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Abstract

Ratio measures of effect, such as the odds ratio (OR), are consistent, but the presumption of

their unbiasedness is founded on a false premise: The equality of the expected value of a ratio and

the ratio of expected values. We show that the invalidity of this assumptions is an important source

of empirical bias in ratio measures of effect, which is due to properties of the expectation of ratios

of count random variables. We investigate ORs (unconfounded, no effect modification), proposing a

correction that leads to “almost unbiased” estimates. We also explore ORs with covariates. We find

substantial bias in OR estimates for smaller sample sizes, which can be corrected by the proposed

method. Bias correction is more elusive for adjusted analyses. The notion of unbiasedness of OR for

the effect of interest for smaller sample sizes is challenged.

Keywords: Odds ratio, bias, effect measure

1

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2021. ; https://doi.org/10.1101/2021.02.28.21252604doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.02.28.21252604


Introduction

Ratio measures of effect are widely used in epidemiology. In particular for case-control studies of etiology

or intervention effectiveness, the odds ratio (OR) is of great importance (Pearce, 1993). The true OR is

defined as

φ =
p1(1− p0)

(1− p1)p0
, (1)

where p1 and p0 represent exposure prevalences in cases and controls, respectively. If exposure prevalence

remains constant over the study period and subjects are enrolled by “incidence density sampling”, the OR

represents the factor by which the “exposure” multiplies the incidence rate in the unexposed (Greenland

and Thomas, 1982).

The consistent maximum likelihood (ML) estimator of φ (Gart, 1962) is

OR =
x1 y0
x0 y1

, (2)

where x1 and x0 are exposed and unexposed cases and y1 and y0 are exposed and unexposed controls,

respectively. In the following discussion we use OR to refer to the ML estimator of the true OR φ.

The problem

Here, we investigate bias in the OR, where bias ε is

ε = E(OR)− φ. (3)

Assuming independence of x1, x0, y1, y0, E(OR) can be written as

E(OR) = E(x1) E(y0) E (1/x0) E (1/y1) , (4)

but, as neither E (1/x0) nor E (1/y1) are defined because of zero denominators (Griffin, 1992), the whole

expression (4) remains undefined. With the expectation undefined, bias (3) cannot be determined. If, in

the context of an observational study, instances where there are either no unexposed cases (x0) or exposed

controls (y1) will be discarded because no OR (2) can be computed. On average, the OR will therefore be

better characterized by a situation where the variables in the denominator (x0, y1) are assigned truncated

Poisson distributions; truncation here refers to restriction of the sample space of x to Z+. The truncated
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Poisson distribution, denoted by Poi∗(µ), has the following form (Griffin, 1992):

Pr(x = k|µ) =
µke−µ

k!
× 1

1− e−µ
, for k = 1, 2, 3, . . .

=⇒ x ∼Poi∗(µ)

(5)

The expected value of a random variable distributed according to a truncated Poisson is given by

E(x) =
µ

1− e−µ
. (6)

Letting x∗0 and y∗1 being distributed according to a truncated Poisson distributions parametrized by µ0

and γ1 respectively, a “truncated” OR arises:

ORt = E
(
x1 y0
x∗0 y

∗
1

)
. (7)

The expectation of ORt (7) is defined, but the expectations E(1/x∗
0) and E(1/y∗1) do not have a closed-form

expression. However, using Jensen’s inequality (Casella and Berger, 1990), we have

E(ORt) = E
(
x1 y0
x∗0 y

∗
1

)
≥ E(x1)E(y0)

E(x∗0)E(y∗1)
.

(8)

Therefore,

E(ORt) ≥ φ×
(
1− e−µ0

)
×
(
1− e−γ1

)
, (9)

indicating that the lower bound of E(ORt) is φ × (1− e−µ0) × (1− e−γ1). However, as (1− e−µ0) ×

(1− e−γ1) < 1, it might happen that that expression neutralizes any biases.

“Almost unbiased” estimators of µ1/µ0 and γ0/γ1

An “almost unbiased” estimator (Chapman, 1952) for ratios of Poisson parameters such as µ1/µ0 or γ0/γ1,

however, does exist. Chapman showed that x1/w0, for w0 = x0 + 1 is “almost unbiased” for µ1/µ0, as long

as µ0 is “not too small.” The same holds for y0/z1, for z1 = y1 + 1 which is “almost unbiased” for γ0/γ1.
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The expectation of the ratio x1/w0 can be derived as follows:

E(x1/w0) = E(x1) E(1/w0)

= µ1

∞∑
x0=0

1

w0

µx0
0 e−µ0

x0!

= µ1

∞∑
w0=1

1

w0

µw0−1
0 e−µ0

(w0 − 1)!

=
µ1

µ0
e−µ0

∞∑
w0=1

µw0
0

w0!

=
µ1

µ0
e−µ0 (eµ0 − 1)

=
µ1

µ0

(
1− e−µ0

)

(10)

The derivation of the expectation of the ratio y0/z1 follows (10). It is worth noting that the expectation

of x1/w0 is therefore not simply µ1

µ0+1 , as one might näıvely expect with E(w0) = µ0 + 1, but a negatively

biased expression that quickly converges to µ1

µ0
with increasing µ0. The equivalent, of course, holds for

the expectation of y0/z1 Using this,

OR+1 =
x1 y0
w0 z1

. (11)

The expected value of OR+1 is

E(OR+1) =
µ1 γ0
µ0 γ1

(
1− e−µ0

) (
1− e−γ1

)
= φ

(
1− e−µ0

) (
1− e−γ1

)
.

(12)

Therefore, the expected value E(OR+1) is the lower bound of E(ORt) (9). In contrast, Hauck et al.

recommended to add 0.25 to each of the terms (x1, x0, y1, y0) of the ML estimator to calculate OR+0.25

(Hauck, Anderson, and Leahy III, 1982).

A simulation study

Unconfounded odds ratio

We simulated 100,000 data sets from case-control studies. The number of unexposed cases were simulated

to arise according to a Poisson distribution with parameter µ0 ∈ (5, 10, 20, 50, 100, 1000) with a true

incidence rate ratio φ = 2 and a control-case ratio (ratio of the expected number of controls to the

expected number of cases) of 2, corresponding to expected sample sizes of 30, 60, 120, 300, 600 and 6000,

respectively. ORs could not be computed for 834 and 6 datasets with µ0 = 5 and µ0 = 10, respectively,

because of zero denominators. For µ0 = 5, corresponding to an expected sample size of 30, the average

OR was 3.15, while the corrected analysis, that could make use of all datasets OR+1 was minimally

biased downward, with the MSE a little less than a quarter of the one of the uncorrected ORs (Table 1).
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For µ0 = 5, OR+0.25 was even more strongly upwards biased than OR and for other values of µ0 only

marginally superior to OR, both in terms of bias and in terms of MSE. While both bias and MSE of OR

and OR+0.25 were always larger than for OR+1, the differences vanished with large µ0 (Table 1). We did

not consider OR+0.25 any further.

The odds ratio adjusted by one confounder

To investigate the situation where the odds ratio is confounded by a binary covariate, which increases the

risk of the outcome independently of the exposure of interest by 50% and which is moderately indepen-

dently associated with the exposure of interest (confounder odds ratio of exposed vs. unexposed=1.2).

We conducted logistic regression analyses, adjusting the analysis by the confounder. We analyzed the

data in the native form and after applying one of three corrections:

1. Adding one to cases unexposed to the exposure of interest and adding one to exposed controls

(correction #1); OR1
+1

2. Adding one to cases unexposed to either the exposure of interest or the confounder and adding one

to controls exposed to either (correction #2); OR2
+1

3. Adding one to cases unexposed to both the exposure of interest and the confounder and adding one

to controls exposed to neither (correction #3); OR3
+1

We investigated six levels of µ00, which represents the mean number of cases unexposed to both the

exposure of interest and the confounder (µ00 ∈ (5, 10, 20, 50, 100, 1000)), corresponding to expected sample

sizes of 92, 184, 368, 919, 1,838 and 18,375, respectively. The assumed control-to-case ratio was 2. For

each setting we conducted 100,000 simulations and calculated mean and MSE for OR, OR1
+1, OR2

+1 and

OR3
+1. For µ00 ∈ (5, 10) we also computed mean and MSE after excluding 72,382 and 5,762 datasets,

respectively, for which the smallest stratum size was < 5. The uncorrected OR was substantially biased

upwards for sample sizes under a thousand. OR3
+1 was essentially unbiased (Table 2). In the restricted

analysis for µ00 = 5 the bias for OR was lower than in the unrestricted analysis, but it was the only case

for which OR3
+1 was substantially biased, downward about the same amount as OR was biased upwards.

The other corrections always led to a downward bias and were clearly inferior to OR3
+1, with consistently

lower MSEs.

Discussion and conclusion

We examined bias in ratio measures of effect, in particular ORs. As the expected value of an OR is

undefined, the bias is not defined either. This kind of problem for ratios of Poisson random variable

is well known (Griffin, 1992)—an OR is a ratio of two such ratios. However, even though the bias is
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not defined for ORs, we can examine the empirical properties of ORs. In fact, ORs are consistent, but

more than trivially “biased” (the quotes are owed to the fact that this is not bias in the strict sense),

i.e. on average off the true value, even if sample sizes are “reasonable”. This phenomenon has been

largely ignored in the epidemiologic literature. Even though these empirical biases are more pronounced

for small sample sizes, they are unrelated to sample size problems of large-sample statistical methods.

We have shown that empirical ratio measure biases can be improved by adding 1 to the denominators.

In the absence of confounders and effect modifiers that adjustment (OR+1; see equation (11)) leads to

an “almost unbiased” OR estimate. We also found that the correction proposed by Gart (Gart, 1962),

adding 0.25 to each count used to calculate the OR, performs poorly.

For the situation where there is one additional covariate we were able to identify a data correction

procedure that works well (OR3
+1). Future research is needed to better characterize the problem for more

complex multivariate situations.

In summary, we examined statistical properties of the expectation of ratios of count random variables

as an important source of empirical bias in ORs. This challenges the notion that ORs are, under very

general assumptions, “good” estimates for the effects of interest even if sample sizes are relatively small.
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Tables

µ0 OR OR∗ OR∗2

5 3.16 (16.173)† 1.99 (4.002) 3.30 (40.277)
10 2.47 (3.201) 2.00 (1.637) 2.42 (3.826)
20 2.20 (0.908) 2.00 (0.70) 2.18 (0.871)
50 2.07 (0.287) 2.00 (0.261) 2.07 (0.283)
100 2.04 (0.135) 2.00 (0.129) 2.03 (0.134)
1000 2.00 (0.013) 2.00 (0.012) 2.00 (0.013)
† Mean (MSE)

Table 1: Mean and mean square error (MSE) of OR, OR∗ (adding 1 to the number of unexposed cases
and exposed controls) and OR ∗2 (adding 0.25 to the number of unexposed cases and exposed controls),
respectively, as a function of µ0. The true OR was φ = 2 and the control-to-case ratio was 2. For each
value of µ0 100,000 simulations were run.

µ00 OR OR∗1 OR∗2 OR∗3

5 2.31 (1.602)† 1.79 (0.742) 1.97 (0.853) 2.02 (1.068)
5‡ 2.12 (0.722) 1.70 (0.407) 1.85 (0.463) 1.90 (0.545)
10 2.14 (0.538) 1.89 (0.387) 1.99 (0.416) 2.01 (0.452)
10‡ 2.14 (0.538) 1.89 (0.387) 1.99 (0.416) 2.01 (0.452)
20 2.07 (0.233) 1.95 (0.199) 2.00 (0.206) 2.00 (0.214)
50 2.03 (0.085) 1.98 (0.08) 2.00 (0.082) 2.00 (0.083)
100 2.01 (0.042) 1.99 (0.041) 2.00 (0.041) 2.00 (0.041)
1000 2.00 (0.004) 2.00 (0.004) 2.00 (0.004) 2.00 (0.004)
† Mean (MSE)
‡ Analysis restricted to datasets for which all strata were ≥ 5.

Table 2: Mean and mean square error (MSE) of OR, OR∗1, OR∗2 and OR∗3 (see text) for different values
of µ00 when one confounder is adjusted for (see text) by logistic regression analysis. The odds ratio is
the exponentiated model coefficient corresponding to the exposure of interest. For µ00 ∈ (5, 10), mean
and MSE were also calculated after exclusion of datasets in which the smallest stratum size in cases or
controls was < 5 were discarded. The true OR was φ = 2 and the control-to-case ratio was 2. For each
value of µ00 100,000 simulations were run.
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