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Abstract. The COVID-19 pandemic has imposed many strenuous effects on
the global economy, community, and medical infrastructure. Since the out-

break, researchers and policymakers have scrambled to develop ways to iden-

tify how COVID-19 will affect specific sub-populations so that good public
health decisions can be made. To this end, we adapt the work of Evensen et al

[1] which introduces a SEIR model that incorporates an age-stratified contact

matrix, a time dependent effective reproduction number R, and uses ensemble
data assimilation to estimate model parameters. The adaptation is an exten-

sion of Evensen’s modeling framework, in which we model sub-populations with

varying risks of contracting SARS-CoV-2 (the virus that causes COVID-19) in
a particular state, each with a characteristic age-stratified contact matrix. In

this work, we will focus on 9 U.S. states as well as the District of Columbia. We

estimate the effective reproductive number as a function of time for our different
sub-populations and then divide them into two groups: frontline communities

(FLCs) and the complement (NFLCs). Our model will account for mixing
both within populations (intra-population mixing) and between populations

(inter-population mixing). Our data is conditioned on the daily numbers of

accumulated deaths for each sub-population. We aim to test and demonstrate
methodologies that can be used to assess critical metrics of the pandemic’s evo-

lution which are difficult to directly measure. The output may ultimately be

of use to measure the success or failures of the pandemic response and provide
experts and policymakers a tool to create better plans for a future outbreak or

pandemic. We consider the results of this work to be a reanalysis of pandemic

evolution across differently affected sub-populations which may also be used to
improve modeling and forecasts.

1. Introduction. The COVID-19 pandemic has amplified social and economic in-
equities that impact the wellness of racial and ethnic minority groups. Such in-
equities increase the risk of infection and death for communities of color and other
groups affected by systemic racism and economic inequality. Our goal is to develop
a multi-population framework that can be used to study how the virus spreads
in different populations, detect inequities, and provide estimates of crucial metrics
that can be used to understand any disparities. To this end, we consider COVID-
19 data and population statistics from the states of Alaska, California, Connecti-
cut, Delaware, Hawaii, Maryland, Michigan, Utah, and Washington, as well as the
District of Columbia, on account of their more complete reporting of deaths by
race/ethnicity. In particular, for exploratory purposes, we choose to look at dif-
ferent populations that can all be categorized as frontline communities (FLCs) to
comprise our multiple populations [2, 3, 4, 5, 6, 7]. We aim to use iterative ensemble
smoothers [8, 9], often used in geosciences [10] or in petroleum reservoir modeling
[11], to estimate parameters for a multi-population SEIR model with age-classes
and compartments representing hospitalized, sick, and dead individuals.

We have extended Evensen et al.’s model [1] to study the evolution of the COVID-
19 pandemic and have subsequently used it to perform a set of simulations for differ-
ent populations in the regions previously mentioned. The system revises the model
state and calibrates its parameters to fit a time series of indirect and noisy obser-
vations of deaths, hospitalizations, and infected individuals [1]. Here for reasons
explained below we focus on only deaths for assimilation. Different socio-economic
conditions among these groups have led the epidemic to evolve differently among
such populations and thus have different impacts on them. Moreover, the counter-
measures implemented by certain states have affected the way we study how the
virus spreads within different populations as well. Matters are further complicated
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FRONTLINE COMMUNITIES AND SARS-COV-2 - MULTI-POPULATION MODELING 3

by the scarcity of COVID-19 data for different ethnic and racial groups, especially
minority groups, within a particular state.

We believe that data assimilation is very important here in that the model will
always track the data to a degree of certainty that is proportional to its assumed
accuracy, enabling a straightforward treatment of incomplete and noisy data [12].
The use of ensemble data assimilation helps us understand the impact of the imple-
mented measures on the magnitude of the effective reproductive number, Rt(n), as a
function of time, t, on a population, n. Moreover, with knowledge of daily infections
(tested) and deaths due to COVID-19 for different racial/ethnic groups, we make
inferences on how the disease has affected different sub-populations under distinct
social distancing scenarios. Additionally, using iterative ensemble smoothers is ben-
eficial in this case since state and parameter estimations are done by constraining
the parameters on all the data in a given time window [9].

Some notable works have used data assimilation for epidemiology, in the context
of both variational [13] and Kalman filter-like methods [14]. Most of the studies use
sequential filtering approaches, e.g., the iterative filter and the ensemble Kalman
filter (EnKF) or the Ensemble Adjustment Kalman Filter (EAKF). Recent studies
on SARS-CoV-2 still mostly use a filtering approach. A filter will update bias in
the solution. However, it does not adjust the parameters that can lead to that
bias. Instead of filtering, we make use of the ensemble data-assimilation method
(ESMDA) which acts as a smoother, updating the bias in the parameters rather
than just in the solution alone. This is critical in the estimation of Rt(n) since
adjustments to the value of it at a given time are adjusted to predict death data
about two weeks later. In this way, we are updating the parameters in the past to
remove the bias in the solution before it happens.

The analysis resulting from this approach can be used to help public health
officials understand certain aspects of the COVID-19 pandemic within specific
sub-populations, make informed predictions regarding its course, and create in-
tervention plans that better support disadvantaged groups. In particular, given
the current dilemma surrounding the reopening of businesses, our model can help
state officials understand the effects of population mixing between different age
classes and help local officials analyze how different intervention strategies, such
as partial or complete school closings, or work-from-home arrangements, can al-
ter or even potentially help curtail the virus’ spread through frontline commu-
nities. The model-system code for our multi-population model is available from
Github, https://github.com/geirev/EnKF_seir, and all plots were generated us-
ing MATLAB.

The outline of the paper is as follows: Section 1.1 provides our working definition
of a frontline community, Section 2 describes the SEIR model used, and in Section 3
we give a brief introduction to the use of ensemble methods for model calibration. In
Section 4 we highlight the model behavior between a frontline community (FLC) and
non-frontline community (NFLC). We describe how we choose their representative
age-stratified contact matrices and provide the general setup for our ESMDA runs,
presenting individual results that we discuss for the different states we consider.
In Section 5 we conclude by making an overall assessment of the results obtained
across the modeled populations within the 9 states previously mentioned and the
District of Columbia, as well as presenting some next steps.
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1.1. Working Definition of a Frontline Community (FLC). In this work,
we consider “frontline communities” (FLCs) to be subgroups of the overall popu-
lation that encompass a multitude of different socio-economic roles and factors. In
general, such factors reflect apparent levels of inequality and inequity available to
such subgroups of the population. For example, certain racial/ethnic groups for
a given region could account for a disproportionate representation of jobs that are
considered more high-risk for contracting COVID-19 (e.g. retail/service/health care
workers). Another factor of interest could be those subgroups of the population that
have less total and/or inter-generational wealth than others or who are ineligible
for receiving federal and state assistance. This might affect how members of such
groups could absorb or recover from the adverse economic effects of COVID-19 lock-
downs and quarantines, in terms of both economic resilience and ability to maintain
social isolation in high-density living situations. It may also be that an FLC is one
that tends to be compelled into becoming a majority population in an underserved
area in terms of hospitals and general medical infrastructure.

Overall, FLCs share a commonality in that they are subgroups that are dispro-
portionately negatively impacted by the spread of COVID-19. For this work, we
will adopt the same criteria used in [2] where different criteria are used to identify
a group for likely disparity. A group is flagged for likely disparity when case counts
or deaths meet the following criteria: (1) is at least 33% higher than the Cen-
sus Percentage of Population, (2) remains elevated whether including or excluding
cases/deaths with unknown race/ethnicity, (3) is based on at least 30 actual cases or
deaths. It is important to note that these criteria can still fail to detect disparities.
For example, one group may be flagged as an FLC in terms of confirmed cases while
another may not and goes without notice due to lack of testing or case reporting
for that subgroup. Using ESMDA techniques we can estimate the actual infections
in a group through the assimilation of the death data and detect some of these
kinds of possible disparities. Indeed, as is discussed in Section 4.2.3, for the state
of Connecticut we see that while the Latinx community is flagged for the disparity
in terms of confirmed cases, we find that the Black community may in fact make
up more of the total infections despite being 6% less of the total population. The
Black community, however, was not flagged as having a percentage of confirmed
cases compared to the percentage of the total population.

In total there are 9 possible racial/ethnic groups reported in the data, White,
Black, Latinx, American Indian and Alaskan Native (AIAN), Asian, Native Hawai-
ian and Pacific Islander (NHPI), Multiple, Other and Unknown. Each locality that
we study may report some of these groups differently or not at all, and in some cases
they may even be double counted. The Unknown group is more a measure of deaths
not assigned to any group and is not considered other than to gauge uncertainty as
it is not a racial/ethnic group.

2. Model.

2.1. Evensen et al. Original (One Population) Model. In the original Evensen
et al. model, there are 3na+9 compartments–and a corresponding set of differential
equations–which describe the spread of the disease for a population split into na age
groups. There are na compartments/equations for susceptible (Si), exposed (Ei),
and infectious (Ii) individuals in each age group, with i = 1, . . . , na. The remaining
compartments and equations are for the following groups: quarantined individuals
with mild (Qm), severe (Qs), or fatal (Qf ) symptoms; hospitalized individuals with
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severe (Hs) or fatal (Hf ) symptoms; individuals with fatal symptoms who are put
into a care home (Cf ); recovered individuals who had mild (Rm) or severe (Rs)
symptoms; and dead individuals (D).

An infectious individual from the age group j (Ij) can infect a susceptible indi-
vidual in any age group i (Si). They will do so at a rate Rij(t), which highlights the
different contact/infection rates between each age group. These values compose the

matrix R̂. We also have a scalar function R(t) (note that this is equivalent to the
function Rt(n) mentioned previously with n = 1 and with simplified notation) which
is the effective reproductive number at time t. Multiplying these two quantities to-
gether gives R(t) = R(t)R̂. We can ensure that R(t) solely determines the effective

reproductive at time t by weighting R̂ such that aT R̂a = 1, where a is a vector,
with elements ai that are the proportion of the population comprising age group i.
The system runs through three different intervention periods: (1) “pre-lockdown”
(before any mitigation measures), (2) “lockdown” (when people were asked or re-
quired to stay home and avoid gathering), and (3) “post-lockdown” (when a state
began to reopen businesses and lessen restrictions on gatherings). For each of these

time periods, we can have different R̂ matrices, R̂i to reflect different contact rates
between different age groups in each time period.

We have the following parameters for this model: the proportion of the popula-
tion that has mild symptoms and is from age group i (pim), the proportion of the
population that has severe symptoms, and is from age group i (pis), the proportion
of the population that has fatal symptoms and is from age group i (pif ), the pro-

portion of infected individuals with fatal symptoms who are hospitalized (ph), the
average length of the incubation period (τinc), the average length of the infectious
period (τinf), the average length of hospitalization (τhosp), the average recovery time
for individuals with mild symptoms (τrecm), the average recovery time for individu-
als with severe symptoms (τrecs), and the average time to death for individuals with
fatal symptoms (τdeath).

2.2. Multi-Population Model Extension.

2.2.1. New Model Assumptions & Clarifications. Now, we employ a modified ver-
sion of the original Evensen et al. model, extending it from a single population of
interest to nc populations and na age classes within each population. Here, dif-
ferent populations could represent different countries, states, localities, or specific
population groups within a locality. For this work we consider each population to
be the different racial/ethnic communities in a state. In the equations below we
use the following notation: n,m are indices running over all nc communities and
i, j are indices running over all na age groups within in each community. The total
populations of any two communities, n and m, are given by Nn and Nm.

We model the interaction between groups using the elements of RC ∈ Rnc×nc

(the diagonal must always be 1) and RA ∈ Rna×na . The effective reproductive
number per community is a scalar function of time, Rt(n), and is a parameter that
we estimate. We model the relative differences in infectiousness between age groups
using the coefficients in RA

ij(n), which can differ between communities. The model

default is “null”, such that all elements are set to RA
ij(n) = 1, which assumes equal

transmission rates among all age groups. In the equations below, we use the RA
ij(n)

for age group i as it interacts with age group j. The only sound alternative to this
choice would be to set RA

ij(n) = 1 when m 6= n, given the number of coefficients we
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would otherwise need to specify. An example of such a matrix RA
ij(n) can be seen

in Figure 1.
The fractions of mildy, fatally, and severely ill (pm, pf, and ps, respectively) can

differ between communities. We have used the same hospitalization fraction of
fatally ill, ph, for all communities.

In the case with only one community n = m = 1, we have Nm/Nm = 1, as well
as RC(n,m) = 1. Thus, the equations reduce to the standard SEIR model as in
Section 2.1. The use of a multi-compartment model only changes the nonlinear in-
teraction term present in the Si(n) and Ei(n) equations. Outside of this interaction
term, each community evolves independently of every other.

∂Si(n)

∂t
= −

nc∑
m=1

Nm

Nn
RC

nmRt(n)

 na∑
j=1

RA
ij(n)Ij(m)

τinf

Si(n) (1a)

∂Ei(n)

∂t
=

nc∑
m=1

Nm

Nn
RC

nmRt(n)

 na∑
j=1

RA
ij(n)Ij(m)

τinf

Si(n)− 1

τinc
Ei(n) (1b)

∂Ii(n)

∂t
=

1

τinc
Ei(n)− 1

τinf
Ii(n) (1c)

∂Qm(n)

∂t
=

na∑
i=1

pim(n)

τinf
Ii(n)− 1

τrecm
Qm(n) (1d)

∂Qs(n)

∂t
=

na∑
i=1

pis(n)

τinf
Ii(n)− 1

τhosp
Qs(n) (1e)

∂Qf(n)

∂t
=

na∑
i=1

pif(n)

τinf
Ii(n)− 1

τhosp
Qf(n) (1f)

∂Hs(n)

∂t
=

1

τhosp
Qs(n)− 1

τrecs
Hs(n) (1g)

∂Hf(n)

∂t
=

ph
τhosp

Qf(n)− 1

τdeath
Hf(n) (1h)

∂Cf(n)

∂t
=

(1− ph)

τhosp
Qf(n)− 1

τdeath
Cf(n) (1i)

∂Rm(n)

∂t
=

1

τrecm
Qm(n) (1j)

∂Rs(n)

∂t
=

1

τrecs
Hs(n) (1k)

∂D(n)

∂t
=

1

τdeath
Hf(n) +

1

τdeath
Cf(n) (1l)

3. Methodology. A common issue with solving high-dimensional models is the
difficulty in accurately estimating parameters. However, optimal estimates can be
found using data assimilation methods. In particular, we highlight the use of an
ensemble Kalman Filter (EnKF method) for sequential data assimilation. In recent
history, ensemble data assimilation has been widely implemented in weather predict-
ing [15], tumor growth and spread [16], and petroleum reservoir history matching
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Figure 1. The general form of the RA
ij(n) contact matrix elements for

contact rates between age groups i and j in a given sub-population. The
contact matrix is then subdivided into different blocks where parameters
α, β, η, γ, ε, ζ, δ1, δ2, δ3, ξ1, ξ2, ξ3 and ξ4 control the contact rates between
different age groups which generate similar patterns for spreading the
disease. In particular, we define γ, δ2, ξ2 and ξ4 to be the parameters for
the contact rates of the working class age groups.

[11]. The existing theory and application in these fields have seen the implemen-
tation of ensemble data assimilation in other fields, such as epidemiology. In par-
ticular, we take inspiration from Evensen et al.’s use of an ensemble smoother with
multiple data assimilation (ESMDA) in their extended SEIR model of COVID-19
upon which we build [1].

3.1. The inverse problem. Ensemble smoother techniques can be derived by
assuming a perfect forward model.

y = g(x) (2)

In general, x is the realization of model parameters, and y consists of the uniquely
predicted measurements. For the case of COVID-19, x consists of the initial con-
ditions, parameters, and time-reliant effective reproductive numbers. We relate the
predictions y, to the parameters x through the model operator g(x), where g is the
model in Equation 1.

d← y + e (3)

In our model, y then consists of the predicted measurements of deaths, cases
and hospitalizations given some model error, e. Here, d is the observed data. To
solve the inverse problem, it is efficient to frame it into an equation using Bayes’
theorem:

f(x | d) ∝ f(d | g(x))f(x) (4)
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Equation (4) represents the so-called smoothing problem, which can be approxi-
mated using ensemble methods. We refer the reader to Evensen’s analysis of solving
inverse problems for a full derivation and well-constructed analysis in [17].

3.2. ESMDA. The assimilation method used is an iterative ensemble smoothing
method called an ensemble smoother with multiple data assimilation. The method,
which is similar to an ensemble smoother, solves the parameter-estimation problem
and is formally derived from the Bayesian formulation using a tempering procedure
[18]. What separates this method from other similar methods is that it approxi-
mates the posterior recursively, gradually introducing information to alleviate the
impact of nonlinear approximation. After updating through to the last time step,
it begins the assimilation process over again - resampling the vector of perturbed
observations, which reduces sampling error [19].

Even though we focus on ensemble smoothing conceptually, the procedure can
also be applied to ensemble Kalman filtering. Multiple data assimilation gives
only small improvements when applied to an ensemble Kalman filter, which makes
ESMDA a much more effective option in terms of computational cost [17]. The
simplicity and effectiveness of ESMDA are what make it an optimal assimilation
method for this particular application.

For simplicity, we lay out the ensemble methods without the mathematical de-
tails, as laid out in [1].

• First, sample a large ensemble of realizations of the prior uncertain parameters
(age groups, the functions Rt(n), and the initial infected and exposed), given
their prescribed first-guess values and standard deviations.
• Integrate the ensemble of model realizations forward in time to produce a

prior ensemble prediction, which also characterizes the uncertainty.
• Compute the posterior ensemble of parameters by using the misfit between

prediction and observations, and the correlations between the input parame-
ters and the predicted measurements.
• Finally, compute the posterior ensemble prediction by a forward ensemble

integration. The posterior ensemble is then the “optimal” model prediction
with the ensemble spread representing the uncertainty.

4. Case Studies. In this section, we highlight how the model behaves when using
different age-stratified matrices for two populations, one FLC and one NFLC pop-
ulation. During the different intervention periods, we make the assumption that
FLCs will have increased contact rates to varying degrees across all age groups.
The matrices are described below. We then describe our assumptions and various
approaches to the ESMDA problem and interpret the results obtained for each state
in our study. First we make some remarks on the model parameters and data chosen
for assimilation.

For the model parameters explained in Section 2 we use the same initial guesses
as in [1] and show them in Tables 4 and 5 in Appendix A. The initial values for
theses parameters are based off values obtained available data and some initial
model tuning experiments. However, the DA will fine tune these parameters if
necessary. We use the same initial parameters for all communities including the
p-numbers and case fatality rates. While there is some evidence that different
racial/ethnic communities may have more members with underlying conditions,
this is also true of members of the same community who live in different regions.
We do not find enough available data to make confident guesses in any differences in
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these parameters amongst the different communities or localities. We also believe
the differences to be relatively small and that any discrepancies can be accounted
for by a small increase or decrease in Rt(n) as estimated by the ESMDA scheme.
In general we find that for our best obtained results these initial parameters are
good estimates and that Rt(n) is the primary differentiator between communities.
It should be noted though that some communities such as the AIAN community in
Alaska may not have as much access to needed medical care in Arctic rural areas.
This could mean a higher CFR and lower Rn(t) is warranted, however the DA will
still detect discrepancies through Rn(t).

For this work, we choose only to assimilate death data for each of the racial/ethnic
communities. While the model and ESMDA scheme can assimilate case counts and
hospitalizations, we find this data to currently be of too poor quality for assimi-
lation. Case counts can be very misleading when the actual percentage of cases
it captures is unknown and changing through time while hospitals may not report
racial/ethnic data at all or quickly enough. However as deaths are recorded by
each local government and each reports a deceased individual’s race, there is more
consistency in the reporting. At the time of writing, the race/ethnic data set is
somewhat incomplete for most states and is changing as things unfold. We choose
states for which there is at least 93% reporting up to January 3, 2021 for our anal-
ysis. We also increase the uncertainty in the death data to account for unknown
cases while keeping it low enough for the ESMDA to actually make informative
updates. We believe more analysis should be done when the data is more complete
and more data, such as hospitalizations, can be made readily available. However,
we believe there is still much that can be learned in this analysis. The data that we
use is compiled by The Covid Tracking Project who themselves compile the data
from local government authorities [2].

4.1. Non-DA runs. We begin our simulations by working with two “toy” pop-
ulations to see how the model performs with no DA. To that effect, we consider
two populations with the following initial conditions: population 1 has an initial
exposed of 500, initial infected of 350, and a case fatality ratio (CFR) of 0.009;
population 2 has an initial exposed of 1000, initial infected of 700, and a CFR of
0.01. We use the following parameters for Equation 1 in our simulation, τinf = 3.8,
τinc = 5.5, τrecm = 14, τrecs = 5, τhosp = 6, and τdead = 16. We use a continuous
function for Rt(n) with data from [20]. For this run, we use the time varying es-
timates of the effective reproductive number for the state of Utah obtained from
[20] (see bottom left plot of Figures 3, 4). The interactions between age groups are
taken into account in the RA

ij(n) matrix entries (see Table 1 and Figure 2). Our
decisions on the chosen values are based on assumptions that population 2 will be
an FLC while population 1 will be an NFLC. We chose two scenarios with different
proportions of the FLC to NFLC present in the total population.

For the non DA runs, each matrix in (i), (ii) of Figure 2, is used to indicate
the different “intervention periods” in the model: top =“pre-lockdown”, middle
=“lockdown”, and bottom =“post-lockdown”); (i) represents contact matrices for
NFLC workers and (ii) represents contact matrices for FLCs. For both (i) and (ii),
the top matrices are the same. We used a contact matrix from a statistical survey
in Europe [1] to describe the transmission between different age groups as a basis
for such matrices. In Table 1 we note the parameter values that were used to scale
the top matrix for each intervention period for both FLCs and NFLCs. During
the lockdown intervention period, contact rates are decreased across all groups but
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more so for school-age children and older adults, in line with school closures and
assumed caution amongst the most vulnerable populations. After a “re-opening”
(i.e., entering the “post-lockdown” period), rates are increased across all age groups
but more so for working-age adults and children, while assuming caution remains
amongst the older population. For FLCs, contact rates between working adults and
older adults are higher than for an NFLC. This builds in the assumption that FLC
jobs tend to be in places where exposure is more likely (grocery stores, construction,
etc) and that there are more inter-generational households connecting working-age
adults and children with older adults in such communities. Identifying the scaling
parameters is a difficult task and more data would be needed to estimate them.
We take an ad-hoc approach to estimation but note that the normalization of RA

ij

means that the primary control of the rate of spread is in the scaling factor Rt(n)
for the DA runs in Section 4.2. In (iii) we see the inter-population contract matrix
between our two populations where the diagonal elements, RC

nn, are 1 and the off-
diagonal elements are very small (<< 1). The results show that the model takes
into effect the total amount in each population as well as the contact matrices.

In Figure 3, both groups have about the same population. Since we are not
assimilating data for these runs, we have only included the averages in the plots
(which in this case is the same as if we were simply integrating a basic SEIR model).
In all plots, the blue curves represent the NFLC while the red is the FLC. We can
clearly note that the total amount of projected deaths and cases for the FLC tend
to be higher since the intra-population contact rates for each intervention period
are also higher for the frontline groups. In the bottom-left figure, we use data on
the state of Utah as the effective reproductive number Rt(n) for this simulation
(black curve) retrieved from [20]; the shaded gray area around the curve represents
the cone of uncertainty provided by the site. The blue and green curve represents
Rt(n) (they are the same in this case since we have no DA). In Figure 4, colors have
the same meaning as in Figure 3. The NFLC represents a significant amount of
the population (about 70%) in this scenario. The total amount of projected deaths
and cases for the FLC is higher until June then projected deaths and cases for the
NFLC surpasses it, but not by much.

Matrix Parameters
Scalings α β γ η ε ζ δ1 δ2 δ3 ξ1 ξ2 ξ3 ξ4

FLC lock 0.5 0.7 0.55 0.25 0.25 0.35 0.3 0.7 0.7 0.4 0.65 0.55 0.6
FLC post-lock 0.7 0.8 0.7 0.3 0.3 0.4 0.6 0.85 0.7 0.85 0.7 0.65 0.65

NFLC lock 0.5 0.7 0.5 0.2 0.2 0.3 0.3 0.6 0.7 0.4 0.6 0.5 0.6
NFLC post-lock 0.7 0.8 0.7 0.25 0.25 0.35 0.6 0.7 0.75 0.7 0.7 0.65 0.65

Table 1. Matrix scaling parameters for FLC and NFLC workers in
lockdown and post-lockdown time periods.

4.2. DA Runs. Here we present the results of the ESMDA analysis performed
on several states for which racial data reporting was at least above 93% [2]. We
choose states which show very apparent disparities between groups (e.g. according
to an analysis of disproportionate effects of COVID-19 on racial/ethnic groups in
[2]) as well as some for which disparities are less apparent in the aggregate data.
Initial conditions on the number of exposed and infected for each racial/ethnic
community and state are estimated using data from The Institute for Health Metrics
and Evaluation (IHME) [21] which provides an estimate of actual cases for each
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(i) (ii) (iii)

Figure 2. RA for the NFLC (i) and FLC (ii) in our runs without DA
for each intervention period along with the RC matrix (iii) used in these
simulations. We also used the RA’s in (i) and (ii) for the DA runs.

day of the pandemic. We take this estimate from the start date of our simulations
and scale it by the proportion of the population each community represents. This
provides an initial guess for the number of infected and then we double this for
the number of exposed. We note that these initial conditions are also fine tuned
by the ESMDA algorithm. Our population by age group data for each locality
comes from the 2018 U.S. Census Bureau estimates. We use the age groupings
described in [1], however, this type of data is not available in each racial/ethnic
category. As an estimate we take the age grouping data from the specific locality
and scale it by the proportion of the population each community represents. This is
not completely ideal, but serves as a reasonable estimate. We also note that some
population percentages for a given state may add up to more than 100%. This
could be due to double counting in some cases. In the end population estimates
will have inaccuracies in general and we believe these estimates are sufficient for
the current work. We anticipate more accurate information on age groups coming
from the 2020 U.S. census when it is made available.

In our analysis, we employ three different inter-population matrices for each of
the three intervention periods as in Table 2. In the first period before any mitigation
measures, RC

nm = 0.001 for n 6= m, during the lockdown periods we reduce the off-
diagonal terms by an order of magnitude to RC

nm = 0.0001, and finally after the
lockdown we take the off-diagonal terms to be RC

nm = 0.0005, assuming caution
in the population. We choose the off-diagonal mixing terms to be fairly small by
the following reasoning. Most of the spread of this virus occurs when mask-less,
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Model runs with no DA
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Figure 3. Results for non-DA runs with FLC and NFLC at about the
same population.
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Figure 4. Results for non-DA runs with NFLC at 70% of the total population.

indoors, and with sustained close contact. This implies that, especially during and
after the lockdown periods, most of the spread will happen in the home or group
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settings where precautions are not taken or are infeasible to maintain, an assumption
supported by a recent CDC study [22]. This implies that for the majority of the
pandemic, members of these specific racial groups are not often having the type
of contact conducive to spreading SARS-CoV2 with people outside of their family
nor their group of close friends, both of which are likely to consist of members of
the same racial/ethnic group. This implies that these groups may in fact evolve
somewhat independently of each other with transmissions between racial groups
being less common than with in groups. To illustrate, a member of a particular
group may become exposed at a place with other groups present, i.e. work or large
gathering. This would represent one new infection for this individual and their
group. However, they may then spread infection to several immediate or extended
family members who likely share race/ethnicity. Thus, one infection across groups
can become many infections within the group. This effect would be amplified during
times when people are taking precautions when outside of the home.

In practice, when repeating our experiments over a range of values for 10−5 ≤
Rc

nm ≤ 1 we find that we can best explain the data in the range of 10−4 to 10−2 as
measured by the χ-squared statistic. In addition, the Rt(n) curves for each group
retain the general trend of the initial prior, which is desirable. For values of large
mixing (≥ 10−1) the groups with the highest number of infections per capita tend
to drive the dynamics with the other groups having values for Rt(n) well below the
exponential threshold of R = 1. This is unrealistic as it would imply one group is
primarily responsible for the majority of transmission which is incompatible with
the fact that most of the transmission happens in the home or close group settings.

This effect can be understood through equations (1a) and (1b). Large values for
RC

nm would require a large reduction in Rt(n) to scale down the transmissions from
the groupm (with a large number of infections) to group n (with far fewer infections)
so that they are consistent with the number of deaths in the data. Likewise, if RC

nm

is too small Rt(n) may be driven up. However, if a particular group is a very small
proportion of the population, then an Rt(n) below R = 1 is realistic as interactions
with their own groups are less likely and interactions with other groups would be
the primary driver of spread. As a result, Rt(n) would not be driven down just
because of a large mixing value. We illustrate some of these differences in Figure 5.
We also note that parameters that are well understood, such as the CFR, must
change somewhat significantly between groups as well in order to fit the data for
large mixing values. For all of the reasons above we keep the off-diagonal mixing
values around the order of 10−4 − 10−3.

We performed three types of runs, each designed to study different aspects of
possible disparities between groups. In the first run type, we use age contact ma-
trices of all ones (RA

ij(n) = 1 for all age groups i, j and populations 1, . . . , n) which
would remove any possible effect resulting from differences between the age group
contact matrices of the FLCs and the NFLCs. We do this in an effort to detect
any possible disparities amongst groups without making prior assumptions of how
their contact rates might differ. We further assume the same piece-wise prior for
each group on the effective reproductive scaling factor Rt(n) with large uncertainty
(σ = 3), allowing the ESMDA smoothing to adjust this based on the data. The prior
itself is taken from rt.live [20] for each state that we study. We would expect the
recovered Rt(n) for each group to be somewhat stratified with larger values on av-
erage belonging to the FLCs. This is shown in Figure 6 for the District of Columbia
where we see a stratification indicating the Black and Latinx communities having
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Analysis Rt(n) curves for various group mixing values

Figure 5. Examples of analysis runs for various values of RC
nm from

the District of Columbia (DC). Top: left RC
nm = 0, right RC

nm = 10−3.
Bottom: left 10−1, right 6 × 10−1

the largest values for Rt(n). We do note the somewhat poor data fit when doing
piece-wise updates, this is remedied when allowing for a time-continuous update to
Rt(n) discussed below.

Case: Piecewise Updates to Rt(n) (DC)
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Figure 6. Analysis results for The District of Columbia (DC) with
RA

ij = 1 and piece-wise updates to Rt(n)

In the second run, we repeat the same experiment as above with the exception
of using different age contact matrices. Here we use the FLC and NFLC matrices
described in Section 4.1. We assign the FLC matrices to subgroups that meet the
criteria for disparity as described by the group at covidtracking.com [2], also outlined
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in Section 1.1. For this second run with FLC and NFLC groups, we typically
expect the stratification to be somewhat less dramatic as the increased contact
rates among working age and elderly groups in the FLCs can explain increased
transmissions and deaths without higher values for Rt(n), which is again updated
as a piece-wise function. An example of these runs is shown in Figure 7 where
we see a stratification among groups with the analysis Rt(n) values typically a bit
lower than for the case without age stratification. This is because of the increased
contact rates amongst adults in the age-stratified matrices, who are more likely to
suffer death, as compared to that of children, who are less likely to suffer death
from SARS-Cov2. This means that less spread is needed to account for the number
of deaths in the data. We also note that the Black community Rt(n) curve now
lies atop the Latinx curve having come down more from the previous run. This
is because the Black community met the criteria outlined in Section 1.1 to be an
FLC while the Latinx community did not in the District of Columbia. As a result,
the Black community was assigned the FLC matrix which has higher contact rates
for working-age and older generation age individuals, again reducing the amount of
spread needed to explain deaths.

Case: Piecewise Updates to Rt(n) (DC)
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Figure 7. Analysis results for The District of Columbia (DC) with age
stratified RA and piece-wise updates to Rt(n)

This effect can also be understood through equations (1a) and (1b), specifically
the product of RA

ij(n)Iij(m) when n = m. If contact rates for working-age and
older individuals are higher, the number of infections attributed to those groups is
increased. As a result, the scaling factor Rt(n) may need to be reduced if those
infections are overestimated and inconsistent with the number of deaths in the data.
The specific contact rates are difficult to determine and a study to determine them
is encouraged.

Finally, we complete a third run where we allow for a time-continuous estimation
of Rt(n) using a decorrelation length of 10 days, the CDC recommended time that
an individual should quarantine after exposure [23]. Here the priors for Rt(n) used
for each group are taken directly from the analysis Rt(n) that comes from the
second run. We decrease the uncertainty to σ = 0.5 and employ the FLC and
NFLC matrices in the same way as previously described in Section 4.1.

For all run types, we have three intervention periods where we begin with large
contact rates at the beginning of the pandemic, severely reduced contact rates
during a given state’s mitigation (lockdown) period, and slightly reduced contact
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rates after a given state re-opening date. How we scale these rates for each age
group is discussed in Section 4.1 and given in Table 1. The dates, in addition to
the starting date of each simulation, for each of the states we study can be found in
Table 2. The start date is chosen to be the first day given by our prior which comes
from rt.live. The date of the first intervention is chosen when a state began to
close schools and the beginning of the introduction of the White House Coronavirus
Task Force’s initial “15 days to slow the spread” campaign which prompted many
Americans to take precautions ahead of their individual states mandates.

Information on Intervention Periods by State
Interventions AK CA CT DC DE HI MD MI UT WA

Start date 3/8/20 2/25/20 2/27/20 2/27/20 3/1/20 2/28/20 2/25/20 2/21/20 2/29/20 1/9/20
1st Phase 3/19/20 3/19/20 3/19/20 3/17/20 3/17/20 3/17/20 3/17/20 3/17/20 3/17/20 3/17/20
2nd Phase 5/27/20 5/27/20 5/27/20 5/29/20 5/31/20 5/15/20 5/15/20 5/19/20 5/5/20 5/28/20

Table 2. Date breakdown by intervention periods for all states.

Percentage of Population per State
Race/Ethnicity AK CA CT DC DE HI MD MI UT WA

AIAN 0.15 0.076 X X X X X 0.005 0.023 0.01
Asian 0.06 0.14 0.04 0.0435 0.045 0.38 0.06 0.035 0.038 0.08
Black 0.03 0.06 0.1 0.4453 0.22 0.02 0.29 0.14 0.021 0.04
Latinx X 0.39 0.16 0.113 0.09 X 0.1 X 0.142 0.13
Multi X X 0.02 X 0.02 X X X X 0.05
NHPI 0.01 0.039 X X X 0.1 X X 0.016 0.008
Other 0.08 X 0.01 0.01 X 0.24 X 0.03 0.01 0.005
White 0.65 0.37 0.67 0.4196 0.62 0.25 0.51 0.78 0.78 0.69

Table 3. Demographic breakdown by race/ethnicity (where data is
available) for all states. Groups that meet the criteria to be an FLC
are in bold. AIAN = American Indian and Alaska Native, NHPI =
Native Hawaiian and Pacific Islander.

4.2.1. The state of Alaska (AK). The groups we consider for Alaska are shown in
Table 3. Immediately striking is a major disparity revealed in the number of deaths
between the White and American Indian and Alaskan Native (AIAN) communities.
The White population makes up about 65% of the total population of the state
while the AIAN population is only about 15%, yet they have comparable num-
bers of deaths. This can be seen in the analysis for hospitalized and dead plots
in Figure 8. This disparity may be due to the large proportion of the AIAN com-
munity which lives far north of the Arctic Circle in regions where it is desirable
to be indoors (where transmission is more likely) most of the year, particularly in
the winter months. There is also far less medical infrastructure in these regions
which can contribute to higher death rates. There is also a noticeable disparity
amongst the Native Hawaiian and Pacific Islander (NHPI) community which makes
up only about 1% of the population. In the analysis of exposed and infected plots
of Figure 8, the number of infections of this group is above both that of the Asian
and Black communities which make up 6% and 3% of the population respectively.
In the same three figures, we also see that the number of total infections–as esti-
mated by the analysis up to the last data point on January 3, 2020–for the NHPI

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252589doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.27.21252589
http://creativecommons.org/licenses/by/4.0/


FRONTLINE COMMUNITIES AND SARS-COV-2 - MULTI-POPULATION MODELING 17

population is higher than that of the Black population. We also see evidence of
these disparities in the analysis of the Rt(n) functions for all three types of runs. In
the ensemble of Rt(n) plots for the first two types of runs with piece-wise updates
and large uncertainty, we see that in Figure 18 (Appendix B) stratification of the
curves occurs with the most affected groups above the least effected groups for the
majority of the integration interval. In the first scenario, where all entries of the
age contract matrices are equal to one, we observe slightly higher values for Rt(n)
than in the second case where we employ the age-based contact matrices described
in Section 4.1. This is due to the higher contact rates in the contact matrices for
more susceptible age groups (adults) in the second case. Otherwise, Rt(n) must
be larger to account for the rate of spread. It is also notable that in the first two
cases the rapid increase in death during the winter surge is somewhat missed by the
analysis.

In the most realistic case, where we allow for a continuous update of Rt(n) with
a 10-day decorrelation length, this winter surge is captured and we see a far richer
difference in the analysis Rt(n)’s between groups. For the White population, we
notice a significantly higher Rt(n) from the start of the pandemic through mid-
April, this suggests that this was the first group affected, likely because the virus
would have arrived in larger cities, such as Anchorage, where a large proportion of
the state’s White population resides. After that time we see Rt(n) typically below
R = 1 while spread becomes exponential for most of the other racial/ethnic groups
once the virus reaches beyond cities, into the regions with larger AIAN populations.
With the exception of the beginning of the pandemic, we also note that Rt(n) dips
further below R = 1 and more often for the White population. Notably, Rt(n)
remains well below R = 1 for the “Other” group, while Other represents 8% of the
population. The reason for this may be that many deaths actually in this group are
yet unreported or were reported as members of one of the other groups the state of
Alaska considers.

4.2.2. The state of California (CA). The groups we consider for California are
shown in Table 3. The Latinx and White groups make up 39% and 37% of the
population of California respectively. As can be seen in the analysis for hospitalized
and dead plots, both groups in Figures 19 (Appendix B) and 9 evolve very similarly
early on but begin to diverge from each other after the first set of restrictions are
lifted at the end of May 2020. The Latinx population begins to overtake the White
population in deaths and infections for all three run types with a continually widen-
ing gap. The Latinx community is the majority in the state of California, however,
only by about 3%. The disparity between infections and deaths after the lifting
of restrictions may be related to which type of employment is more common in
each group. According to the U.S. Equal Employment Opportunity Commission,
White/Asian individuals comprise about 87% and 90% of the high tech jobs in
the San Francisco-Oakland-Fremont and Santa Clara County regions, respectively,
while Black/Hispanic individuals comprise only about 10% and 8% of the high tech
jobs in each of those regions [24]. In March 2020, out of the roughly 19.17 million in-
dividuals that make up the labor force in California [25], about 1.87 million of those
jobs were in the technology field [26]. That is, almost 1 in every 10 working-aged
individuals in California would have a job considered in the technology sector of the
economy. Since such jobs are more easily amicable to being conducted remotely,
and because of the large racial disparity we see for the demographics of such jobs,
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Case: Continuous Updates to Rt(n) (AK)
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Figure 8. Analysis results for the continuous update case for the state of AK .

this could be one influencing factor in the disproportionate spread of COVID-19 in
the Latinx community.

In the case of California, the Latinx community met the criteria to be classified
as an FLC as described in Section 1.1. When we examine the analysis Rt(n) curves
for the case of a contact matrix of all ones (Figure 19, top, Appendix B), we do see
some stratification occurring among groups with the Latinx community a bit above
the others. However, when employing the age-based contact matrices (Figure 19,
bottom, Appendix B) this stratification disappears between the two majority com-
munities. In the case of a time-continuous update to the Rt(n) curve (Figure 9),
the curve for the Latinx community is, on average, above or similar to the White
Group.

4.2.3. The state of Connecticut (CT). The groups we consider for Connecticut are
shown in Table 3. In the state of Connecticut, the Latinx and Multi-Racial popula-
tions meet the criteria for the disparity in the disproportionate number of confirmed
cases as outlined in Section 4.2. The Latinx community makes up about 16% of the
state’s population, while the Black and White communities make up 10% and 67%,
respectively. All other groups considered in this state’s analysis make up less than
5% of the population, with the Multi-Racial group making up about 2%. According
to the case count data, 26% of confirmed cases come from the Latinx community
while only 11% come from the Black community. However the Black community
has more deaths, and for all three run types, they exhibit more overall cases. It
is important to again note that confirmed cases may not be representative of all
the actual cases, which is the reason why we do not assimilate that data. It may
be possible that one community has more access to testing than another or maybe
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Case: Continuous Updates to Rt(n) (CA)
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Figure 9. Analysis results for the continuous update case for the state of CA .

more likely to get tested in general. The fact that the Black community makes up
6% less of the population of Connecticut, yet accounts for 3% more of the deaths
(at the time of writing) may be an indication of disparities. The low number of
confirmed cases compared to the Latinx community suggests either a higher case
fatality rate (CFR) or poor access to testing for the Black community. The CFR
for each group is estimated in our ESMDA process, however, we do not detect any
appreciable difference between these groups in this state for any of the run types.

When we examine the analysis Rt(n) functions using piece-wise priors (Figure 20,
Appendix B ), we see that during the first intervention period, Rt(n) is much lower
for the White population than all of the others, possibly relating to the types of
jobs held by the groups, their access to C.A.R.E.S. act aid, or reserve funds to fall
back on. This apparent difference is lessened somewhat in the time-continuous case.
In Figure 10 we do see the effect of the first intervention period on Rt(n) between
April and May with a sharper dip for all groups with a minimum value amongst the
White population. After the reopening, we see an increase in Rt(n) for all groups
with the White and Black populations sustaining the highest, and comparable,
values for Rt(n). The Latinx community maintains Rt(n) values less that of the
White and Black populations even though they represent a larger proportion of the
population than that of the Black community. This again suggests the detection of
some disparity for this Black population.

4.2.4. The state of Delaware (DE). The groups we consider for Delaware are shown
in Table 3. The Latinx community fits the criteria described in Section 4.2 for an
FLC, making up about 9% of the population but accounting for 18% of confirmed
cases. When examining the analysis Rt(n) values for the case with a contact matrix
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Case: Continuous Updates to Rt(n) (CT)
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Figure 10. Analysis results for the continuous update case for the state
of CT .

of all ones, in Figure 21 we see a stratification of Rt(n) amongst the groups. During
the intervention period, we find that the White population has the lowest values of
Rt(n) of the three most populous groups in the state with the Latinx population
having the highest. The very low value for the Asian community is notable given
that they are 4% of the population, however, the state of Delaware includes the
NHPI population in this group and some deaths may be reported in the Other or
Multi groups. When using the age-based contact matrices and piece-wise updates
to Rt(n), with the Latinx community as an FLC, this stratification is lessened
during the intervention period (Figure 21, Appendix B). This deeper dip in Rt(n)
for the White Group during the intervention period is also present in the continuous
update case shown in Figure 11. Interestingly, the Black community maintains a
much higher value for Rt(n) during this same time period suggesting that they may
also be better classified as a FLC in this state even though they are not flagged as
being such.

4.2.5. The District of Columbia (DC). The groups we consider for The District of
Columbia are shown in Table 3. In the District of Columbia, the Black and Latinx
populations meet the criteria of an FLC. The Black community comprises 46% of
the population and represents 75% of the deaths, while the Latinx community com-
prises about 11% of the population and represents 25% of confirmed cases and 13%
of deaths. In stark contrast, the White population comprises 41% of the population
and makes up only 10% of the deaths. In the cases with piece-wise updates to
Rt(n), we see in Figure 22 (Appendix B) that the stratification of the Rt(n) curves
with our FLCs are consistently above those for the NFLCs. We note that the Black
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Case: Continuous Updates to Rt(n) (DE)
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Figure 11. Analysis results for the continuous update case for the state
of DE .

and Latinx populations have similar analysis Rt(n) curves for these runs, however,
the Black community has a much more substantial population total. In terms of the
number of active cases and total cases, we see in the relevant analysis plots that the
Latinx community overtakes the White population despite being a much smaller
proportion of the population. A possible disparity unique to the Latinx community
may be evident in the analysis Rt(n) curves for the continuous-time update runs
shown in Figure 12 where we see the Black and White population’s Rt(n) values
well below that of the Latinx community’s during the intervention period. These
disparities may be related to a group’s ability to remain in “lockdown” by receiv-
ing stimulus money or boosted unemployment coming from the C.A.R.E.S. act. In
many cases, undocumented workers were unable to receive this federal assistance,
hindering one’s ability to remain home possibly contributing to increased rates of
spread. After the reopening, we see both the Latinx and Black population’s Rt(n)
curves go above the exponential spread threshold of R = 1, while the White pop-
ulations remain below this threshold until September, where it then moves slightly
above that threshold. In the absence of federal financial assistance, groups that
have more individuals able to work from home will likely have less spread.

4.2.6. The state of Hawaii (HI). The groups we consider for Hawaii are shown
in Table 3. The Asian and NHPI populations meet the FLC criteria outlined in
Section 4.2. The Asian community makes up 38% of the population and 57% of
the deaths, while the NHPI community makes up 10% of the population with 43%
of confirmed cases and 31% of the deaths. In the run with contact matrices of all
ones, we see in Figure 23 (Appendix B) that there is a stratification in the analysis
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Figure 12. Analysis results for the continuous update case for the Dis-
trict of Columbia.

Rt(n) with the Asian and NHPI populations maintaining higher values of R over
all the other groups. The stratification persists when using the age-based contact
matrices with the piece-wise updates to Rt(n), as shown in the bottom row of
Figure 23. When examining the analysis Rt(n) for the time-continuous update case
in Figure 13, the stratification during the initial intervention period is reduced but
still present with the NHPI community having the largest values of Rt(n). After the
reopening, the stratification persists and increases into the summer months with the
Asian population having the largest values of R followed by the NHPI population.
After September, Rt(n) is below R = 1 for all groups through the end of October
before surging again. In this period, the Asian community has the lowest values of
Rt(n) possibly due to the period before where they had the largest, causing enough
infections to lower the number of susceptible individuals in the group.

4.2.7. The state of Maryland (MD). The groups we consider for Maryland are
shown in Table 3. For the state of Maryland, the Latinx community meets the
threshold for an FLC as outlined in Section 4.2, as they comprise 10% of the popu-
lation yet account for 20% of the confirmed cases. Indeed, for all three run types, we
see that the Latinx community has the highest values of the analysis Rt(n) during
the intervention period, compared to the other populations observable in Figures 24
(Appendix B) , and 14. After the intervention period, we do see an almost steady
spread around R = 1 for this group when piece-wise updates to Rt(n) are used
(Figure 24). In the case of continuous-time updates to Rt(n), we see evidence of
a fall surge beginning in October for all populations shown in Figure 14. While
the Black community did not meet the threshold for an FLC, we see evidence that
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Figure 13. Analysis results for the continuous update case for the state of HI .

they could still be one according to our runs and analysis Rt(n). Comprising 29%
of the population of the state, they suffer 37% of the deaths compared to that of
the White Group which makes up 51% of the population and 49% of the deaths.
Indeed, in the analysis for the exposed and infected plots in Figure 14, we see that
before April and between May and September, the Black and White populations
have roughly the same number of infections and exposures despite the differences
in percent make up of the total population. This suggests a disparity that may be
tied to the types of work that the majority of people in each group comprise, such
as stay-at-home work versus working at a place of high exposure. It may also be
that the case fatality rate is higher for one group than the other and there were
fewer infections in the Black community than predicted by the assimilation.

4.2.8. The state of Michigan (MI). The groups we consider for Michigan are shown
in Table 3. In the state of Michigan, the Black community meets the criteria outlined
in Section 4.2 to be an FLC. The Black population makes up 14% of the state’s
population and comprises 24% of the deaths, while the White population makes
up 78% of the state’s population and comprises 69% of the deaths. In all three
run types, we see that during the intervention period the White population has the
lowest values of the analysis Rt(n) curves, again possibly signaling an ability to stay
home due to the types of jobs held or as a result of reserve wealth. This is shown
in Figures 25(Appendix B), and 15. We also see that early on in the pandemic,
the Black and White populations have comparable numbers of infections despite
the difference in population proportions. This is also shown in the aforementioned
figures in the analysis of the exposed and infected as well as the recovered and total
cases plots. We can also observe that for all three run types, in the same figures,
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Figure 14. Analysis results for the continuous update case for the state
of MD .

that the Black community maintains a higher value of Rt(n) for the vast majority
of the data window.

4.2.9. The state of Utah (UT). The groups we consider for Utah are shown in
Table 3. In the state of Utah, none of the groups reported on meet the criteria
to be an FLC as described in 4.2. In Figure 26 (Appendix B), and 16, we see
a stratification of the analysis Rt(n) curves amongst the groups with the White
and Asian populations usually having the lowest values compared to other groups.
In the analysis plot for Rt(n) in the time-continuous case, we see a striking rise
in the reproductive rate beginning at the end of the intervention period for the
AIAN population (see Figure 16). Utah has a sizable amount of Native American
reservation land, a group that was shown to be disproportionately affected by the
pandemic. This spike is less apparent in the cases with piece-wise updates to Rt(n),
and we note though that the time-continuous update runs are better able to track
time-dependent differences in the spread between groups. We also see a large spike
in the continuous case at the end of the summer for the Other group. Also interesting
here is that the disparity between different groups during the intervention period
is somewhat less apparent than in other states. One possible reason for this is the
large population of members of the Latter Day Saints (LDS) faith. The LDS church
often offers financial and food assistance to its members. This could act as a cushion
for LDS members of the Latinx community who were ineligible to receive assistance
from the C.A.R.E.S. act allowing them to remain home longer.

4.2.10. The state of Washington (WA). The groups we consider for the state of
Washington are shown in Table 3. In Washington, the Latinx, NHPI, and AIAN
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Figure 15. Analysis results for the continuous update case for the state
of MI .

populations meet the criteria for an FLC, as described in Section 4.2. The Latinx
community comprises 13% of the total population with 34% of the confirmed cases,
the NHPI community is less than 1% of the total population yet makes up 2%
of the deaths, and the AIAN community comprises 1% of the population while
accounting for 2% of the deaths. The disparity for the AIAN and NHPI communities
is evidenced in all three run types with their analysis Rt(n) values predominately
above R = 1 in all three cases shown (Figures 27 (Appendix B) and 17). We also
observe in the analysis for Rt(n) plots in the continuous update case (Figure 17)
that the Latinx community has higher values for the reproductive rate than all
other groups–except for the NHPI and AIAN populations–during the intervention
period.

5. Conclusion and Discussion. We have developed a multi-population SEIR
model with age classes and employed an ESMDA scheme to perform an initial re-
analysis of the spread of SARS-CoV2 among different racial/ethnic groups. We
find disparities in the rate of spread for different groups and estimate that rate as a
function of time. We believe the primary driver of these disparities is the abilities
of these groups to self-quarantine and avoid exposure. Factors that impact one’s
ability to self-quarantine include an individual’s type of employment (work from
home or not), access to reserve funds such as generational wealth, and access to
healthcare or the general infrastructure in their specific locality. Groups for which
many members cannot work from home or do not have reserve funds naturally will
be exposed more often to the disease, eventually bringing the virus home to their
family and close friends group where spread happens robustly and rapidly [22].
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Case: Continuous Updates to Rt(n) (UT)
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Figure 16. Analysis results for the continuous update case for the state
of UT .

We think of these groups as frontline communities (FLCs). In our analyses, we
find that typically the Black, Latinx, American Indian and Alaskan Native (AIAN),
and Native Hawaiian and Pacific Islander (NHPI) populations exhibit Rt(n) curves
suggestive that they fit the criteria to be considered an FLC. This is typically
most notable during and following the intervention period (lockdown). For the
Latinx community, many were ineligible to receive financial assistance from the
C.A.R.E.S. act due to immigration status making isolation at home during these
periods difficult. Stimulus funds may also be less deliverable to FLCs, such as
the Black community, which is often underbanked complicating fund distribution.
After these intervention periods, FLCs risked increased exposure by returning to
work in jobs that cannot be done from home. We consistently find that the White
population, while a larger proportion of the overall population, had lower Rt(n)
values until the beginning of the Fall surge around October. This suggests that this
group was better able to self isolate for a far longer period of time than the other
groups we consider. This is consistent with what is known about wealth disparities
between the White population and minority groups in the United States [27].

In some cases, we find evidence that a group is an FLC even though they do
not fit the specific criteria outlined in Section 1.1. This is the case in the state of
Connecticut where we see evidence that the Latinx community meets the criteria to
be an FLC in terms of a disproportionate number of confirmed cases while the Black
community does not. However, the analysis suggests more infections among the
Black community than the Latinx community, despite being a smaller percentage
of the population. This is based on the assimilation of the number of deaths and
suggests that the Black population in the state may have poor access to testing or
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Case: Continuous Updates to Rt(n) (WA)
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Figure 17. Analysis results for the continuous update case for the state
of WA .

are less likely to seek a test. With the time-continuous analysis, we can also detect
when spread began for a subgroup. We note that in the state of Alaska, spread
begins in the White population and later into the AIAN population. This suggests
major cities like Anchorage were hit first then spread to the rural regions later.
The disparity in the number of deaths between the majority White population and
the AIAN population also suggests how important healthcare infrastructure is in
reducing the impact of the virus. Many of the far north rural communities in Alaska
have little healthcare infrastructure and deliveries of supplies can be extremely
difficult. We argue that lessons can be learned from these types of analyses to
improve planning for a future pandemic.

Our main goals in this work were to study disparity in the spread of SARS-
Cov2 and to demonstrate the utility of models and data assimilation to aid in
understanding how the pandemic evolved among different racial/ethnic groups in
various regions of the United States. This kind of analysis can provide important
insight into successes and failures of policy as well as highlight causes for disparities.
Using techniques such as ESMDA can allow us to “fill in the data gaps” presented
when only considering things like confirmed cases or looking at general statistics.
Armed with more complete information, better policy, and more effective planning
can be implemented to help avoid such disparities and reduce the loss of life in
a future pandemic. We note that at this stage the data available is a bit sparse
and somewhat incomplete. While we make some conjectures as to the causes of
disparities we find in our analyses, we stress that direct causation is not assured.
However, as the data is better curated in the coming months and years, analyses
such as these can be a powerful tool for social scientists, epidemiologists, and other
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experts to understand how and why events unfolded as they did and to find better
ways to prepare in the future.
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Appendix A. Model Parameter Priors. In Table 4 we show the first guess
parameters used for all communities and in Table 5 we show the p-factors and CFR
initially chosen and used for all communities.

Parameter First guess Description

τinc 5.5 Incubation period
τinf 3.8 Infection time
τrecm 14.0 Recovery time mild cases
τrecs 5.0 Recovery time severe cases
τhosp 6.0 Time until hospitalization
τdeath 16.0 Time until death
pf 0.009 Case fatality rate
ps 0.039 Hospitalization rate (severe cases)
ph 0.4 Fraction of fatally ill going to hospital

Table 4. The table gives a set of first-guess model parameters. As we
could not find scientific estimates of these parameters, we set their values
based on available information from the internet and initial model-tuning
experiments. We leave it to the data assimilation system to fine-tune
the parameter values.

Age group 1 2 3 4 5 6 7 8 9 10 11
Age range 0–5 6–12 13–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90–105
Population 351159 451246 446344 711752 730547 723663 703830 582495 435834 185480 45230
p–mild 1.0000 1.0000 0.9998 0.9913 0.9759 0.9686 0.9369 0.9008 0.8465 0.8183 0.8183
p–severe 0.0000 0.0000 0.0002 0.0078 0.0232 0.0295 0.0570 0.0823 0.1160 0.1160 0.1160
p–fatal 0.0000 0.0000 0.0000 0.0009 0.0009 0.0019 0.0061 0.0169 0.0375 0.0656 0.0656

Table 5. The p-numbers indicate the fraction of sick people in an age
group ending up with mild symptoms, severe symptoms (hospitalized),
and fatal infection.

Appendix B. Piece-Wise Assimilation. Here we present the analysis for hos-
pitalized and dead as well as Rt(n) when applying piecewise updates to Rt(n) in
the cases that RA

ij(n) = 1 and when using our age stratified matrices for the FLCs
and NFLCs discussed in Section 4.1.
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Case: Piecewise Updates to Rt(n) (AK)
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Figure 18. Analysis results when using peicewise updates to R(t) for
AK. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (CA)
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Figure 19. Analysis results when using peicewise updates to R(t) for
CA. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (CT)
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Figure 20. Analysis results when using peicewise updates to R(t) for
CT. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252589doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.27.21252589
http://creativecommons.org/licenses/by/4.0/


FRONTLINE COMMUNITIES AND SARS-COV-2 - MULTI-POPULATION MODELING 33

Case: Piecewise Updates to Rt(n) (DE)
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Figure 21. Analysis results when using peicewise updates to R(t) for
DE. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (DC)
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Figure 22. Analysis results when using peicewise updates to R(t) for
DC. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (HI)
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Figure 23. Analysis results when using peicewise updates to R(t) for
HI. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (MD)
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Figure 24. Analysis results when using peicewise updates to R(t) for
MD. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (MI)
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Figure 25. Analysis results when using peicewise updates to R(t) for
MI. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (UT)
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Figure 26. Analysis results when using peicewise updates to R(t) for
UT. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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Case: Piecewise Updates to Rt(n) (WA)
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Figure 27. Analysis results when using peicewise updates to R(t) for
WA. Top row: RA with entries of all ones. Bottom Row: RA for FLCs
and NFLCs.
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