1 **RESEARCH ARTICLE**

2	The monocyte-to-lymphocyte ratio: defining a normal range, sex-specific
3	differences in the tuberculosis disease spectrum and diagnostic indices
4	Short title: Monocyte-to-lymphocyte ratio in tuberculosis
5	
6	Thomas S. Buttle ¹ , Claire Y. Hummerstone ¹ , Thippeswamy Billahalli ¹ , Richard J. B. Ward ¹ ,
7	Korina E. Barnes ² , Natalie J. Marshall ² , Viktoria C. Spong ¹ , Graham H. Bothamley ^{1,3,4}
8	
9	1 TB Team, Department of Respiratory Medicine, Homerton University Hospital, London E9
10	6SR, UK
11	² Microbiology Department, Homerton University Hospital, London E9 6SR, UK
12	3 Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary
13	University of London, London E1 2AD, UK
14	4 London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
15	
16	Name and address of corresponding author:
17	Prof. Graham H. Bothamley PhD FRCP
18	TB Team, Department of Respiratory Medicine
19	Homerton University Hospital, Homerton Row, London E9 6SR, UK
20	Email: <u>g.bothamley@nhs.net</u>
21	
22	MESH key words: diagnostic tests, routine; latent tuberculosis; monocytes; lymphocytes;
23	tuberculosis

25 Abstract

26	Background. The monocyte-to-lymphocyte ratio has been advocated as a biomarker in
27	tuberculosis. Our objective was to evaluate its clinical role in diagnosis, prognosis and
28	treatment outcome.
29	Methods. Complete blood counts from an unselected population aged 16 to 65 years
30	defined normal values of the ratio and associations with other indices. Blood counts,
31	inflammatory markers and clinical parameters were measured in patients with and those
32	screened for tuberculosis. We examined the ratio for its associations with these variables
33	and for diagnosis, screening, prediction of poor prognosis and response to treatment.
34	Results. In the unselected population, monocyte-to-lymphocyte ratios were higher in males
35	than females and correlated with neutrophil counts (Spearman's rho=0.48, P<0.00001,
36	n=14,573). In 356 patients notified with tuberculosis, ratios were higher in males (high
37	monocyte counts), especially in smear-positive pulmonary tuberculosis (S+PTB), lung
38	cavitation and raised inflammatory markers. The sensitivities for confirmed tuberculosis
39	were 42% (males) and 32% (females), with specificities of 70% and 71% respectively. Using
40	sex-specific cut-offs in 629 adults screened for tuberculosis and with a positive tuberculin
41	skin test or interferon-gamma release assay, diagnostic sensitivities for active tuberculosis
42	were better in males (25%; all and contacts of a S+PTB index, respectively) than females (14-
43	17%) with specificities of 89-96%. Positive likelihood ratios were better with upper limits
44	alone but were still poor (6.64 when screening for tuberculosis, with an area under the
45	curve of 0.688). Ratios did not predict death or response to treatment. Ratios were
46	especially higher in males than female ratios in the 16-45 years age group.
47	Conclusions. Severe tuberculosis and male sex associated with high monocyte-to-
48	lymphocyte ratios. The ratio performed poorly as a clinical aid. (269 words)

49 Introduction

50	Tuberculosis (TB) was declared a global health emergency by the World Health Organization
51	in April 1993 and remains a leading cause of death and disease [1]. The microbiological
52	diagnosis of TB has advanced considerably through molecular testing [2]. The use of two
53	proteins found in Mycobacterium tuberculosis but not in Bacille Calmette-Guérin (BCG) in
54	interferon-gamma release assays (IGRAs) has improved the specificity of diagnosing latent
55	tuberculosis infection (LTBI) [3].

56

57 Many non-specific biomarkers have been proposed to identify those with a positive IGRA who will develop active TB [4], those with sub-clinical disease (i.e. those without symptoms 58 59 often with a normal chest x-ray without raised inflammatory markers) [5], those likely to die 60 from TB [6], those whose genotype might suggest a protective response to Mycobacterium 61 tuberculosis [7] and transcriptomic measures of risk, diagnosis and treatment response [8]. The ML ratio has experienced a revived interest as a biomarker. Originally identified in TB 62 patients, a rabbit model suggested that both high and low values might be markers for TB 63 64 progression [9]. In a mouse model, high ML ratios were associated with impaired protection 65 of BCG against TB [10]. An elevated ML ratio was thought to correlate with different stages of TB disease [11], identify those with HIV infection most likely to develop active TB [12, 13], 66 67 contacts likely to develop active TB [14] and neonates at risk of TB [15]. In vitro studies with 68 a mycobacterial growth inhibition assay suggested that monocytes and lymphocytes from 69 those with a higher ML ratio were less able to inhibit the growth of BCG [16]. We, 70 therefore, examined the ML ratio in patients with TB and LTBI in order to test the 71 hypothesis that such a simple measurement from a complete blood count could be of 72 clinical value. Early results were reported in the form of abstracts [17, 18].

73 Methods

- 74 Study design
- 75 A retrospective audit of the value of ML ratios in patients with or screened for tuberculosis.
- 76 Research was conducted according to the principles expressed in the Declaration of Helsinki.
- 77
- 78 Setting
- 79 A university district general hospital in an inner-city London borough with a high incidence
- 80 (62 to 22 per 100,000 during the period of study) of TB in a multi-ethnic population.
- 81
- 82 Participants
- 83 Patients were eligible if they attended TB Clinics, had a complete blood count and attended
- between 2005 and 2018 (Figure 1). Children under 16 years of age were excluded. Active
- TB was defined by a) a positive culture or by b) a combination of consistent radiology,
- 86 histology and other tests sufficient for the clinician to notify the patient as having TB and to
- 87 start a course of treatment without a change in this opinion during treatment and within
- the following three years. Contacts were defined by their index case disease type, had
- spent > 8 h in close proximity to the index case, had attended the TB screening, had a
- 90 positive IGRA or tuberculin skin test and were referred for consideration of preventive
- 91 treatment. LTBI was defined in the screened populations as having a positive IGRA (> 0.35
- 92 IU/mL) or a tuberculin skin test (TST) \geq 15 mm for those with a BCG scar and \geq 10 mm for
- 93 those without a BCG, and without evidence of active TB. All participants constituted a
- 94 consecutive series (Figure 1).

95 Figure 1. Study populations.

96 For demographic details, see Table 1 and Supplementary Table 2.

97

98	A control group was derived from anonymized complete blood counts analyzed during April
99	2018, excluding those over 65 years on the grounds of likely co-morbidities. Only data
100	where the hemoglobin, total red cell count, packed cell volume, mean cell volume, mean
101	cell hemoglobin, platelet count, total white cell count, neutrophils, lymphocytes,
102	monocytes, eosinophils, and basophils were all within normal ranges were used to define a
103	"normal range" for the ML ratio (Supplementary Table 1). Cut-off values were identified
104	using the mean \pm 2 SD from the normal data. An additional control group was derived from
105	those notified as a case of tuberculosis where the diagnosis of active tuberculosis was
106	subsequently excluded (see Figure 1).
107	
108	Variables
109	TB notification data (age, sex (self-identified), ethnicity (self-identified), country of birth,
110	previous TB, BCG scar, HIV status, diabetes, problem alcohol use, site of disease (patient or
111	index)) were recorded as required by Public Health England for TB as a notifiable disease.
112	Chest radiograph zones out of six and cavitation, sputum smear, days to culture, drug
113	susceptibility test (DST) results, sputum culture at 2 months and end of treatment, and
114	outcome were noted. Deaths were classified as being a) due to TB, b) TB contributed or c)
115	unrelated to TB. At screening, reason for attendance, tuberculin skin test (TST) and IGRA
116	results were recorded. Blood samples were taken before the start of any treatment, at 2
117	

118

119 Statistical analysis

120	Data were analyzed with GraphPad Prism version 7 and Microsoft Excel. Cut-off ML ratios
121	above and below the 95^{th} centile of the control group defined diagnostic indices. Receiver
122	operating curve (ROC) analysis addressed the optimal cut off ML ratio and area under the
123	curve (AUC) values (John Hopkins web-based calculator for ROC curves). Chi-squared
124	analysis assessed the significance of ML ratios. Variables with a normal distribution were
125	analyzed by parametric tests (Students' t-test, Pearson's correlation), whilst those with non-
126	normal distributions were described by median and range and analyzed with non-
127	parametric tests (Spearman's rank correlation). A power calculation showed that to detect
128	a 10% difference between the sensitivities of the ML ratio with an 80% power at the 5%
129	level required 199 patients in each group if the higher sensitivity were 20%, or 293 if 30%.
130	
131	
131 132	Results
	Results The anonymized dataset
132	
132 133	The anonymized dataset
132 133 134	<i>The anonymized dataset</i> Using anonymized complete blood counts taken during April 2018 from those aged 16-65
132 133 134 135	<i>The anonymized dataset</i> Using anonymized complete blood counts taken during April 2018 from those aged 16-65 years (n=14,573), the ML ratio showed a distribution with a right-sided skew, which was
132 133 134 135 136	The anonymized dataset Using anonymized complete blood counts taken during April 2018 from those aged 16-65 years (n=14,573), the ML ratio showed a distribution with a right-sided skew, which was normalized by log transformation (Figure 2). There was no significant difference in ML ratio
132 133 134 135 136 137	The anonymized dataset Using anonymized complete blood counts taken during April 2018 from those aged 16-65 years (n=14,573), the ML ratio showed a distribution with a right-sided skew, which was normalized by log transformation (Figure 2). There was no significant difference in ML ratio in relation to sex or age. The ML ratio increased according to the neutrophil count (S1
132 133 134 135 136 137 138	The anonymized dataset Using anonymized complete blood counts taken during April 2018 from those aged 16-65 years (n=14,573), the ML ratio showed a distribution with a right-sided skew, which was normalized by log transformation (Figure 2). There was no significant difference in ML ratio in relation to sex or age. The ML ratio increased according to the neutrophil count (S1 Figure, Spearman's p=0.48, P<0.00001); those with an ML ratio of 0.45 corresponded to

142 columns) and screened individuals with a positive interferon-gamma release assay. This

143	shows a right-sided skew of data. Latent tuberculosis infection (hatched columns) follows
144	the control data (dash-dot line).
145	B. Log-transformed monocyte-to-lymphocyte ratios in patients with tuberculosis related to
146	sex. Normalized data indicates higher values for males in both controls (males - dashed line;
147	females – dotted line) and tuberculosis (males - black stippled columns; females white
148	stippled columns).
149	
150	For the control group, complete blood counts with any abnormal value were deleted
151	(n=10,652, 73% of the total dataset; Table 1 and S1 Table). More women than men had
152	blood tests and so were more frequently represented in the control group (2519/3921
153	(64%)). ML ratios showed a right-sided skew (Figure 2A), which normalized with log
154	transformation (Figure 2B). However, there was a significant difference in the \log_{10} ML
155	ratios between the sexes (mean (SD): female -0.619 (0.148); male, -0.582 (0.143), Student's
156	t-test, t=15.76). Defining cut-off values as log. mean \pm 2SD, for females the upper ML ratio
157	limit was 0.474 and for males was 0.505.

158

159 **Table 1**. Demographic data

, i i i i i i i i i i i i i i i i i i i	U 1ª					
	Active TB	Sputum	Active TB:	IGRA+/TST+	Other	Control group &
	3-yr cohort	smear-	diagnosis at	contacts of	IGRA+/TST+	April 2018
	(n=264)	positive TB	screening	S+PTB	screened	clinics
		(n=296)	(n=111)	(n=146)	(n=372)	(n=3921)
	n (%)	n (%)	n (%)	n (%)	n (%)	n (%)
Age						
median (range), years	38 (16-88)	36 (16-87)	31 (16-85)	28 (16-67)	35 (16-73)	38 (16-65)
Female sex:	88 (33)	101 (34)	55 (50)	72 (49)	195 (53)	2519 (64)
Ethnicity:						
Indian subcontinent	80 (30)	41 (14)	25 (23)	26 (18)	59 (16)	NA

Black African	72 (27)	74 (25)	29 (26)	44 (30)	196 (53)	
Afro-Caribbean	28 (11)	52 (18)	20 (18)	18 (12)	13 (4)	
Turkish/Kurdish	23 (9)	18 (6)	1(1)	7 (5)	32 (9)	
White EU	18 (7)	25 (9)	2 (2)	8 (6)	16 (4)	
White UK	19 (7)	41 (14)	10 (9)	16 (11)	19 (5)	
Mixed	4 (2)	11 (4)	8 (7)	2 (1)	1 (0)	
Other	20 (8)	34 (12)	16 (15)	25 (17)	36 (10)	
UK-born:	58 (22)	96 (33)	34 (31)	40 (27)	30 (8)	NA
Previous TB:	16 (6)	34 (12)	0 (0)	0 (0)	0 (0)	1 (0.03)
IGRA:						(Clinics n=93)*
Positive	137 (84)*	65 (83)*	49 (85)	143 (98)	300 (95)	25 (32)*
Negative	24 (15)*	8 (10)*	8 (14)	1 (1)	0 (0)	41 (53)*
Indeterminate	2 (1)*	5 (7)*	1(1)	0 (0)	0 (0)	4 (5.1)*
Not done	101 (38)	218 (74)	53 (48)	2 (1)	0 (0)	15 (16)
BCG:	195 (79)*	208 (74)*	79 (75)*	NA	NA	NA
HIV coinfection:	9 (4)*	20 (7)*	3 (4)*	2 (1)	1 (1)	NA
Diabetes:	35 (13)	31 (10)	7 (6)	NA	NA	NA
Alcohol problem:	34 (13)	71 (24)	14 (13)	NA	NA	NA
Site of disease:						
Pulmonary	94 (36)	296 (100)	62 (56)	1 (later; 1)	1(1)	3 (0.08)
Extra-pulmonary	159 (60)	0 (0)	48 (44)	2(later; 1)	0 (0)	4 (0.10)
Both	11 (4)		1(1)	0(0)	0 (0)	0 (0)
Drug-resistance:						TB clinics
Isoniazid	21 (13)*	61 (21)	8 (14)*			0 (0)
Rifampicin	3 (2)*	6 (2)	1 (2)*	NA	NA	0 (0)
Pyrazinamide	3 (2)*	2 (1)	0 (0)*			0 (0)
MDR-TB	1 (1)*	2 (1)	0 (0)*			0 (0)
White blood count						
> 11 x 10°/L:	29 (11)	51 (17)	7 (6)	2 (1)	9 (3)	O (O)

¹⁶⁰

161 *indicates percentage of those tested or examined or with available data

162 TB = tuberculosis; IGRA = interferon-gamma release assay; TST=Tuberculin skin test; NA =

163 not available; UK = United Kingdom; BCG = Bacille Calmette-Guérin; HIV = human

164 immunodeficiency virus; MDR-TB = multidrug-resistant tuberculosis

166	During April 2018, 8 patients with notified tuberculosis had 11 blood tests (Figure 1). In the
167	various TB clinics, 93 individuals were seen, several on more than one occasion: none with
168	LTBI or cured TB had an ML ratio above the upper limit for their sex, although one patient
169	with sarcoidosis had an ML ratio below the lower limit. Those with a positive TST or IGRA
170	did not have higher ML ratios than those who were negative.
171	
172	TB patients
173	356 patients were notified as having TB over the study period. Twenty were children and 13
174	had no pre-treatment blood test; 50 were subsequently denotified (Figure 1). The firm
175	alternative diagnoses included cancer, pneumonia, abscesses, Crohn's disease,
176	glomerulonephritis, lupus and autoimmune encephalitis, non-tuberculous mycobacteria,
177	self-healed tuberculosis and LTBI. Demographic details of the remaining 264 patients are
178	given in Table 1.
179	
180	Six patients had an ML ratio below the lower cut-off limits, two with culture-positive TB; two
181	had diabetes, one HIV co-infection (culture-positive), one an alcohol problem, one with
182	malnutrition (culture-positive) and one with no co-morbidities. More males with TB had an
183	ML ratio > 0.505 than those below this limit, but the difference was not significant. Fewer
184	patients from the Indian subcontinent had ML ratios above the upper limit of normal, but
185	the difference was not significant. There were too few patients with previous TB, HIV
186	infection, diabetes or an alcohol problem to determine any differences, but the percentages
187	were similar in those above and below the sex-specific ML ratios.

188

189 More patients with culture-positive TB from any site had a high ML ratio (48/69 (70%) vs. 48/108 (24%); χ^2 = 10.7, P = 0.001) compared to those without a positive culture. More 190 191 patients with pulmonary disease had ML ratios above the upper limit compared to those with extrapulmonary disease (46/94 compared to 44/159; χ^2 = 10.8, P = 0.001, see Figure 3). 192 Three patients with miliary TB had ML ratios of 0.10 (lymphocytes 5.1 x 10⁹/L), 0.36 and 1.00 193 194 (bone marrow depression with lymphocytes and monocytes both with an absolute value of 0.2×10^{9} /L). Three patients with problem alcohol use and disseminated TB had high ML 195 ratios due to lymphopenia (all three had a lymphocyte count of 0.6 x 10^{9} /L). 196 197 Figure 3. Monocyte-to-lymphocyte ratios and sex. 198 A. Patients with tuberculosis excluding sputum smear-positive pulmonary disease. 199 **B.** Patients with sputum smear-positive pulmonary tuberculosis. 200 Males (blue) show higher values than females (orange). 201 White cell counts >11 x 10^9 /L were more common in those with ML ratios above their sex-202 specific limits (19/96 vs. 10/168; χ^2 = 12.0, P = 0.0006). Albumin levels were more 203 commonly <40 g/L in those with a high ML ratio (80/90 compared to 103/167; χ^2 = 18.9, P = 204 0.00001) and globulin >32 g/L were higher (83/90 compared to 133/163; χ^2 = 4.9, P = 205 206 0.027). C-reactive protein (CRP) levels were high (>10 mg/L) in those with ML ratios above the sex-specific limits (74/87 vs. 61/140: χ^2 = 38.3, P < 0.00001) and higher in males with 207 208 values >10 mg/L than females (Mann-Whitney, z=2.007, P = 0.045). 209 210 Diagnostic indices (Table 2) 211 Screened persons who were IGRA+ were identified from records of those offered preventive

treatment (Figure 1). Contacts of patients with S+PTB (n=146) were considered separately

212

- 213 (Table 1) as being most likely to develop active disease as a result of recent infection. For
- 214 more distant infection, only screened individuals with a positive IGRA were included
- 215 (n=372).

Table 2. Sensitivity and specificity of sex-specific ML ratio cut-off values: mean ± 2SD

217 healthy controls

Population	Sex	No.	True	False	False	True	Sensitivity	Specificity
			positives	positives	negatives	negatives	(%)	(%)
General CBCs	а							
	F	9977	0 (0) ^b	1552	2 (2)	8423	0 (0)	85 (87)
				(1297)		(8678)		
	М	4594	2	794	7	3791	22 (22)	83 (85)
				(686)		(3899)		
TB notificatio	ns °							
	F	112	28 (27)	7 (5)	60 (61)	17 (19)	32 (31)	71 (79)
	М	203	74 (69)	8 (7)	102 (107)	19 (20)	42 (39)	70 (74)
All scre	ened e	excludin	g contacts					
	F	251	8 (7)	11 (5)	48 (49)	184 (190)	14 (13)	94 (98)
	М	233	14 (11)	14 (4)	42 (45)	163 (173)	25 (20)	92 (98)
Contact	s of S+	•PTB inc	lex vs. S+PT	B diagnose	d after scree	ening		
	F	106	6 (5)	3 (2)	30 (31)	67 (68)	17 (14)	96 (97)
	М	117	11 (9)	8 (3)	33 (35)	65 (70)	25 (21)	89 (96)

218

CBC=complete blood count; F=female; M=male; TB = tuberculosis; S+PTB=sputum smear-positive
 pulmonary tuberculosis. ^a Sex for two samples not available. ^b Figures in brackets are for upper
 limits only. ^c 50 denotified cases included.

222

224	The ML ratio for those with LTBI, whether with recent or distant exposure, showed an
225	almost normal distribution with data skewed towards higher ML values (Figure 2A). Log-
226	transformation of the data showed a normal distribution, except for patients with TB (Figure
227	2B). Males with TB had more ML ratios above the upper limit than females (Table 2; χ^2 =
228	10.1, P = 0.001). The positive likelihood values for a ML ratio were 1.38 in the April 2018
229	population, 2.92 in the screened population and 2.76 in contacts of S+PTB; if only high ML
230	cut-off values were used, the positive likelihood ratios improved to 1.63, 6.64 and 8.01
231	respectively (Table 2) but were still <10. Assessing receiver-operator curves, the areas
232	under the curve for high ML ratios, omitting the April 2018 population review, were 0.688
233	for the screened population (0.669 if denotified patients who were screened were included)
234	and 0.698 for contacts of S+PTB, respectively.
235	
236	Prognostic value of the ML ratio in those with LTBI
237	In contacts of index cases with S+PTB, there was one patient with an ML ratio of 1.0 who on
238	review was considered to have active TB, based on atelectasis in left lower zone, TST
239	conversion from 6 to 15 mm induration and a CRP of 28 mg/L and whose chest radiograph
240	cleared following treatment for TB (Table 2). Two other patient who developed culture-

241 positive TB had ML ratio of 0.26 and 0.22 at screening.

242

There were 11 contacts of S+PTB who showed a completely negative response to tuberculin at their first visit with a positive TST at 6-8 weeks follow-up. Eight of nine with an IGRA were positive (one rising from 0 to 0.5 IU/mL). All these with evidence of recent infection with TB had an ML ratio within the normal ranges and none developed TB (all received preventive treatment).

270

249	In the IGRA+/TST+ screened population without known contact with TB, 8 had a high ML
250	ratio (see Table 2). One had initially been notified as a case of TB being a contact of an
251	uncle, who had active but not pulmonary TB; this person had several risk factors for TB,
252	minor gastro-intestinal symptoms and was given a trial of standard treatment which was
253	stopped at 2 months (2 months of rifampicin and pyrazinamide being a proven preventive
254	treatment for LTBI). The other 7 did not develop TB, having received preventive treatment.
255	
256	Deaths and ML ratio
257	There were 29 deaths (1.9%) in notified TB cases from 2005-2017. Three were due to TB,
258	three where TB contributed to death and the remainder were unrelated to TB. ML ratios
259	above the sex-specific limits were found in 18 (62%) but were not significantly higher or
260	more numerous in those where TB played a role (5 males and 1 female) compared to those
261	where there was another cause of death. ML ratios measured within a day or two of death
262	did not improve on the predictive value above samples taken at the time of TB diagnosis.
263	
264	ML ratios in smear-positive pulmonary tuberculosis (S+PTB)
265	Preliminary examination of patients with S+PTB from the 3-year cohort had shown possible
266	differences between those with a high ML ratio and those within the normal range [18]. In
267	order to resolve the possibility of type II errors, the sample with S+PTB included all such
268	patients over a 12-year period (Figure 1; see also S2 Table).
269	
270	The female-to-male ratio in S+PTB was 1 to 2.0. There were no differences in ML ratios
271	related to demographic features, but higher ratios were still more frequent in males

272	(130/194 cf. 56/101; χ^2 = 3.81, P = 0.05). Those with a high ML ratio were more likely to
273	have a sputum smear of 3+ (χ^2 = 9.0, P = 0.0027), but the difference between males and
274	females was not significant. There was no difference in the radiographic extent of disease,
275	but cavitation was more frequent in females with high compared to normal ML ratios (χ^2 =
276	10.0, P = 0.0016) and in males than females with normal ML ratios (χ^2 = 9.6, P = 0.00195).
277	The ML ratio did not predict culture status at 2 months, the duration of treatment nor the
278	presence of isoniazid resistance. Albumin levels were lower (Students' t-test: t=5.3,
279	P<0.0001, df 288), globulin levels were higher (t=3.52, P=0.0005) and CRP values were
280	higher (Mann-Whitney U-test P<0.00001) in those with a high ML ratio at the time of
281	diagnosis; there was no difference between males and females for these biomarkers.
282	
283	Two-week follow-up ML ratios were available for 178 with S+PTB. Five showed no change,
284	57 were higher and 115 were lower; ML ratios were more likely in males than females to fall
285	to the normal range (χ^2 = 6.5, P = 0.011). Looking only at results obtained at the start of
286	treatment, at 2 months and at the end of treatment, there was a significant fall in the ML
287	ratio by 2 months (paired t-test: t=7.5, P < 0.0001, df 136) and 6 months (t=5.3, P<0.0001, df
288	117). Looking at individual patients, a persistently high ML could not be used to predict who
289	would remain culture-positive at 2 months or have a poor outcome. Four patients had
290	extended inpatient stays and multiple blood tests taken due to their severity of disease.
291	Three showed a reduction in ML ratio from high to normal values by days 2, 6 and 21
292	respectively, whilst another showed an ML ratio which remained high for 247 days.
293	
294	In order to determine whether the sex difference in ML ratios might be due to sex per se,

sex hormones or differences in inflammatory responses with age ML ratios were divided by

296	age groups 16-45 years, 46-65 years and >65 years. In order to ensure that the level of
297	disease burden was comparable, only those with S+PTB were examined. The 16-45 years
298	age group showed the greatest difference in ML ratio between the sexes (Student's t-test: t
299	= 2.96, P = 0.0035), although the 46-65 years age group was also significantly different (t =
300	2.03, P=0.047; Figure 4).
301	Figure 4. Age and sex differences in monocyte-to-lymphocyte ratios.
302	ML ratios were compared using log-transformed values by Student's t-test. * P < 0.05, ** P
303	< 0.01 and *** P < 0.005. Mean ML values were 0.65 for males in the 16-45 and 46-65 age
304	groups and 0.50 and 0.45 in females, respectively.
305	
306	Discussion
307	In an unselected population, ML ratios correlated with neutrophil counts. High ML ratios
308	were more often due to monocytes, especially in males. The sensitivity of ML ratios was
309	poor for the diagnosis of TB or as a screening tool to detect active TB in contacts and IGRA+
310	individuals. High ML ratios did not predict the development of TB in screened populations,
311	nor treatment effectiveness, although ML ratios fell with treatment. However, high ML
312	ratios were associated with pulmonary compared to extrapulmonary TB and markers of
313	systemic inflammation (neutrophil count, low albumin, high globulin and high CRP values),
314	especially in males. In S+PTB, high ML values were associated with sputum smears of 3+
315	and lung cavitation, but not with radiographic extent of disease. The sex difference was
316	most marked in the 16-45 years age group.
317	

318 Limitations

319	This audit was performed at a single site. However, this ensured that data collection was
320	uniform and follow-up data consistently available. Few patients had HIV co-infection and
321	those with HIV were taking antiretroviral therapy and had normal lymphocyte counts.
322	Children were excluded, but this avoided a bias in terms of empirical treatment for TB and a
323	population in which blood tests are fewer and for highly selected reasons. Those over 65
324	years of age, excluded in the control group, are likely to have disease co-morbidities,
325	especially malignancy, ischemic heart disease and metabolic syndrome [19, 20], which are
326	associated with higher ML ratios. Older persons also experience "inflammaging", having a
327	higher inflammatory response than younger adults [21-23].
328	
329	Sex-specific differences
330	Males had higher ML ratios than females. Males have more S+PTB, whereas the sex ratio in
331	extrapulmonary TB is equal [24, 25]. Lung cavities are more common in males than females
332	[26]. Many of the reported data on ML ratios either had a predominance of males in the TB
333	group [11, 27] or did not give sex-specific data [16]. The immune response in males is less
334	effective than in females despite greater TLR2 and TLR4 expression, more Th17 cells and
335	CD4+ Treg cells, CD8+ T cells and NK cells [28]. Monocytosis is a feature of infection [29]
336	and high values are found especially in males [30]. Thus, the higher ML ratios in males and
337	their association with more severe forms of TB and with lung cavities might be expected as a
338	sex-specific immune response. Such individuals are more readily diagnosed and often bias
339	studies in TB towards a male-predominant population.
340	

340

341 Clinical value

342	The early use of the ML ratio in TB noted that "the ratio cannot be used as a criterion
343	for diagnosis", the "monocyte-lymphocyte ratio is not a sensitive index of activity in the
344	tuberculous patient" (activity being measured by the extent of disease, tachycardia, fever,
345	clinical judgment of prognosis and follow-up over two years) and that "a considerable
346	number of patients with tuberculosis will have a normal monocyte-lymphocyte ratio" [31].
347	These results from the pre-antibiotic era of TB treatment have been confirmed in a modern
348	setting by this study. The association of lymphopenia and a lower ML ratio with TB in a
349	rabbit model [9, 32] was rarely observed in our study, even in those with miliary disease as
350	the human comparator of the experimental method.
351	
352	A low or high ML ratio has been associated with a hazard ratio of 2.47, 1.5 and 1.22 for the
353	development of TB during follow-up of adults with HIV infection before anti-retroviral
354	therapy (12), in HIV-infected post-partum women (13) and in infants (15) in South Africa,
355	respectively. However, the sensitivities of cut-off values were low (< 10%), such that the ML
356	ratio had little predictive value for an individual person. A higher hazard ratio (4.5) was
357	observed in contacts who went on to develop TB, but a combination of a tuberculin skin test
358	\geq 14 mm (sensitivity 7.5%) with monocytes >7.5% of all white blood cells (sensitivity and
359	specificity about 75%) was reported to have a hazard ratio of 8.78, noting that many of the
360	diagnoses of TB were a decision to treat in young children (14). Using the same criteria from
361	previous studies in our group of contacts, the sensitivity and specificity were poorer than in
362	previous studies and the positive predictive value was low (Supplementary Tables 3 and 4).
363	

364 Generalizability

365	The use of a real-life group of TB patients and contacts from many ethnic backgrounds
366	encourages extrapolation to the global HIV-uninfected TB population. Analysis of groups by
367	smear and culture status, ensured that both real-life results and data uncontaminated by
368	variations in the diagnosis of "clinical TB" could be obtained.
369	
370	Implications
371	This study has shown the importance of sex as a variable in the evaluation of biomarkers.
372	Such differences touch upon lipid and metabolic differences in cardiovascular disease [33],
373	cancer biomarkers [34] and studies distinguishing general differences between the
374	proteome [35] and transcriptome [36, 37] between the sexes. Both estrogens and
375	androgens affect immune responses [28, 38]. Our data suggested that the difference in ML
376	ratios might be due to sex hormones rather than an X-linked cause or sex-related
377	differences in inflammaging. Thus, diseases with a female or male predominance, such as
378	autoimmune diseases or cancer respectively, may need to address the relative efficacy of
379	diagnostic markers and prognostic indicators between the sexes.
380	
381	Biomarkers and the sexes are especially problematic in tuberculosis. The male
382	predominance is found almost entirely in S+PTB [24, 25] and therefore patient selection will
383	be affected by the number with this form of disease. The relative ease of diagnosis of this
384	form of TB again means that follow-up studies of, say, those with LTBI who go on to develop
385	TB will mean that prognostic biomarkers will be biased towards males.
386	
387	For example, transcriptomic data investigating the pathogenesis of active TB disease show
388	sex-specific responses [39, 40]. An IL6/IL6R/CEBP gene module has been associated with

389	monocyte expansion, high ML ratios, high CRP levels and a positive sputum smear [41]. The
390	link to this module was closer than to a group of transcripts with a shared IL6-Type I
391	interferon gene module associated with a high ML ratio <i>per</i> se [16, 41]. Estrogens, via the
392	alpha receptor, downgrade IL6 expression in human monocytes [42]. The 3-gene
393	transcriptomic signature of Sweeney, which performed better than 15 other signatures for
394	discriminating latent from active TB [43], has genes which are affected by sex. Dual-
395	specificity phosphatase 3 (DUSP3) deletion protects female but not male mice from
396	endotoxin shock due to a dominance of M2 (non-classical and anti-inflammatory)
397	macrophages [44]. Guanylate-binding protein 5 (GBP5) is a marker of IFN γ -induced classical
398	monocytes [45], which are more frequent in males, and has been found in those who
399	develop innate immunity after an IFN γ response [46]. Kruppel-like factor 2 (KLF-2), in
400	association with the male-dominant cytokines interleukin-6 and monocyte chemoattractant
401	protein-1, promotes inflammation in response to tumor necrosis factor (induced by
402	mycobacterial lipoarabinomannan) [47]. If biomarker studies select a majority of males
403	and/or those with S+PTB, their value might be less in females and those with more limited
404	disease.
405	
406	Conclusion
407	The ML ratio showed a bias towards males with S+PTB, a fact which might account for its

408 association with S+PTB and its use as a biomarker in tuberculosis.

409

410 Acknowledgements. We thank Bala Sirigireddy for providing the hematology data used to
411 define the normal ranges of the monocyte-to-lymphocyte ratio.

412

413	Refere	ences
414 415	1.	Global tuberculosis report 2019. Geneva: World Health Organization; 2019. Licence:
416		CCNY-NC-SA3.0IGO.
417	2.	WHO meeting report of a technical expert consultation: non-inferiority analysis of
418		Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health
419		Organization: 2017 (WHO/HTM/TB/2017.04). Licence: CC BT-Nc-SA 3.0 IGO.
420	3.	Campbell JR, Winters N, Menzies D. Absolute risk of tuberculosis among untreated
421		populations with a positive tuberculin skin test or interferon-gamma release assay
422		result: systematic review and meta-analysis. BMJ 2020; 368: m549. doi:
423		10.1136/bmj.m549
424	4.	Petruccioli E, Scriba TJ, Petrone L, Hatherill M, Cirillo DM, Joosten SA, et al.
425		Correlates of tuberculosis risk: predictive biomarkers for progression to active
426		tuberculosis. Eur Respir J 2016; 48(5): 1411-1419. doi: 10.1183/13993003.01012-
427		2016
428	5.	Esmail H, Lai RP, Lesosky M, Wilkinson KA, Graham CM, Coussens AK Oni T, et al.
429		Characterization of progressive HIV-associated tuberculosis using 2-deoxy-2-
430		[¹⁸ F]fluoro-D-glucose positron emission and computed tomography. Nat Med 2016;
431		22(10): 1090-1093. doi: 10.1038/nm.4161
432	6.	Osawa T, Watanabe M, Morimoto K, Okumura M, Yoshiyama T, Ogata H, et al.
433		Serum procalcitonin levels predict mortality risk in patients with pulmonary
434		tuberculosis: a single-center prospective observational study. J Infect Dis. 2020;
435		jiaa275. doi: 10.1093/infdis/jiaa275.

436	7.	Bothamley GH, Beck JS, Schreuder GMTh, D'Amaro J, de Vries RRP, Kardjito T, Ivanyi
437		J. Association of tuberculosis and <i>M. tuberculosis</i> -specific antibody levels with HLA. J
438		Infect Dis. 1989; 159(3): 549-555. doi: 10.1093/infdis/159.3.549.
439	8.	Penn-Nicholson A, Mbandi SK, Thompson E, Mendelsohn SC, Suliman S, Chegou NN,
440		et al. RISK6, a 6-gene transcriptomic signature of TB disease risk, diagnosis and
441		treatment response. Sci Rep 2020; 10: 8629. doi: 10.1038/s41598-020-65043-8.
442	9.	Doan CA, Sabin FR. The relation of the tubercle and the monocyte:lymphocyte ratio
443		to resistance and susceptibility in tuberculosis. J Exp Med 1930; 52 (6_suppl_3): 113-
444		152. https://rupress.org/jem/issue/52/6_suppl_3.
445	10	Zelmer A, Stockdale L, Prabowo SA, Cia F, Spink N, Eddaoudi A et al. High monocyte
446		to lymphocyte ratio is associated with impaired protection after subcutaneous
447		administration of BCG in a mouse model of tuberculosis. F1000Research 2018; 7:
448		296. doi: 10.12688/f1000research.14239.2. eCollection 2018.
449	11.	La Manna MP, Orlando V, Dieli F, Di Carlo P, Cascio A, Cuzzi G, et al. Quantitative
450		and qualitative profiles of circulating monocytes may help identifying tuberculosis
451		infection and disease stages. PLoS ONE 2017; 12(2): e0171358. doi:
452		10.1371/journal.pone.0171358.
453	12	Naranbhai V, Hill AV, Abdool Karim SS, Naidoo K, Karim QA, Warimwe GM, et al.
454		Ratio of monocytes to lymphocytes in peripheral blood identifies adults at risk of
455		incident tuberculosis among HIV-infected adults initiating antiretroviral therapy. J
456		Infect Dis. 2014; 209: 500-509. doi: 10.1093/infdis/jit494
457	13	Naranbhai V, Moodley D, Chipato T, Stranix-Chibanda L, Nakabaiito C, Kamateeka M,
458		et al. for the HPTN 046 protocol team. The association between ratio of
459		monocytes:lymphocytes and risk of tuberculosis (TB) amongst HIV infected

- 460 postpartum women. J Acquir Immune Def Syndr. 2014; 67(5): 573-575. doi:
- 461 10.1097/QAI.00000000000353.
- 462 14. Rakotosamimanana N, Richard V, Raharimanga V, Gicquel B, Doherty TM, Zumla A,
- 463 et al. Biomarkers for risk of developing active tuberculosis in contacts of TB patients:
- 464 a prospective cohort study. Eur Respir J. 2015; 46: 1095-1103. doi:
- 465 10.1183/13993003.00263-2015.
- 466 15. Naranbhai V, Kim S, Fletcher H, Cotton MF, Violari A, Mitchell C, et al. for the
- 467 IMPAACT P1041 team. The association between the ratio of
- 468 monocytes:lymphocytes at age 3 months and the risk of tuberculosis (TB) in the first
- 469 two years of life. BMC Medicine 2014; 12:120. doi: 10.1186/s12916-014-0120-7
- 470 16. Naranbhai V, Fletcher HA, Tanner R, O'Shea MK, McShane H, Fairfax BP, et al.
- 471 Distinct transcriptional and anti-mycobacterial profiles of peripheral blood
- 472 monocytes dependent on the ratio of monocytes:lymphocytes. EBioMedicine 2015;
- 473 2: 1619-1626. doi:10.1016/j.ebiom.2015.09.027
- 474 17. Buttle T, Bothamley G. The monocyte to lymphocyte ratio as a biomarker for
- 475 tuberculosis. Thorax 2018; 73 (Suppl 4): A217.
- 476 18. Buttle T, Bothamley G. The meaning of a high monocyte to lymphocyte ratio in
- 477 tuberculosis. Eur Respir J. 2019; 54: Suppl. 63: PA5285.
- 478 19. Catrysse L, van Loo G. Inflammation and the metabolic syndrome: the tissue-specific
- 479 functions of NF-κB. Trends in Cell Biol. 2017; 27: 417-429. doi:
- 480 10.1016/j.tcb.2017.01.006.
- 481 20. Cho SMJ, Lee H, Shim JS, Kim HC. Sex-, age-, and metabolic disorder-dependent
- 482 distributions of selected inflammatory biomarkers among community-dwelling
- 483 adults. Diabetes Metab J. 2020; 44(5): 711-725. doi: 10.4093/dmj.2019.0119.

484	21. Fulop T	', Larbi A, Di	ipuis G,	, Le Page A	, Frost EH	, Cohen AA	, et al.	Immunosenescence
-----	-------------	----------------	----------	-------------	------------	------------	----------	------------------

- and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol.
- 486 2018; 8:1960. doi 10.3389/fimmu.2017.01960.
- 487 22. Ault R, Dwivedi V, Koivisto E, Nagy J, Miller K, Nagendran K, et al. Altered monocyte
- 488 phenotypes but not impaired peripheral T cell immunity may explain susceptibility of
- the elderly to develop tuberculosis. Experimental Gerontology 2018; 111: 35-44.
- 490 doi: 10.1016/j.expger.2018.06.029.
- 491 23. Kumar BV, Connors TJ, Farber DL. Human T cell development, localization, and
- 492 function throughout life. Immunity 2018; 48: 202-213. doi:
- 493 10.1016/j.immuni.2018.01.007.
- 494 24. Horton KC, MacPherson P, Houben RM, White RG, Corbett EL. Sex differences in
- 495 tuberculosis burden in low- and middle-income countries: a systematic review and

496 meta-analysis. PLoS Med. 2016; 13(9): e1002119. doi:

- 497 10.1371/journal.pmed.1002119.
- 498 25. Ohene SA, Bakker MI, Ojo J, Toonstra A, Awudi D, Klatser P. Extra-pulmonary
- 499 tuberculosis: a retrospective study of patients in Accra, Ghana. PLoS ONE 2019;
- 500 14(1): e0209650. doi: 10.1371/journal.pone.0209650.
- 501 26. Aktogu S, Yorgancioglu A, Çirak K, Köse T, Dereli SM. Clinical spectrum of pulmonary
- and pleural tuberculosis: a report of 5,480 cases. Eur Respir J. 1996; 9: 2031-2035.
- 503 doi: 10.1183/09031936.96.09102031
- 504 27. Wang J, Yin Y, Wang X, Pei H, Kuai S, Gu L, et al. Ratio of monocytes to lymphocytes
- 505 in peripheral blood in patients diagnosed with active tuberculosis. Braz J Infect Dis.
- 506 2015; 19(2): 125-131. doi: 10.1016/j.bjid.2014.10.008.

- 507 28. Taneja V. Sex hormones determine immune response. Front Immunol. 2018;
- 508 9:1931. doi: 10.3389/fimmu.2018.01931.
- 509 29. Zaretsky AG, Engiles JB, Hunter CA. Infection-induced changes in hematopoesis. J

510 Immunol. 2014; 192: 27-33. doi: 10.4049/jimmunol.1302061.

- 511 30. Hensel M, Grädel L, Kutz A, Haubitz S, Huber A, Mueller B, et al. Peripheral
- 512 monocytosis as a predictive factor for adverse outcome in the emergency
- 513 department. Medicine 2017; 96: 28. doi: 10.1097/MD.000000000007404.
- 514 31. Muller GL, Davidson DL. The monocyte-lymphocyte ratio as a measure of activity in
- 515 pulmonary tuberculosis. N Engl J Med. 1934; 211: 248-252.
- 516 32. Doan CA, Sabin FR. Local progression with spontaneous regression of tuberculosis in
- 517 the bone marrow of rabbits, correlated with a transitory anemia and leucopenia
- 518 after intravenous inoculation. J Exp Med. 1927; 46:315-345. doi:
- 519 10.1084/jem.46.2.315.
- 520 33. Gerdts E, Regitz-Zagrosek V. Sex differences in cardiometabolic disorders. Nature
- 521 Med. 2019; 25: 1657-1666. doi: 10.1038/s41591-019-0643-8
- 522 34. Yuan Y, Liu L, Chen H, Wang Y, Xu Y, Mao H, et al. Comprehensive characterization of
- 523 molecular differences in cancer between male and female patients. Cancer Cell.
- 524 2016; 29(5): 711-22. doi: 10.1016/j.ccell.2016.04.001
- 35. Romanov N, Kuhn M, Aebersold R, Ori A, Beck M, Bork P. Disentangling genetic and
 environmental effects on the proteotypes of individuals. Cell. 2019; 177(5): 1308-18.
- 527 doi: 10.1016/j.cell.2019.03.015.
- 528 36. Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al.
- 529 The impact of sex on gene expression across human tissues. Science 2020; 369:
- 530 1331. doi: 10.1126/science.aba3066

531	37. Zaghlool SB, Kühnel B, Elhadad MA, Kader S, Halama A, Thareja G, et al. Epigenetics
532	meets proteomics in an epigenome-wide association study with circulating blood
533	plasma protein traits. Nat Comm. 2020; 11:15. doi: 10.1038/s41467-019-13831-w
534	38. Gubbels Bupp MR, Jorgensen TN. Androgen-induced immunosuppression. Front
535	Immunol. 9:794. doi: 10.3389/fimmu.2018.00794
536	39. Bongen E, Lucian H, Khatri A, Fragiadakis GK, Bjornson ZB, Nolan GP, et al. Sex
537	differences in the blood transcriptome identify robust changes in immune cell
538	proportions with aging and influenza infection. Cell Rep. 2019; 29: 1961-1973. doi:
539	10.1016/j.celrep.2019.10.019.
540	40. Márquez EJ, Chung C-H, Marches R, Rossi RJ, Nehar-Belaid D, Eroglu A, et al. Sexual
541	dimorphism in human immune system aging. Nat Comm 2020; 11:751. doi:
542	10.1038/s41467-020-14396-9.
543	41. Delgobo M, Mendes DAGB, Kozlova E, Lummertz Rocha E, Rodrigues-Luiz GF,
544	Mascarin L, et al. An evolutionary recent IFN/IL-6/CEBP axis is linked to monocyte
545	expansion and tuberculosis severity in humans. eLife 2091; 8: e47013. doi:
546	10.7554/eLife.47013.
547	42. Pelekanou V, Kampa M, Kiagiadiki F, Deli A, Theodoropoulos P, Agrogiannis G, et al.
548	Estrogen anti-inflammatory activity on human monocytes is mediated between
549	estrogen receptor Era36 and GPR30/GPER1. J Leukocyte Biol. 2016; 99: 333-347.
550	doi: 10.1189/jlb.3A0914-430RR.
551	43. Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for
552	tuberculosis diagnosis: a systematic comparison of 16 signatures. PLoS Med. 2019;
553	16(4): e1002786. doi: 10.1371/journal.pmed.1002786.

554	44. Vandereyken MM, Singh P, Wathieu CP, Jacques S, Zurashvilli T, Dejager L, et al. J
555	Immunol. 2017; 199: 2515-2527. doi: 10.4049/jimmunol.1602092
556	45. Fujiwara Y, Hizukuri Y, Yamashiro K, Makita N, Ohnishi K, Takeya M, et al. Guanylate-
557	binding protein 5 is a marker of Interferon- γ -induced classically activated
558	macrophages. Clin Transl Immunol. 2016; 5: e111. doi: 10.1038/cti.2016.59
559	46. Siwek W, Tehrani SSH, Mata JF, Jansen LET. Activation of clustered IFN γ target gene
560	drives cohesion-controlled transcriptional memory. Mol Cell 2020; 80: 396-409. doi:
561	10.1016/j.molcel.2020.10.005
562	47. Jiang T, Zhang W, Wang Z. Laquinimod protects against TNF- $lpha$ -induced attachment
563	of monocytes to human aortic endothelial cells (HAECs) by increasing the expression

of KLF2. Drug Design, Dev Ther. 2020; 14: 1683-1691. doi: 10.2147/DDDT.S243

Log₁₀ ML ratio

Log₁₀ ML ratio

Log₁₀ ML ratio

B. Tuberculosis excluding sputum smear-positive pulmonary disease

