 46 

studies have uncovered substantial variation in the host response to SARS-CoV-2 and the 47 

variable clinical manifestations of this disease, including respiratory failure, kidney injury, and 48 

cardiovascular dysfunction2-8. Pivotal studies of corticosteroids9 and anticoagulation10,11 49 

demonstrate differential responses in distinct subpopulations based on severity of disease. The 50 

pathophysiology of differential organ dysfunction in COVID-19 remains unclear across varied 51 

patient populations. Prior to the COVID-19 pandemic, identification of biologically distinct, data 52 

driven subphenotypes12,13 has helped to disentangle complex syndromic disease such as 53 

sepsis14,15 , ARDS16, heart failure17,18, diabetes19, and Alzheimer’s disease20.  54 

 55 

Identifying robust subphenotypes in COVID-19 patients could lead to improved understanding of 56 

biological mechanisms of host response to SARS-CoV-2 infection and may identify 57 

subpopulations that could be prioritized for clinical trial enrollment13,21. Previous efforts22-25 have 58 

been made in this area but remain limited probably due to cohort size, data availability, and 59 

lacking evaluation of robustness and usability of the identified subphenotypes. In addition, the 60 

hospitalized case fatality rate of COVID-19 has varied over the course of the pandemic26,27 and 61 

according to social determinants of health (SDoH)28-30. Exploration of temporal patterns and 62 
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SDoH characteristics in conjunction with subphenotypes may derive new insights to improve 63 

public health. 64 

 65 

In this analysis, our goal was to derive and validate COVID-19 subphenotypes amongst a 66 

population of patients who presented to the emergency department (ED) or were hospitalized in 67 

multiple health systems in New York City (NYC). Specifically, we used routinely collected clinical 68 

data to first derive subphenotypes using the agglomerative hierarchical clustering model. Then, 69 

multiple strategies in data pre-processing, data filtering, and data-driven models (both 70 

unsupervised clustering model and supervised predictive model) were used to confirm 71 

reproducibility and usability of the identified subphenotypes. After that, statistical analyses were 72 

conducted to evaluate the characteristics and clinical outcomes of the subphenotypes. Further 73 

analyses were performed to examine temporal patterns of the subphenotypes and impacts of 74 

SDoH status on subphenotype-level outcomes. The overall workflow of our study is illustrated in 75 

Figure 1. 76 

 77 

 78 

Results 79 

Patients 80 

A total of 14418 patients with confirmed COVID-19 between March 1st and June 12th 2020, 81 

treated in ED (N=2354, 16.3%) or inpatient (N=12064, 83.7%) settings, were included for 82 

analysis from the five major medical centers in New York City (NYC), including New York 83 

University Langone Medical Center (NYU-LMC), New York Presbyterian - Weill Cornell Medical 84 

Center (NYP-WCMC), Mount Sinai Health System (MSHS), Montefiore Medical Center (MMC), 85 
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and New York Presbyterian - Columbia University Medical Center (NYP-CUMC). Details of 86 

inclusion and exclusion criteria are presented in eFigure 1 in Supplement. We identified 2853 87 

(19.8%) deaths within 60-day after COVID-19 confirmation in total, including 2801 (19.4%) in-88 

hospital deaths and 52 (4%) deaths after discharge from COVID related hospitalization or ED 89 

visits. Considering population diversity (especially race) of the five medical centers (see eTable 90 

1 in Supplement), we combined four centers and randomly divided them into the development 91 

cohort (70%) and internal validation cohort (30%); patients of the remaining center were used as 92 

the external validation cohort (see Figure 1 and eFigure. 1 in Supplement).  93 

 94 

The development cohort contained a total of 8199 patients with a median age of 65.35 95 

(interquartile range [IQR] [50.57, 75.17]) years old, consisting of 3787 (46.2%) females, 2036 96 

(24.8%) white patients, and 2155 (26.3%) black patients.  The internal validation cohort 97 

contained a total of 3519 patients with similar patient characteristics when compared with the 98 

development cohort, with a median age of 63.51 (IQR [50.95, 75,17]) years old, consisting of 99 

1585 (45.0%) females, 838 (23.8%) white patients, and 915 (26%) black patients. The external 100 

validation cohort contained a total of 2700 patients. It had a median age of 65.85 (IQR [51.08, 101 

77.38]) years old and consisted of 1305 (48.3%) females, 675 (25.0%) white patients, and 545 102 

(20.2%) black patients. Across the three cohorts, the overall 60-day mortality rates after ED or 103 

hospital discharge were 18.65%, 19.78%, and 20.59%, respectively. More details of the 104 

characteristics of the studied cohorts appeared in Table 1. 105 

Subphenotypes derivation 106 

In the development cohort, the agglomerative hierarchical clustering model identified 4 distinct 107 

subphenotypes based on presenting clinical data of the patients (see eResults, eFigures 3 and 108 

4 in Supplement). Characteristics including demographics, clinical variables, comorbidities, 109 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.02.28.21252645doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.28.21252645


 5

clinical outcomes, and medication treatments across the 4 subphenotypes were presented in 110 

Table 2 and Figures 2 and 3. 111 

 112 

Subphenotype I consisted of 2707 (33.02%) patients. Compared to the others, it included more 113 

younger (median age 57.45 years, IQR [42.70, 70.02]) and female (N = 1601 [59.15%]) patients. 114 

Those patients had more normal values across all clinical variables and lower chronic 115 

comorbidity burden. The patients also had better clinical outcomes including a low 60-day 116 

mortality (N = 188 [6.94%]) and a low rates of mechanical ventilation (N = 190 [7.02%]) and ICU 117 

admission (N = 242 [8.94%]). 118 

 119 

Subphenotype II consisted of 3047 (37.16%) patients. Compared to other subphenotypes, it 120 

included more male patients (N = 1941 [63.70%]) and was likely to have more abnormal 121 

inflammatory markers (such as C-reactive protein, erythrocyte sedimentation rate, interleukin 6, 122 

lactate dehydrogenase, lymphocyte count, neutrophil count, white blood cell count, and ferritin) 123 

and markers of hepatic dysfunctions (such as ferritin, alanine aminotransferase, aspartate 124 

aminotransferase, and bilirubin). Overall comorbidity burden of Subphenotype II was low. 125 

Clinical outcomes including 60-day mortality (N = 528 [17.33%]), mechanical ventilation (N = 126 

527 [17.30%]), and ICU admission (N = 675 [22.15%]) of Subphenotype II were at a moderate 127 

level. 128 

 129 

Subphenotype III included 1486 (18.12%) patients, consisting of more older (median age 69.45 130 

years, IQR [57.05, 79.62]) and black (N = 503 [33.85%]) patients, compared to subphenotypes I 131 

and II. Those patients of Subphenotype III were likely to have more abnormal renal dysfunction 132 

markers (such as blood urea nitrogen, creatinine, chloride, and sodium) and hematologic 133 

dysfunction markers (such as d-dimer, hemoglobin, and red blood cell distribution width). 134 

Overall comorbidity burden of Subphenotype III was high. Clinical outcomes including 60-day 135 
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mortality (N = 337 [22.68%]), intubation (N = 195 [13.12%]), and ICU admission (N =242 136 

[16.29%]) of Subphenotype II were close to that of Subphenotype II and at a moderate level as 137 

well. 138 

 139 

Subphenotype IV included 959 (11.70%) patients. Compared to other subphenotypes, it 140 

included more older (median age 75.53 years, IQR [64.10, 84.83]) and male (N = 588 [61.31%]) 141 

patients. Those patients of Subphenotype IV had more abnormal values across all clinical 142 

variables and higher chronic comorbidity burden than the others. Obesity burden is lower in 143 

Subphenotype IV than others. In line with its biological characteristics, Subphenotype IV had the 144 

worst clinical outcomes in 60-day mortality (N = 476 [49.64%]), intubation (N = 242 [25.23%]), 145 

and ICU admission (N =335 [34.93%]). In addition, the medications including antibiotics, 146 

corticosteroids, and vasopressor were more frequently used in Subphenotype IV. 147 

 148 

Subphenotype reproducibility and prediction 149 

In the development cohort, sensitivity analyses under two different settings (sensitivity 150 

to quality control and outliers and sensitivity to clustering methods) confirmed the 151 

underlying 4-cluster structure of the data (see eResults, eFigures 3 and 4, and eTable 5 in 152 

Supplement). Patients’ memberships of the 4 clusters re-derived by sensitivity analyses 153 

were highly consistent with those derived in the primary analysis (see eFigure 6 in 154 

Supplement). Moreover, we did not find substantial changes in clinical characteristics of 155 

the subphenotypes in the sensitivity analyses (see eTables 6 and 7 in Supplement). 156 

 157 

Subphenotypes were also re-derived in the internal validation cohort, where the 4-158 

cluster structure was found as the optimal fit as well (see eResults and eFigure7 in 159 
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Supplement). Clinical characteristics of the re-derived subphenotypes in the internal 160 

validation cohort, including demographics, laboratory variables, comorbidities, and 161 

clinical outcomes, also showed very similar patterns with the subphenotypes derived in 162 

the primary analysis (see Figure 3, and eTable 8 and eFigure 8 in Supplement). 163 

 164 

To further evaluate subphenotype robustness and usability, we trained a predictive 165 

model of subphenotypes in the development cohort and used it to predict subphenotype 166 

membership in the external validation cohort. Clinical variables of presenting laboratory 167 

tests for clustering analysis were used as candidate predictors. The trained predictive 168 

model (XGBoost classifier) achieved very high performance in predicting each 169 

subphenotype (see eFigure 9 in Supplement). SHapley Additive exPlanation (SHAP) values 170 

illustrated contributions of the clinical variables in distinguishing each subphenotype from others 171 

(see eFigure 10 in Supplement). Patterns of the produced SHAP values were highly in line with 172 

the subphenotype characteristics:  1) normal values of the clinical variables indicated 173 

Subphenotype I; 2) abnormal inflammatory and hepatic markers were predictive of 174 

Subphenotype II; 3) abnormal renal and hematologic markers indicated were likely to indicate 175 

Subphenotype III; 4) Subphenotype IV was associated with abnormal values of most variables. 176 

After that, the trained predictive model was used to predict subphenotype memberships of 177 

patients in the external validation cohort. The predicted subphenotypes in the external validation 178 

cohort were well separated in the UMAP space (see eFigure 11 in Supplement) and showed 179 

clinical characteristics similar to findings in the primary analysis (see Figure 3, and eTable 9 and 180 

eFigure 12 in Supplement). 181 

 182 
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Last, results from leave-one-center-out analysis also confirmed the four-cluster structure 183 

underlying our data (see eFigure 13 in Supplement). Meanwhile, subphenotypes identified by 184 

the leave-one-center-out analysis among the whole population showed characteristics in line 185 

with those identified in the primary analysis (see eTable 10 in Supplement). Those above 186 

demonstrated stability of the identified subphenotypes across the five centers. 187 

Temporal characteristics of subphenotypes 188 

Temporal patterns of the COVID-19 subphenotypes were illustrated by the bar charts, showing 189 

the composition of subphenotype memberships of patients confirmed per week, since the 190 

outbreak in NYC, i.e., March 1, 2020 (see Figures 4a-c). Except week 1 and week 14 that had 191 

few patients confirmed, the composition of the four subphenotypes per week evolved over time 192 

and showed similar patterns across the development, internal validation, and external validation 193 

cohorts. In general, patients with confirmed SARS-CoV-2 infection rapidly increased within the 194 

first month since the outbreak and reached the peak at week 5 (early April). Subphenotype I 195 

(mild symptom) and Subphenotype II (moderate symptom, low comorbidity burden) dominated 196 

the time period prior to the peak (first 4 weeks since outbreak). In contrast, Subphenotype IV 197 

(severe symptom, high comorbidity burden) had a low proportion within the first 4 weeks but 198 

showed a largely increased proportion from week 6 to week 9. Since week 10, the proportion of 199 

Subphenotype I gradually increased while others especially Subphenotype IV shrank. 200 

Subphenotype III (moderate symptom, high comorbidity burden) had a relatively stable 201 

proportion over time. 202 

Impact of SDoH on subphenotypes 203 

In general, worse SDoH in terms the socioeconomic variables were likely in Subphenotype IV 204 

(see eTable 11 in Supplement). Moreover, logistic regression analysis identified similar patterns 205 
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of relationships between the SDoH variables with 60-day mortality risk across subphenotypes; 206 

however, absolute log odds and Hazard ratio of the SDoH variables varied across 207 

subphenotypes (see Figure 4d and eTables 12-13 in Supplement). For example, low absolute 208 

log odds were observed in all six SDoH variables in Subphenotype I. In contrast, we did see 209 

increased absolute log odds of all six SDoH variables in Subphenotype IV. Hazard ratio showed 210 

similar pattern. 211 

 212 

Agglomerative hierarchical clustering based on the SDoH variables grouped the patients into a 213 

3-cluster model (see eResults and eFigure 14 in Supplement), which can be interpreted as high 214 

(H), middle (M), and low (L) SDoH strata (see eTable 14 in Supplement). Stratum L, 215 

representing disadvantaged SDoH status, accounted for a slightly higher mortality rate (H vs. M 216 

vs. L, 17.59% vs. 19.91% vs.19.98%, P-value = 0.08). In addition, stratum L had a lower ICU 217 

admission rate (16.16%, P-value < 0.001). The relative high mortality but low ICU admission 218 

rate may be caused by critical care strain during periods of increased COVID-19 ICU demand, 219 

as suggested by a recent study31. Distributions of the SDoH strata by biological subphenotypes 220 

were shown in eTable 15 in Supplement. In the analysis to further explore how SDoH strata 221 

affected the outcome of each biological subphenotype, we found varied patterns of correlations 222 

between SDoH strata and 60-day mortality (see Figure 4e) by subphenotypes. Notably, in line 223 

with the results of the univariate analysis above, SDoH strata were likely to have a strong 224 

impact on the 60-day mortality in Subphenotype IV. Particularly, in Subphenotype IV, SDoH 225 

stratum L was associated with a 55.19% 60-mortality rate, which was 5.55% higher than the 226 

subphenotype level (49.64%, see Table 2) and 8.52% higher than that of the SDoH stratum H. 227 

In subphenotypes I, II, and III, we didn’t find mortality rate discrepancy higher than 3% between 228 

any pair of SDoH strata. Similarly, considering stratum H as reference, stratum L had largely 229 
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increased log odds of mortality in Subphenotype IV (log odds = 0.40, SD = 0.19, P-value = 0.04). 230 

(see eTable 16 in Supplement)  231 

 232 

Discussions 233 

We derived subphenotypes of COVID-19 patients treated at five major medical centers in NYC 234 

across the whole course of the first wave of the pandemic, using the clinical data at the 235 

presentation to the emergency department (ED) or hospital. Different from the previous 236 

subphenotype studies of COVID-1922-24, we focused on a larger, more representative, and 237 

diverse population presented at the ED and/or hospitalized without COVID-19 specific therapy. 238 

We derived subphenotypes using clustering analysis in the development cohort and validated 239 

them using a combination of multiple validation strategies, including the use of different data 240 

processing, different data filtering, and different machine learning models (both unsupervised 241 

clustering and supervised predictive models). All validation approaches confirmed the 242 

reproducibility of the 4-cluster structure of the data and clinical characteristics of the identified 243 

subphenotypes. We would also highlight that all machine learning models used for 244 

subphenotype derivation and validation were performed only on the presenting clinical variables 245 

that were routinely collected in daily patient care and are available to providers by ED or 246 

hospital admission. This allows us to potentially capture the underlying variable mechanisms of 247 

the complex disease, but also enhances the generalizability and feasibility of the identified 248 

subphenotypes to be used in clinical practices and patient enrollment in clinical trials. 249 

 250 

Importantly, the 4 subphenotypes identified were significantly separated in demographics, 251 

clinical variables, and chronic comorbidities, and strongly predictive of the 60-day mortality 252 

outcome. Subphenotype IV included more older, male patients, abnormal markers indicating 253 
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hyperinflammation, liver injury, cardiovascular problems, renal dysfunctions, and coagulation 254 

disorders, and a higher comorbidity burden (except for obesity) compared to the other 255 

subphenotypes. In contrast, Subphenotype I was composed of relatively healthy, younger 256 

females who had more normal values across all markers and comorbidity burdens compared to 257 

the other subphenotypes. There was a strong concordance between their clinical profiles and 258 

outcomes, such as Subphenotype IV showed the worst clinical outcome while Subphenotype I 259 

showed the best outcome among the 4 subphenotypes. These are in line with observations 260 

reported in a previous small cohort study23. Interestingly, Subphenotypes II and III showed 261 

similar, moderate-level 60-day mortality rates, but their clinical characteristic profiles suggested 262 

that they were likely to have distinct biological mechanisms. In particular, results from our 263 

primary analysis and validation approaches demonstrated that Subphenotype II was correlated 264 

with relative hyperinflammation, while Subphenotype III was associated with renal injury, lower 265 

platelet level and a high comorbidity burden (significantly higher than Subphenotypes I and II, 266 

and equivalent to Subphenotype IV). Moreover, in accordance with the clinical characteristics 267 

and outcomes, the worse subphenotypes (Subphenotypes III and IV) were more likely to receive 268 

medications in antibiotics, corticosteroids, and vasopressor than the others. These findings 269 

suggested that our identified subphenotypes offer insight into the varied mechanisms of COVID-270 

19.  271 

 272 

Typically, data-driven approaches for the identification of subphenotypes of human disease are 273 

based on the unsupervised clustering methods12,14-16,22-24,32. The natural attributes of the 274 

unsupervised methodology in discovering underlying patterns from data make them the best fit 275 

for subphenotype identification. Once the subphenotypes were determined, there would be a 276 

need of subphenotype membership assignments for new patients. However, previous studies 277 

barely discussed such down-stream usability of the identified subphenotypes. In this analysis, 278 

we built a supervised predictive model of the identified subphenotypes. Our predictive model 279 
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achieved an ideal prediction performance in the development cohort and predicted 280 

subphenotypes in the external validation cohort that presented the same pattern of clinical 281 

characteristics with that of the originally derived subphenotypes. In this way, instead of 282 

validating the subphenotypes in a different route, the predictive model brought additional 283 

implications as: 1) it provides a feasible and accurate way to apply the identified subphenotypes 284 

to clinical practice; and 2) contributions of the clinical variables in subphenotype prediction 285 

calculated by the SHAP method showed concordant patterns with the subphenotypes’ clinical 286 

characteristics and hence confirmed biological profiles of the subphenotypes in the multivariate 287 

prospective. 288 

 289 

Time is a crucial factor in the spread of COVID-19. Previous studies have examined the 290 

temporal trends of COVID-19 outcomes such as in-hospital mortality rate during the course of 291 

the pandemic26,27, but limited attention has been drawn on evolving patterns of COVID-19 292 

phenotypes. We filled this gap in the present study. Our observations suggested varied 293 

temporal trends of the identified subphenotypes during the first 14 weeks of the pandemic in 294 

NYC. Interestingly, since the COVID-19 outbreak in NYC on March 1, 2020, Subphenotypes I 295 

and II dominated the time period prior to the peak (first 4 weeks since outbreak), possibly as 296 

they contained more relatively younger patients who may have had more frequent social 297 

activities to be infected. Subphenotype IV, with older age, worse health conditions, and poorer 298 

outcomes, was boosted within the second month (April 2020) post spread peak, consistent with 299 

tremendous mortality rate of NYC in April33.  300 

This would suggest that younger, biologically strong patients (Subphenotypes I and II) got 301 

infections early and boosted the spread, while older, biologically vulnerable patients 302 

(Subphenotype IV) accounted for the second infections within a population probably due to 303 

housing. After that, the proportion of Subphenotype I out of all patients confirmed per week 304 

gradually expanded while that of the others, especially Subphenotype IV shrank. The potential 305 
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reason would be that valuable experience (such as the improved use of masks and social 306 

distancing), reinforced health care systems, and announced health policies did protect the 307 

population who likely develop severe subphenotypes (Subphenotype IV). In general, such 308 

temporal trends of the biological subphenotypes would be a considerable, fine-grained 309 

explanation of the observed outcome (mortality rate) evolving trends in epidemiology26.  310 

 311 

SDoH such as vulnerable socioeconomic neighborhood status have been associated with poor 312 

outcomes of COVID-1926,30. In this work, we explored the impact of SDoH on different biological 313 

subphenotypes from both univariate and multivariate perspectives. We first examined the 314 

associations of individual socioeconomic characteristics with mortality risk in each 315 

subphenotype. We then derived comprehensive SDoH strata using the data-driven clustering 316 

method and evaluated their correlations with mortality risk in each subphenotype. The results 317 

confirmed our hypothesis that SDoH impacts biological subphenotypes differently. The highly 318 

expanded mortality risk log odds of individual SDoH variables and discrepancy of mortality rate 319 

among SDoH strata indicate that SDoH has a much stronger association with mortality 320 

outcomes in Subphenotype IV, compared to the others. In other words, once a sick, elderly 321 

patient shows up with COVID-19 (Subphenotype IV), the disadvantaged socioeconomic status 322 

significantly increased their mortality. In contrast, disadvantaged SDoH status was unlikely to 323 

lead to significantly increased mortality risk in Subphenotype I. This evidence further 324 

demonstrated that the COVID-19 pandemic has disproportionately affected patients with lower 325 

socioeconomic status. In general, our findings added new information on social disparities in the 326 

COVID-19 pandemic. Unlike previous studies29,30,34,35 that focused on the entire population, we 327 

extended the study from a new angle by focusing on the biologically different populations (i.e., 328 

subphenotypes). Our findings also showed evidence that the identified subphenotypes would 329 

provide considerable guidance in health policy to reduce social disparities in the pandemic.  330 

 331 
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 332 

Limitations 333 

While this study presents a new contribution in the efforts to parse the biological heterogeneity 334 

of COVID-19, there remain several limitations. First of all, our data-driven approach relied on the 335 

availability of patient data. In this study, we identified subphenotypes using the routinely 336 

collected clinical variables that were correlated with COVID-1936 and available in the INSIGHT 337 

database37. We were not able to extract presenting symptoms and vital data while the 338 

incorporation of such data would add in new insights.  339 

 340 

Second, in our study, the analyzed data were collected at ED or hospital presentation, so the 341 

time between COVID-19 symptom onset to ED or hospital presentation could be a covariate of 342 

disease severity and clinical outcomes. However, such data was not available in the INSIGHT 343 

database.  344 

 345 

Third, missing values may affect the robustness of the identified subphenotypes. In order to 346 

address this issue, we excluded variables with high missingness. For the remaining variables, 347 

we used the K-nearest neighbors imputation algorithm38. Even so, we still missed these real 348 

values hence may incorporate bias. 349 

 350 

Fourth, our study was based on presenting clinical data, such that each patient was 351 

characterized in a snapshot. The full use of longitudinal data of patients may allow us to capture 352 

the complexity of the disease arc to identify interesting subphenotypes. Previous studies tried to 353 

derive COVID-19 subphenotypes based on longitudinal information22,24, yet they were based on 354 

univariate trajectory data in small cohorts. The collection of multivariate, longitudinal data in 355 
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large cohorts remains challenging and modeling such data to identify subphenotypes requires 356 

improved data-driven methods12,13,21. 357 

 358 

Fifth, this is a multiple institutional analysis in NYC. To evaluate the generalizability of the 359 

identified subphenotypes, further validation on data collected from other areas is needed in 360 

future work. 361 

 362 

 363 

 364 

 365 

Methods 366 

Study design and cohort description 367 

We used data of COVID-19 patients from INSIGHT Clinical Research Network (CRN)37. 368 

INSIGHT is funded by the Patient-Centered Outcomes Research Institute (PCORI) and 369 

aggregates clinical data of diverse patient populations across five academic medical centers in 370 

New York City (NYC), including New York University Langone Medical Center (NYU-LMC), New 371 

York Presbyterian - Weill Cornell Medical Center (NYP-WCMC), New York Presbyterian - 372 

Columbia University Medical Center (NYP-CUMC), Mount Sinai Health System (MSHS), and 373 

Montefiore Medical Center (MMC). COVID-19 diagnosis was defined as having at least one 374 

positive laboratory test result for SARS-CoV-2 infection or at least one ICD-10 diagnosis code 375 

for COVID-19 (see eMethods in Supplement). Study participants were adult patients who were 376 

diagnosed with COVID-19 and treated in ED or inpatient settings in these five health centers 377 

from March 1 to June 12, 2020. Criteria used to assess patient eligibility are illustrated in 378 
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eFigure 1 in Supplement. Exclusion criteria include younger than 18 years old; duplicated 379 

patient IDs; having no emergency department (ED) or inpatient (IP) admission within 14 days 380 

after COVID-19 confirmation; or having missing values on all clinical variables.  Considering the 381 

population diversity of the five medical centers (see eTable 1 in Supplement), we combined 382 

patients of four centers and randomly divided them into the development cohort (70%) and 383 

internal validation cohort (30%). Patients of the last center were used as the external validation 384 

cohort.  385 

 386 

Candidate variables for subphenotype identification 387 

We considered 30 clinical variables associated with COVID-19 onset, symptoms, or outcomes36 388 

and available in the INSIGHT database as the candidate variables to derive subphenotypes. 389 

The variables included inflammatory markers (C-reactive protein, erythrocyte sedimentation rate 390 

[ESR], interleukin 6 [IL-6], procalcitonin, bands [i.e., premature neutrophil], lactate 391 

dehydrogenase [LDH], lymphocyte count, neutrophil count, and white blood cell count), 392 

inflammatory and hepatic markers (albumin and ferritin), hepatic markers (alanine 393 

aminotransferase [ALT], aspartate aminotransferase [AST], and bilirubin), markers of 394 

cardiovascular conditions (creatine kinase [CK], lactate, troponin I, and troponin T), markers of 395 

renal dysfunctions (bicarbonate, blood urea nitrogen [BUN], creatinine, chloride, and sodium), 396 

markers of hematologic dysfunctions (d-dimer, hemoglobin, platelet count, prothrombin time 397 

[PT], red blood cell distribution width [RDW], and glucose), and oxygen saturation. For each 398 

patient, we extracted the first value of each clinical variable within the collection window, which 399 

was defined as:  1) time period from COVID-19 confirmation to the first inpatient encounter, if 400 

the patient has an inpatient admission within 14 days after confirmation; or 2) 14 days after 401 

COVID-19 confirmation if there was only ED encounters but no inpatient admissions following 402 
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the COVID-19 diagnosis. If there was no record in the collection window, we extracted the last 403 

value within 3 days before confirmation (see eFigure 2 in Supplement). 404 

Other clinical characteristics, clinical outcomes, and medications 405 

We also examined other clinical characteristics of the patients, including demographics, 406 

comorbidities, and body mass index (BMI). Demographics included age, sex, and race. Baseline 407 

comorbidities included hypertension, diabetes, coronary artery disease (CAD), heart failure, 408 

chronic obstructive pulmonary disease (COPD), asthma, cancer, obesity, and hyperlipidemia. 409 

For each patient, the most recent BMI data was collected. We analyzed 60-day all-cause 410 

mortality as the primary outcome for the patients. Need for mechanical ventilation and 411 

admission to the intensive care unit (ICU) were the secondary outcomes. We also analyzed the 412 

treatments for COVID-19, including antibiotics (combining ceftriaxone, azithromycin, piperacillin 413 

tazobactam, meropenem, vancomycin, and doxycycline), corticosteroids (combining prednisone, 414 

methylprednisolone, dexamethasone, and hydrocortisone), hydroxychloroquine, enoxaparin, 415 

heparin, and vasopressor. These above data were collected from patient records available in 416 

the INSIGHT database as well. 417 

SDoH data 418 

To explore the impact of SDoH status on the subphenotypes, we extracted patients’ 419 

neighborhood socioeconomic characteristics, including median household income, percentage 420 

of residents without a high school degree, percentage of residents who are essential workers, 421 

percentage of households with crowding housing conditions (i.e., households with >1 person 422 

per room), percentage of non-white residents, and unemployment rate. These characteristics 423 

were extracted from the 2018 American Community Survey39. Previous studies40-46 have 424 
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indicated that these social conditions are associated with higher probability of infection, 425 

hospitalization, and other adverse outcomes, e.g., mortality, in COVID-19. 426 

   427 

Statistical methods  428 

Data preparation 429 

We first assessed the value distributions and missingness of the 30 candidate clinical variables 430 

(see eTables 2 and 3 in Supplement). For data quality control, 7 variables of high missingness 431 

(missing more than 70% values) were excluded and the remaining 23 variables were used for 432 

deriving subphenotypes. Logarithmic transformation was applied to the non-normal distributed 433 

variables (see eTable 4 in Supplement). In order to eliminate the effects of value magnitude, all 434 

variables were scaled based on z-score. K-nearest neighbors (KNN) imputation38 was used to 435 

address missing values (see eMethods in Supplement).  436 

 437 

Subphenotype derivation, validation, and prediction 438 

We originally derived subphenotypes using the development cohort. More specifically, 439 

agglomerative hierarchical clustering with Euclidean distance calculation and Ward linkage 440 

criterion47 was applied to the 23 clinical variables after data preparation. We used agglomerative 441 

hierarchical clustering because it is robust to different types of data distributions and typically 442 

produces a dendrogram that visualizes data structure to help determine the optimal cluster 443 

number. Besides dendrogram, we calculated 21 measures of clustering models provided by 444 

‘NbClust’ software48 to determine the optimal number of clusters, i.e., subphenotypes. 445 

 446 
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In order to evaluate the reproducibility, we validated our subphenotypes in four ways. First, we 447 

performed sensitivity analyses using the development cohort to evaluate 1) sensitivity to quality 448 

control and outliers and 2) sensitivity to clustering algorithms. To assess sensitivity to quality 449 

control and outliers, we incorporated all 30 candidate variables and excluded patients who have 450 

outlier values (see eMethods in Supplement). Then similar to the primary analysis, we 451 

performed agglomerative hierarchical clustering to re-derive subphenotypes and determined 452 

optimal cluster number using dendrogram and ‘NbClust’. To assess sensitivity to clustering 453 

algorithms, we re-derived subphenotypes using the Gaussian mixture model (GMM)49, which is 454 

a probabilistic model for clustering analysis based on a mixture of Gaussian distributions. The 455 

optimal cluster number in GMM was determined by comprehensively considering Akaike 456 

information criterion (AIC), Bayesian information criterion (BIC), and median probability of group 457 

membership (see eMethods in Supplement).  458 

 459 

Second, we used the internal validation cohort and re-derived subphenotypes using the same 460 

agglomerative hierarchical clustering with the primary analysis for validation. The optimal cluster 461 

number was determined using dendrogram and ‘NbClust’ as well. 462 

 463 

Third, for the aims of confirming subphenotypes and their usability, we used the supervised 464 

predictive model. More specifically, considering subphenotype membership of each patient as 465 

the label to predict, we built a predictive model of subphenotypes based on the 23 clinical 466 

variables used for subphenotype derivation. The predictive model was based on the supervised 467 

XGBoost classifier50, a powerful tree-based machine learning model. The predictive model was 468 

trained in the development cohort using a 10-fold cross-validation strategy. To address the 469 

multi-label classification (since we identified more than 2 subphenotypes), a one-vs-the-rest 470 

strategy was used in model training. Prediction performance was measured by receiver 471 

operating characteristics curve (ROC) and area under ROC curve (AUC). We also engaged the 472 
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SHapley Additive exPlanation (SHAP) values to assess contributions of the clinical variables in 473 

distinguishing each subphenotype from the others. Once the predictive model was trained, it 474 

was performed on the external validation cohort to predict the patients’ subphenotype 475 

memberships. 476 

 477 

Last, to assess stability of the subphenotypes across the five medical centers, we further 478 

performed leave-one-center-out analysis (see eMethods in Supplement).  479 

 480 

Subphenotype interpretation 481 

For the aim of subphenotype interpretation, we first visualized the subphenotypes in two ways: 1) 482 

2-D visualization calculated by Uniform Manifold Approximation and Projection (UMAP) 483 

algorithm51 based on clinical variables for clustering (showing distributions of subphenotypes 484 

within low-dimensional space); 2) chord diagrams52 showing differences of subphenotypes in 485 

terms of abnormal clinical variable groups and comorbidities (see eMethods in Supplement).  486 

 487 

We also characterized subphenotypes by evaluating their differences in demographics, all 488 

clinical variables, comorbidities, clinical outcomes, and medications prescribed after COVID-19 489 

confirmation. Data were presented as median (interquartile range [IQR]) for continuous 490 

variables and exact patient number (percentage) for categorical variables. To compare 491 

subphenotypes, we performed the Kruskal-Wallis test for continuous data and ��  test for 492 

categorical data. Analysis of covariance (ANCOVA) was also applied for between-493 

subphenotypes comparisons, adjusting for age and gender. Two-tailed P-values smaller than 494 

0.05 were considered as the threshold for statistical significance. Survival analyses were 495 

performed to assess associations of subphenotypes to clinical outcomes, where Kaplan-Meier 496 

plots were created accordingly. 497 
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 498 

Temporal pattern of subphenotypes 499 

To evaluate the temporal pattern of the subphenotypes during the course of the pandemic, we 500 

created bar charts to visualize the proportion of each subphenotype out of the total patients 501 

confirmed per week, since the COVID-19 outbreak in NYC (March 1, 2020).  502 

 503 

Impacts of SDoH on COVID-19 subphenotypes 504 

Multiple analyses were conducted to assess the impact of SDoH on COVID-19 subphenotypes. 505 

For each subphenotype, we first performed logistic regression analysis and Cox regression 506 

analysis to assess the association of each SDoH variable with 60-day mortality, adjusting for 507 

age, sex, and/or clinical variables. After that, we performed agglomerative hierarchical clustering 508 

on the 6 socioeconomic variables to derive comprehensive SDoH strata. Within each 509 

subphenotype, we compared 60-day mortality rates between the SDoH strata. We also used 510 

logistic regression analysis and Cox regression analysis to assess the association of SDoH 511 

strata with 60-day mortality, adjusting for age and sex, within each subphenotype. 512 

 513 

Ethical approval and patient consent. 514 

The Institutional Review Board of the Weill Cornell Medicine approved this study (Protocol 515 

number: 20-04021948).  516 

 517 

 518 

 519 
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Data availability 520 

All data studied in this work can be downloaded from INSIGHT clinical research network 521 

at https://insightcrn.org/our-data/, via request.  522 

 523 

Code availability 524 

All computer codes in this study are available at https://github.com/ChangSu10/COVID-525 

Insight-subphenotyping. Implementation of our work is based on Python 3.7 and R 3.6. 526 

More specifically, clustering models were implemented based on Python packages 527 

‘scikit-learn 0.23.2’ (https://scikit-learn.org/stable/) and ‘scipy 1.5.3’ 528 

(https://www.scipy.org). Supervised predictive modeling was based on ‘XGBoost 1.2.1’ 529 

(https://xgboost.readthedocs.io/en/latest/) and ‘SHAP 0.35.0’ 530 

(https://shap.readthedocs.io/en/latest/). Data dimension reduction and visualization 531 

were performed based on Python package ‘UMAP-learn 0.3.9’ (https://umap-532 

learn.readthedocs.io/en/latest/). R package ‘NbClust’ (https://cran.r-533 

project.org/web/packages/NbClust/NbClust.pdf) was used to calculate measures of 534 

clusters to determine the optimal cluster number in agglomerative hierarchical clustering. 535 

Chord diagrams were created using R package ‘circlize’ (https://cran.r-536 

project.org/web/packages/circlize/index.html). All statistical tests and survival analyses 537 

were performed based on R.  538 

 539 

 540 
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Tables 

Table 1. Characteristics of the development, internal validation, and external validation cohorts  

Characteristics 
Cohort 

Development cohort Internal validation cohort External validation cohort 
No. of patients 8,199 3,519 2,700 

Construction method 
70% patients (randomly selected) from 

4 medical centers 
Remaining 30% patients from 4 

medical centers  
Patients from the last center 

Age, y, Median (IQR) 63.53 [50.57 - 75.15] 63.51 [50.95 - 75.17] 65.58 (51.08 - 77.39) 
Sex female, N (%) 3,787 (46.2) 1,585 (45.0) 1,305 (48.3) 
Race, N (%)    
    White 2,036 (24.8) 838 (23.8) 675 (25.0) 

    Black 2,155 (26.3) 915 (26.0) 545 (20.2) 

    Asian 409 (5.0) 193 (5.5) 28 (1.0) 

    Other/unknown 3599 (43.9) 1573 (44.7) 1452 (53.8) 

Outcomes (60 days), N (%)    

    Mortality 1529 (18.65) 696 (19.78) 556 (20.59) 
    Mechanical ventilation (intubation 1154 (14.07) 497 (14.12) 248 (9.19) 
    ICU admission 1494 (18.22) 661 (18.78) - 
Abbreviations: ICU = intensive care unit; IQR = Interquartile range; SDoH = social determinants of health. 
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Table 2. Characteristics of the identified subphenotypes (development cohort) 

Variable Total Subphenotype I Subphenotype II Subphenotype III Subphenotype IV P-value1 
P-value (age 

and sex 
adjusted)2 

No. of patients (%) 8199 (100) 2707 (33.02) 3047 (37.16) 1486 (18.12) 959 (11.70) - - 
Demographics        
Age, y, Median (IQR) 63.53 (50.57 - 75.15) 57.45 (42.70 - 70.02) 62.56 (51.63 - 72.77) 69.45 (57.05 - 79.62) 73.53 (64.10 - 82.83) < 0.001 - 
Sex female, N (%) 3787 (46.19) 1601 (59.14) 1106 (36.30) 709 (47.71) 371 (38.69) < 0.001 - 
Race, N (%)        
    White 2036 (24.83) 695 (25.67) 777 (25.50) 367 (24.70) 197 (20.54) 

< 0.001 - 
    Black 2155 (26.28) 697 (25.75) 611 (20.05) 503 (33.85) 344 (35.87) 
    Asian 409 (4.99) 118 (4.36) 194 (6.37) 58 (3.90) 39 (4.07) 
    Other/unknown 3599 (43.90) 1197 (44.22) 1465 (48.08) 558 (37.55) 379 (39.52) 
        
Inflammatory markers        
C-reactive protein, mg/L, Median (IQR) 9.40 (3.70 - 16.80) 4.32 (1.16 - 9.31) 12.74 (6.60 - 20.20) 8.20 (3.50 - 14.51) 14.90 (6.70 - 23.07)   
ESR, mm/hr, Median (IQR) 69.00 (42.00 - 97.00) 53.00 (34.00 - 81.00) 76.00 (50.00 - 100.00) 75.00 (45.25 - 102.75) 77.00 (41.75 - 106.25) < 0.001 < 0.001 
IL-6, pg/mL, Median (IQR) 19.00 (10.00 - 42.00) 13.00 (8.00 - 21.00) 21.00 (11.00 - 45.75) 17.00 (9.00 - 47.00) 27.00 (10.25 - 52.00) < 0.001 < 0.001 
Procalcitonin, ng/mL, Median (IQR) 0.20 (0.10 - 0.60) 0.10 (0.10 - 0.20) 0.20 (0.10 - 0.50) 0.30 (0.10 - 0.87) 0.60 (0.25 - 2.10) < 0.001 0.26 
Bands, %, Median (IQR) 2.00 (0.00 - 5.00) 3.00 (0.00 - 5.75) 2.00 (0.00 - 5.00) 2.00 (0.00 - 5.00) 2.00 (0.00 - 6.00) < 0.001 0.04 

LDH, U/L, Median (IQR) 
377.00 (280.00 - 

525.00) 
292.00 (229.00 - 

377.00) 
437.00 (343.00 - 

576.00) 
349.00 (268.00 - 

449.00) 
565.50 (409.75 - 

801.50) 0.37 0.14 

Lymphocyte count, �103/uL, Median (IQR) 1.00 (0.70 - 1.43) 1.20 (0.80 - 1.60) 1.00 (0.70 - 1.40) 0.80 (0.60 - 1.20) 0.90 (0.60 - 1.40) < 0.001 < 0.001 
Neutrophil count, �103/uL, Median (IQR) 5.30 (3.70 - 7.90) 4.00 (2.90 - 5.40) 6.70 (4.80 - 9.50) 4.70 (3.40 - 6.60) 8.20 (5.90 - 11.00) < 0.001 0.02 
White blood cell count, �103/uL, Median (IQR) 7.20 (5.30 - 9.90) 5.90 (4.60 - 7.60) 8.50 (6.50 - 11.50) 6.30 (4.70 - 8.30) 10.30 (7.60 - 13.57) < 0.001 < 0.001 
Inflammation & Hepatic markers      < 0.001 < 0.001 
Albumin, g/dL, Median (IQR) 3.70 (3.30 - 4.10) 4.00 (3.60 - 4.30) 3.70 (3.20 - 4.00) 3.50 (3.10 - 3.90) 3.40 (2.90 - 3.80)   

Ferritin, ng/mL, Median (IQR) 645.00 (295.90 - 
1347.00) 

323.05 (157.75 - 
594.33) 

868.80 (454.00 - 
1537.50) 

599.00 (217.80 - 
1380.50) 

1174.00 (523.00 - 
2284.00) 

< 0.001 < 0.001 

Hepatic markers      < 0.001 < 0.001 
Alanine aminotransferase, U/L, Median (IQR) 29.00 (19.00 - 48.00) 24.00 (17.00 - 36.00) 41.00 (26.00 - 68.00) 20.00 (13.00 - 29.00) 37.00 (22.00 - 65.00)   
Aspartate aminotransferase, U/L, Median 
(IQR) 

39.00 (26.00 - 63.00) 31.00 (23.00 - 42.00) 52.00 (35.00 - 80.00) 31.00 (22.00 - 46.00) 65.00 (36.00 - 118.00) < 0.001 < 0.001 

Bilirubin, mg/dL, Median (IQR) 0.30 (0.20 - 0.60) 0.20 (0.20 - 0.40) 0.40 (0.20 - 0.70) 0.30 (0.20 - 0.50) 0.40 (0.20 - 0.70) < 0.001 < 0.001 
Cardiovascular markers      < 0.001 < 0.001 

Creatine kinase, U/L, Median (IQR) 154.00 (78.00 - 
359.00) 

122.00 (72.00 - 
227.00) 165.00 (83.00 - 387.50) 

126.00 (63.00 - 
288.00) 

352.00 (137.00 - 
1039.50)   

Lactate, mmol/L, Median (IQR) 1.90 (1.40 - 2.60) 1.50 (1.20 - 2.10) 2.00 (1.50 - 2.70) 1.60 (1.20 - 2.10) 3.10 (2.20 - 4.80) < 0.001 < 0.001 
Troponin I, ng/mL, Median (IQR) 0.10 (0.06 - 0.30) 0.10 (0.00 - 0.10) 0.10 (0.06 - 0.30) 0.10 (0.10 - 0.21) 0.20 (0.10 - 0.50) < 0.001 < 0.001 
Troponin T, ng/mL, Median (IQR) 0.01 (0.01 - 0.03) 0.01 (0.01 - 0.01) 0.01 (0.01 - 0.01) 0.03 (0.01 - 0.09) 0.05 (0.01 - 0.14) < 0.001 0.16 
Renal markers      < 0.001 < 0.001 
Bicarbonate, mmol/L, Median (IQR) 23.00 (21.00 - 26.00) 24.00 (22.00 - 27.00) 23.00 (21.00 - 25.00) 23.00 (20.00 - 25.00) 20.00 (17.00 - 23.00)   
BUN, mg/dL, Median (IQR) 17.00 (11.00 - 31.00) 12.00 (9.00 - 17.00) 16.00 (12.00 - 24.00) 31.00 (18.00 - 53.00) 52.00 (32.00 - 84.00) < 0.001 < 0.001 
Creatinine, mg/dL, Median (IQR) 1.00 (0.80 - 1.50) 0.86 (0.70 - 1.04) 1.00 (0.80 - 1.29) 1.70 (1.00 - 4.40) 2.10 (1.38 - 3.60) < 0.001 < 0.001 

Chloride, mmol/L, Median (IQR) 
100.00 (97.00 - 

104.00) 
101.00 (98.00 - 

104.00) 
99.00 (95.00 - 102.00) 

101.00 (97.00 - 
105.00) 

104.00 (98.00 - 
113.00) 

< 0.001 < 0.001 

Sodium, mmol/L, Median (IQR) 
137.00 (134.00 - 

140.00) 
138.00 (136.00 - 

140.00) 
136.00 (132.00 - 

138.00) 
138.00 (134.00 - 

141.00) 
141.00 (136.00 - 

152.00) 
< 0.001 < 0.001 
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Hematologic markers      < 0.001 < 0.001 

D-dimer, ng/mL, Median (IQR) 1360.00 (620.00 - 
3370.00) 

660.00 (370.00 - 
1310.00) 

1390.00 (690.00 - 
3210.00) 

1740.00 (836.50 - 
3520.00) 

4000.00 (2000.00 - 
13582.50) 

  

Hemoglobin, g/dL, Median (IQR) 13.10 (11.50 - 14.60) 13.40 (12.30 - 14.60) 13.80 (12.50 - 15.10) 10.80 (9.00 - 12.30) 12.75 (10.70 - 15.00) < 0.001 < 0.001 

Platelet count, �103/uL, Median (IQR) 
211.00 (162.00 - 

277.00) 
204.00 (163.00 - 

253.00) 
225.00 (172.00 - 

303.00) 
194.00 (145.00 - 

270.00) 
217.00 (156.00 - 

296.00) 
< 0.001 < 0.001 

Prothrombin time, s, Median (IQR) 13.30 (12.20 - 14.60) 12.70 (11.90 - 13.60) 13.50 (12.50 - 14.70) 13.20 (12.00 - 14.60) 14.80 (13.15 - 20.55) < 0.001 < 0.001 
Red blood cell distribution width, %, Median 
(IQR) 

13.80 (12.90 - 15.00) 13.40 (12.80 - 14.40) 13.40 (12.70 - 14.20) 15.50 (14.00 - 17.50) 15.10 (13.80 - 16.70) < 0.001 < 0.001 

Glucose, mg/dL, Median (IQR) 
121.00 (101.00 - 

165.00) 
108.00 (95.00 - 

127.00) 
133.00 (110.00 - 

201.00) 
117.00 (98.00 - 

153.00) 
164.00 (119.00 - 

271.75) 
< 0.001 < 0.001 

Other markers      < 0.001 < 0.001 
Oxygen saturation, %, Median (IQR) 69.00 (50.00 - 85.00) 65.00 (47.00 - 85.00) 69.00 (51.50 - 85.00) 69.00 (48.00 - 80.00) 76.50 (57.75 - 91.20)   
BMI, kg/m2, Median (IQR) 28.00 (25.00 - 33.00) 29.00 (25.00 - 34.00) 28.95 (25.00 - 33.00) 27.00 (23.00 - 32.00) 26.00 (23.00 - 31.00) 0.05 0.06 
      < 0.001 0.73 
Comorbidity, (missing=590), N (%)        
Hypertension 4744 (62.35) 1238 (49.68) 1696 (60.16) 1095 (78.44) 715 (79.27) < 0.001 - 
Diabetes 3104 (40.79) 666 (26.73) 1198 (42.50) 730 (52.29) 510 (56.54) < 0.001 - 
Coronary artery disease 1753 (23.04) 360 (14.45) 530 (18.80) 523 (37.46) 340 (37.69) < 0.001 - 
Heart failure 1132 (14.88) 176 (7.06) 286 (10.15) 430 (30.80) 240 (26.61) < 0.001 - 
COPD 972 (12.77) 264 (10.59) 259 (9.19) 290 (20.77) 159 (17.63) < 0.001 - 
Asthma 1091 (14.34) 392 (15.73) 372 (13.20) 232 (16.62) 95 (10.53) < 0.001 - 
Cancer 1438 (18.90) 363 (14.57) 444 (15.75) 423 (30.30) 208 (23.06) < 0.001 - 
Hyperlipidemia 3262 (42.87) 825 (33.11) 1169 (41.47) 779 (55.80) 489 (54.21) < 0.001 - 
Obesity  3039 (37.07) 1105 (40.82) 1179 (38.69) 495 (33.31) 260 (27.11) < 0.001 - 
        
Outcomes (60 days), N (%)        
Mortality 1529 (18.65) 188 (6.94) 528 (17.33) 337 (22.68) 476 (49.64) < 0.001 - 
Mechanical ventilation (intubation 1154 (14.07) 190 (7.02) 527 (17.30) 195 (13.12) 242 (25.23) < 0.001 - 
ICU admission 1494 (18.22) 242 (8.94) 675 (22.15) 242 (16.29) 335 (34.93) < 0.001 - 
        
Medications, N (%)        
Antibiotics 2952 (36.00) 731 (27.00) 1219 (40.01) 559 (37.62) 443 (46.19) < 0.001 - 
Corticosteroids 1666 (20.32) 331 (12.23) 725 (23.79) 319 (21.47) 291 (30.34) < 0.001 - 
Enoxaparin 3312 (40.40) 1016 (37.53) 1582 (51.92) 418 (28.13) 296 (30.87) < 0.001 - 
Heparin 1310 (15.98) 255 (9.42) 585 (19.20) 304 (20.46) 166 (17.31) < 0.001 - 
Vasopressor 608 (7.42) 120 (4.43) 308 (10.11) 96 (6.46) 84 (8.76) < 0.001 - 
        

Abbreviations: BUN = blood urea nitrogen; COPD = chronic obstructive pulmonary disease; ESR = Erythrocyte sedimentation rate; ICU = intensive care unit; IL-6 
= Interleukin 6; IQR = Interquartile range; LDH = Lactate dehydrogenase. 
1 Comparisons across all 4 subphenotypes were performed using the Kruskal-Wallis test (with Dunn’s test for post-hoc pairwise comparisons) or �2 test. 
2 P-values, adjusting for age and sex, were calculated by analysis of covariance (ANCOVA) was performed based on General Linear Model. 
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Figures 

 
Figure 1. A schematic of the analysis plan. 
a. Strategy for construction of development, internal validation, and external validation cohorts. 
Studied patients were treated in 5 major medical centers in New York City, including New York 
University Langone Medical Center, New York Presbyterian - Weill Cornell Medical Center, New 
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York Presbyterian - Columbia University Medical Center, Mount Sinai Health System, and 
Montefiore Medical Center. b. Data preparation for clustering analysis. c. Derivation of 
subphenotypes in the development cohort. Reproducibility of the identified subphenotypes were 
evaluated in multiple ways, including  
(d) sensitivity analyses in the development cohort and subphenotype re-derivation in the internal 
validation cohort; and (e) training subphenotype predictive model in the development cohort and 
(f) using it to predict subphenotype memberships of patients in the external validation cohort. 
Last, (g) further analyses were conducted to interpret subphenotypes, explore temporal patterns 
of subphenotypes during the pandemic, and evaluate impact of SDoH characterisitics on 
subphenotypes. 
 
Abbreviations: NYC = New York City; SDoH = social determinants of health; UMAP = Uniform 
Manifold Approximation and Projection 
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Figure 2. Chord diagrams showing differences in abnormal clinical variables and 
comorbidity burden among subphenotypes. 
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a. Abnormal biomarkers vs. all subphenotypes. b. Abnormal biomarkers vs. each subphenotype. 
c. Comorbidities vs. all subphenotypes. d. Comorbidities vs. each subphenotype 
 
Abbreviations: ATA = asthma; CAD = coronary artery disease; COPD = chronic obstructive 
pulmonary disease; HF = heart failure; HLD = hyperlipidemia; HTN = hypertension. 
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Figure 3. Kaplan-Meier (KM) plots for 60-day mortality by subphenotypes. The survival 
probabilities were shown with 95% confidence interval. X-axis denotes time (days) after COVID-
19 confirmation and Y-axis denotes the survival probability. a-c. KM plots by subphenotypes in 
the development, internal validation, and external validation cohorts, respectively. 
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Figure 4. Plots showing temporal patterns and SDoH implications of subphenotypes. 
a-c. Proportions of subphenotype memberships of patients confirmed per week, since March 1, 
2020. d. Log odds and Hazard ratio (mean values and standard deviation [error bar]) showing 
associations between individual SDoH characteristics and 60-day mortality risk, using logistic 
regression analysis and Cox regression analysis, adjusting for age and sex, respectively. e. Plot 
showing alteration of 60-day mortality rate (Y-axis) of each SDoH stratum to that of 
subphenotype level. 
 
* P-value < 0.05 
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