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Contact tracing, where exposed individuals are followed up to break ongoing transmission 32 

chains, is a key pillar of outbreak response for infectious disease outbreaks. Unfortunately, 33 

these systems are not fully effective, and infections can still go undetected as people may 34 

not remember all their contacts or contacts may not be traced successfully. A large 35 

proportion of undetected infections suggests poor contact tracing and surveillance systems, 36 

which could be a potential area of improvement for a disease response.  In this paper, we 37 

present a method for estimating the proportion of infections that are not detected during an 38 

outbreak. Our method uses next generation matrices that are parameterized by linked 39 

contact tracing data and case line-lists. We validate the method using simulated data from 40 

an individual-based model and then investigate two case studies: the proportion of 41 

undetected infections in the SARS-CoV-2 outbreak in New Zealand during 2020 and the 42 

Ebola epidemic in Guinea during 2014. We estimate that only 5.26% of SARS-CoV-2 43 

infections were not detected in New Zealand during 2020 (95% credible interval:  0.243 – 44 

16.0%) but depending on assumptions 39.0% or 37.7% of Ebola infections were not 45 

detected in Guinea (95% credible intervals:  1.69 – 87.0% or 1.7 – 80.9%).  46 

-------------------------------------------------------------------------------------------------------------- 47 

 48 

 49 

 50 
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INTRODUCTION 52 

There are many non-pharmaceutical interventions for controlling infectious disease 53 

epidemics. Some control measures, such as case isolation and safe and dignified burials 54 

avoid secondary infections but others, such as contact tracing, avoid tertiary infections. 55 

Measures, which avoid secondary infections, are most effective when tertiary infections are 56 

also avoided and all (or nearly all) infections are identified so that interventions can be 57 

targeted (1). If contact tracing is implemented well, contacts of known cases can take 58 

precautions to reduce onward transmission by limiting their contacts and isolating quickly 59 

on symptom onset (2–4).  However, if many infections are not detected, outbreaks can 60 

grow rapidly as undetected infections usually infect more people than detected cases (5). 61 

Infections or deaths may not be reported for a variety of reasons (6). Poor availability of 62 

tests at the start of an outbreak of an emerging pathogen, such as SARS-CoV-2, may mean 63 

that those with symptoms cannot be diagnosed (7).  Asymptomatic individuals may also not 64 

know they are infected unless tested for other reasons, such as through contact tracing (8).  65 

Undetected infections are not unique to SARS-CoV-2 and under-reporting is common in 66 

Ebola outbreaks due to barriers to accessing health care and limited hospital capacity (9). 67 

Many patients may not seek health care due to mistrust and if they die, may be buried 68 

without notification, leading again to those cases being missed from official lists (10). 69 

Infectious disease analysis and modelling are important tools for managing epidemics and 70 

can help provide quantitative evidence and situational awareness to public health responses 71 

(11). The importance of such analyses has been highlighted by the response to the COVID-72 
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19 pandemic, which has been, to a large extent, informed by epidemic modelling e.g. (12–73 

14).  However, these models often require robust case data to make accurate transmission 74 

predictions. Over time attempts have been made to account for under-reporting in models. 75 

Some models assume perfect reporting (15,16), however, this can lead to an 76 

underestimation of the infection rate (6). Other methods assume a constant under-reporting 77 

rate (17), use data augmentation techniques (6) or rely on more complex models to merge 78 

multiple data streams through evidence synthesis (18).  More recently, many models have 79 

switched to using death data, which was believed to be more reliable than case data, 80 

because it is more likely consistent over time and between countries (13). This is especially 81 

important for methods which are robust to constant under-reporting. 82 

We propose using a quasi-Bayesian next generation matrix (NGM) approach in this paper 83 

to estimate the proportion of infections that are not detected in an outbreak. This method is 84 

not disease specific, is simple to implement from contact tracing and surveillance data and 85 

can be repeated throughout the outbreak to provide time varying estimates. We investigate 86 

the suitability of our method using simulated data and present two applications of our 87 

method: the SARS-CoV-2 outbreak in New Zealand (NZ) in 2020 and the Ebola epidemic 88 

in Guinea in 2014. 89 

METHODS  90 

NGMs are often used to calculate the basic reproduction number (the average number of 91 

secondary infections generated by a primary infection in a large fully susceptible 92 

population), ��, from a finite number of discrete categories that are based on 93 
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epidemiologically relevant traits in the population, such as infected individuals at different 94 

stages of infection (e.g. exposed and infectious) or with different characteristics (e.g. age) 95 

e.g. Baguelin et al. (19). The NGM is a matrix which quantifies the number of secondary 96 

infections generated in each category by an infected individual in a given category. �� is 97 

defined as the dominant eigenvalue of this matrix (20,21). They have also been used by 98 

Grantz et al. (22) to evaluate contact tracing systems.  Similarly, here we stratify infected 99 

individuals using information about their contact tracing status and whether they were 100 

being followed up at the time of symptom onset to assign infection pathways and construct 101 

our NGM. We identify three types of infections: i) infections that are not detected (ND), ii) 102 

infections (or cases) that are detected but not under active surveillance (NAS), and (iii) 103 

infections (or cases) that are detected and under active surveillance (AS).  104 

Contact follow-up or surveillance might take different forms for different diseases; for 105 

Ebola, a contact under active surveillance would be undergoing in-person follow-up for 21 106 

days after their last interaction with the case (23), whereas for SARS-CoV-2 in some 107 

settings, a contact under active surveillance may be notified by contact tracers, or through a 108 

mobile phone application, and asked to self-isolate for up to 10 days (24,25). 109 

Formulation of the NGM 110 

For contact tracing to be fully effective, the parent (or primary) case needs to be diagnosed 111 

and, if positive, all their contacts placed under active surveillance.  The parent case 112 

therefore needs to know and remember everyone they have been in close contact with 113 

whilst they have been infectious and for these contacts to be contacted. Despite a contact 114 
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being recalled and reported, they may not be under active surveillance if they cannot be 115 

identified due to missing or incorrect contact details or evasion from contact tracers. We 116 

assume in our model that: i) infections that are not detected and those cases detected but not 117 

under active surveillance have the same effective reproduction number (R) and therefore on 118 

average, infect the same number of secondary cases; and ii) AS have a lower effective 119 

reproduction number (scaled by �) because they are rapidly isolated after the onset of 120 

symptoms. We define � as the proportion of contacts recalled, � as the proportion of 121 

contacts actively under surveillance, and � as the proportion of cases detected or “re-122 

captured” by community surveillance. 123 

We identify 12 pathways through which individuals can become infected (Figure 1). These 124 

pathways are described as follows: 125 

1. A case that was detected (with probability �), who was infected by an infection that 126 

was not detected and was therefore not under active surveillance. 127 

2. An infection that was not detected (with probability 1-�), who was infected by an 128 

infection that was not detected and was therefore not under active surveillance. 129 

3. A case that was detected (with probability �), who was infected by a case that was 130 

detected but not under surveillance, was correctly recalled as a contact (with 131 

probability �) and was under active surveillance (with probability �). 132 

4. A case that was detected (with probability �), who was infected by a case that was 133 

detected but that was not under surveillance, was correctly recalled as a contact (with 134 

probability �) but was not under surveillance (with probability 1- �). 135 
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5. An infection that was not detected (with probability 1-�), who was infected by a case 136 

that was detected but not under surveillance, was correctly recalled (with probability 137 

�) but was not under surveillance (with probability 1- �). 138 

6. A case that was detected (with probability �) case, who was infected by a case that 139 

was detected but not under surveillance, that was not recalled (probability 1-�). 140 

7. An infection that was not detected (with probability 1-�) case, who was infected by a 141 

case that was detected but not under surveillance, that was not recalled (probability 1-142 

�). 143 

8. A case that was detected (with probability �), who was infected by a case that was 144 

detected and under surveillance, was correctly recalled (with probability �) and was 145 

under surveillance (with probability �). 146 

9. A case that was detected (with probability �) case, who was infected by a case that 147 

was detected and under surveillance, was correctly recalled (with probability �) but 148 

was not under surveillance (with probability 1- �). 149 

10. An infection that was not detected (with probability 1-�), who was infected by a case 150 

that was detected and under surveillance, was correctly recalled (with probability �) 151 

but was not under surveillance (with probability 1- �). 152 

11. A case that was detected (with probability �), who was infected by a case that was 153 

detected and under surveillance, that was not recalled (with probability 1-�). 154 
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12. An infection that was not detected (with probability 1-�) case, who was infected by a 155 

case that was detected and under surveillance, that was not recalled (with probability 156 

1-�). 157 

Seven of our twelve pathways result in detected cases. The cases from pathways 3, 4, 8, and 158 

9 are individuals on contact lists who are detected as cases whereas, the cases from 159 

pathways 1, 6, and 11 are de novo cases that are not on any contact tracing list, but which 160 

are detected via other routes such as attending a health care unit. The cases from pathways 161 

3 and 8 are contacts who were under surveillance at the time of symptom onset, while those 162 

from pathways 4 and 9 were not under surveillance at onset.  The infections resulting from 163 

the pathways 2, 5, 7, 10 and 12 are not detected by the surveillance system. We use the 164 

notation FX to denote the likelihood of a case stemming from pathway X, for example F1 165 

equals ��. 166 

If �� � 	
��, 

��, 
���� is a vector of the number of each type of case for generation �, 167 

the dynamics of the model is given by: 168 

���� � 
��  �1� 

where � is our NGM that represent the potential transitions from one generation of cases to 169 

the next 170 


 � � �1 � � �1 � ���1 � ��� ��1 � ���1 � ���� ��1 � ��� ���1 � ���0 �� ��� � .   �2� 
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From the eigenvalues of this NGM, we can calculate the proportion of each of the three 171 

types of infections (ND, NAS and AS), see Supplementary Information (SI) A. In the limit 172 

as � goes to infinity, an equilibrium is reached and the proportion of cases that are not 173 

detected, ���, can be calculated as: 174 

��� � lim
���

���
��� � ���� � ���

�
�	1 � ��
1 � ��	2 � ��� 	 ��� � �	2��1 � ��	2 � ������ � ������ � �	1 � ������

2�� 	 1� .
  �3� 

As shown in the calculation in the SI and illustrated Figure S1 in SIA, convergence to this 175 

equilibrium value is fast. 176 

Linking our model to contact tracing and surveillance system data 177 

Cases are often recorded in line-lists during disease outbreaks, where dates of testing, 178 

symptom onset and hospitalization are recorded alongside information about the age and 179 

sex of the patient.  When case lists are linked to contact lists, we can derive two ratios with 180 

which we parameterize our NGM. We define �� as the ratio of cases who were contacts but 181 

not under surveillance versus the cases who were contacts and under surveillance and �� as 182 

the ratio of de novo cases (cases that were not known contacts) versus detected cases that 183 

were contacts and under surveillance. 184 

Following the pathways in Figure 1, we expand �� (the ratio of cases who were contacts but 185 

not under surveillance versus the cases who were contacts and under surveillance) as 186 

 �	��	�
		�	


�. At the equilibrium of the surveillance process (SIA), we have 
�� � �����, 187 
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�� � ��
��� and 
�� � �
���, where �� � 
��  

��  
�� is the total number of 188 

cases at generation �, ��
� is the proportion of cases not under active surveillance and  �
� 189 

is the proportion of cases under active surveillance. Therefore, 190 

�� � ����1 � ����
���  �����1 � ���
��������
���  �����
���� �1 � ���� .   �4� 

We re-write this as 191 

� � ���  � .  �5� 

We also expand �� (the ratio of de novo cases versus detected cases that were contacts and 192 

under surveillance) as �	��	��	��
		�	


�. Therefore, 193 

�� � ��������  �1 � ����
���  ��1 � ���
����R�����
���  ����
����
� ��$  �1 � ����� ,   �6� 

where $ � �
�

�
���
���
. This can be rewritten as 194 

��� � &���
�  ��
��,  & � ����� � 1  �.  �7� 
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Figure 2 illustrates the dependencies between these two ratios and the parameters in our 195 

model in a directed acyclic graph where the green nodes are our data, blue nodes are model 196 

parameters and white nodes are calculated parameters.  197 

In addition to equations (5) and (7), we also have three more relationships that we can use: 198 

the proportions of each type of case (���, ��
� and �
�) that are found using the leading 199 

eigenvector of the NGM (see SIA).  We therefore have five equations and seven unknown 200 

parameters (�, �, �, �, ���, ��
�, �
�).  If we fix two parameters, we can then estimate the 201 

other parameters.  We choose here to fix � since this could be estimated from additional 202 

data such as serology and �. 203 

Application to the estimation of the proportion of infections that were not detected  204 

We estimated the proportion of infections that are not detected using a quasi-Bayesian 205 

framework for each scenario.  For each run of each scenario, we sampled 10,000 values 206 

from 	0,1�� uniformly for ��, ��, which is comparable to assuming a uniform prior 207 

distribution, and computed the other parameters ��, �, ���� if a solution was viable. We 208 

note that there is no solution for some values of ��, ��, (see SIB). Our credible intervals 209 

(CrI) reflect the values between which 95% of our viable samples lie. 210 

Simulated data. We investigate the suitability of our method using an individual-based 211 

model developed using NetLogo(26) (see SIC) for 3 scenarios: 212 

1) Contact tracing similar to SARS-CoV-2 example in New Zealand (NZ); 213 
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2) Contract tracing similar to Ebola in Guinea; 214 

3) Contact tracing similar to Ebola in Guinea and then improves to match the SARS 215 

CoV-2 example in NZ after 500 days. 216 

For each scenario, we simulated 1000 runs and sampled each run 10,000 times. Here we 217 

assumed prior knowledge about the values of � and � so uniformly sampled between 0.2 218 

above and below the true values of � and � (see SIC for parameter value). We compared 219 

the probability that the true parameters in each of our scenarios lie within the 95% CrI 220 

estimates.  We consider two time periods for scenario 3, before and after the parameter 221 

change. 222 

We also undertook a sensitivity analysis to investigate relaxing our assumption on �, where 223 

we compared the estimated values of missing cases when we varied the reduction in the 224 

scaling for a NAS case.  We compared the probability that the true value of the proportion 225 

of infections that were not detected lies within our 95% CrI for scenario one with values of 226 

alpha for NAS cases of 0.6 and 0.8 and 1.0 (initial scenario one). We again ran 1000 227 

simulations of each and assumed the parameter were equal to the SARS-CoV-2 scenario. 228 

SARS-CoV-2 in New Zealand 2020. Well performing contact tracing systems have been 229 

partially credited for the success of NZ’s response to the SARS-CoV-2 epidemic in 2020 230 

(27–29).  NZ’s Ministry of Health reported 570 locally acquired cases up until 14th 231 

December 2020 that had an epidemiological link to a previous case and 90 cases without an 232 

epidemiological link (30). We assume that 80% of contacts were under active surveillance 233 
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before diagnosis, since 80% was determined as the minimum requirement for the NZ 234 

system (25).  Therefore, we estimate 456 cases were under active surveillance and 114 235 

cases were not.  This makes  �� � 0.25 and �� � 0.20. 236 

Ebola in Guinea 2014 We use data from Dixon et al. (31), which present contact tracing 237 

outcomes from two prefectures in Guinea between the 20th September and 31st December 238 

2014. The authors found that only 45 cases out of 152 were registered as contacts of known 239 

cases across Kindia and Faranah prefectures.  240 

Since there is little published data, we consider two scenarios based on different 241 

assumptions about �� (ratio of contacts not under active surveillance versus contacts under 242 

active surveillance).  243 

1) We assume �� is equal to 0.2 (five times as many contacts under active surveillance 244 

than not under active surveillance, or 5 out of 6 contacts are under active 245 

surveillance).  This is based on data from Liberia in 2014 and 2015 where, during 246 

the same epidemic as Guinea, 27936 contacts were not under active surveillance, 247 

whereas 167419 were (32).  Since we know the total number of cases on the contact 248 

tracing list, 45, and assume �� � 0.2, we estimate the number of contacts under 249 

active surveillance to be 38 (denominator of ��).  The number of people not on the 250 

contact list for the two regions was 107 (numerator of ��). Therefore, �� is equal to 251 

2.85.  252 
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2) We assume �� is equal to 0.5 (twice as many contacts under active surveillance than 253 

not under active surveillance or two thirds of contacts are under active surveillance) 254 

to illustrate the impact of a slightly better surveillance system. Since we know the 255 

total number of cases on the contact tracing list, 45, and assume �� � 0.5, we 256 

estimate the number of contacts under active surveillance to be 30 (denominator of 257 

��).  Therefore, �� is equal to 3.57.  258 

We again estimated the proportion of infections that are not detected using our quasi-259 

Bayesian framework for both case studies and took 100,000 samples for each case study, 260 

sampling � and � between 0 and 1. All code necessary to implement the analysis is 261 

included open source in the “MissingCases” R package on GitHub (33). 262 

RESULTS 263 

Simulated data. We find that in our three scenarios, the true proportion of infections that 264 

are not detected always lie within the uncertainty intervals of the NGM estimates even in 265 

scenario 3 where our parameters are not constant. We note this method performs best early 266 

in the outbreak when the number of susceptible are large and not in the tail end of the 267 

outbreak. However, not all parameters perform consistently well as shown in Table S2, 268 

where � only lies within the interval 75.4% of the time in scenario 1 and � only 24.6% of 269 

the time in scenario 2. We found that performance remained similar if we reduced alpha for 270 

NAS cases (Table S3).  271 
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SARS-CoV-2 in New Zealand 2020. We estimate that only 5.26% (95% CrI: 0.245 - 16.0%) 272 

of cases were not detected during this wave of the SARS-CoV-2 pandemic in NZ (see 273 

Table 1 for all parameter estimates), which suggests a well-functioning and rigorous 274 

contact tracing and surveillance system in NZ. In Figure 3, we find that this estimate comes 275 

from a feasible parameter space that is focused along the right-hand side of the parameter 276 

space, where the proportion of cases detected in the community� �� is high.  However, we 277 

do not learn anything about the scaling in transmission for traced cases so the uncertainty 278 

intervals in the proportion of not detected infections account for this. 279 

Ebola in Guinea 2014. We estimate that the proportion of Ebola cases that were not 280 

detected in Guinea was 39.0% (95% CrI: 1.69-87.0%) or 37.7% (95% CrI 1.70 – 80.9%) 281 

for our two scenarios where �� � 0.2 and �� � 0.5 respectively. The corresponding model 282 

parameter estimates for both scenarios are given in Table 2. The only parameter that differs 283 

substantially between our scenario is the proportion of contacts under active surveillance, 284 

which is directly impacted by the ratio of contacts not under active surveillance versus 285 

contacts under active surveillance.  We find that we do not learn much about the feasible 286 

values of � and � for these scenarios but as proportions of cases detected in the community 287 

fall, the proportion of not detected infections increases.  288 

DISCUSSION  289 

Contact tracing is an important control mechanism for infectious disease outbreaks.  290 

However, its efficiency depends on detecting as many cases as possible. We show in this 291 

paper that NGMs can be easily used to estimate the proportion of cases that were not 292 
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detected in simulated examples and two different disease outbreaks. Our method requires 293 

much less data to parameterize our model that other methods, such as capture re-capture 294 

(10), which is an alternative method suggested for estimating under-reporting  and is highly 295 

data intensive.  This means that it is feasible to repeat this analysis in near real time as the 296 

epidemic unfolds. We find that in our time varying simulation (scenario 3) 95.4% of the 297 

simulated proportion of infections not detected lie within the 95% credible intervals but 298 

there is a slight bias in the “transient phase” (group 3) where the NGM estimates are higher 299 

than the true estimates.  This could be because equilibrium had not been reached. 300 

During the West African Ebola epidemic, the WHO acknowledged that their reported case 301 

and death figures “vastly underestimate(d)” the true magnitude of the epidemic (34). We 302 

find that our estimates for the proportion of cases not detected in Guinea (39.0% (95% CrI: 303 

1.69-87.0%) or 37.7% (95% CrI 1.7 – 80.9%) for our two scenarios where �� � 0.2 and 304 

�� � 0.5 respectively) are in line with values in the literature for neighbouring countries. 305 

Dalziel et al. (9) suggested reporting rates in Sierra Leone of  68% (32% under reporting) in 306 

the Western Area Urban on 20 October 2014 using burial data.  However, higher under 307 

reporting has also been estimated: the US Centers for Disease Control and Prevention (35) 308 

estimated a 40% reporting rate (60% under-reporting) from Ebola treatment unit bed data 309 

and Gignoux et al. (36) estimated a 33% (67% under-reporting) from a capture and 310 

recapture study in Liberia between June and August 2014.  311 

Our estimates of the proportion of cases that were not detected during the SARS-Cov-2 312 

outbreak in NZ of 5.26% (95% CrI 0.243 - 16.0%) is in-line with the good health care 313 
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facilities and the low community transmission of SARS-CoV-2 in NZ (30), but we did not 314 

find any estimates in literature to compare our estimates to. 315 

A benefit of this method is that we do not just estimate the proportion of cases that were not 316 

detected but also other useful quantities that are important for managing a response such as 317 

the proportion of contacts recalled and under surveillance. The wide CrI, especially in 318 

second and third simulated data scenarios and the Ebola case study, come from the uniform 319 

sample of ��, ��. This is a limitation of the method but could be improved with better 320 

understanding of the performance of the routine surveillance ��� and changes in 321 

transmissibility due to contact tracing status (��, which would narrow the region in the 322 

parameter space. A second limitation is our assumption on � that only detected cases under 323 

active surveillance have a reduced transmissibility.  In this simple framework, it is not 324 

possible to relax this assumption; however if additional information such as serology was 325 

available, we believe this could be used to form a prior distribution on this parameter and 326 

potentially allow users to further vary the number of people NAS and ND individuals infect 327 

or improve the accuracy of some of the other parameter estimates. As we see in our 328 

sensitivity analysis, this does not impact our estimation of the proportion of infections that 329 

were not detected but potentially other parameters. A third limitation is that we do not 330 

account for differing times to locate contacts within each group, which would further vary 331 

the number of cases each case goes on to infect. 332 

We believe this method highlights important lessons for responding to the ongoing SARS-333 

CoV-2 pandemic and the unfortunate inevitability of future infectious disease outbreaks. By 334 
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simply linking the case line-lists and contact tracing lists, we can use the very general 335 

method from our “MissingCases” package (33) to assess under-reporting throughout an 336 

epidemic.  This would help outbreak responses, especially during the early and late phases, 337 

target resources and quantify how effect their surveillance systems were.  In addition, these 338 

estimates can be used to improve the accuracy of other models, such as for the time varying 339 

reproduction number, which are key tools for the outbreak response themselves.  340 
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 483 

Figure 1: Potential pathways for a three-state model of Ebola surveillance (ND, AS, NAS).  R is the 484 

effective reproduction number, α is the scaling of the reproduction number due to active 485 

surveillance (rapid isolation upon symptom onset), � is the proportion of contacts recalled and 486 

reported by a case, γ is the proportion of contacts actively under surveillance, and π is the 487 

proportion of cases detected or “re-captured” by community surveillance. We assume that all cases 488 

under active surveillance are detected. The coloring and shape of the end points of the paths are 489 

described as follows: red circle - any case that was not detected (so cannot be under active 490 

surveillance), purple circle - an eventually detected case that was not under active surveillance at 491 

the time of symptom onset (e.g. a contact of an earlier case lost to follow-up or who refused follow-492 

up), purple square: a detected case that was under active surveillance at the time of symptom onset 493 

(e.g. a contact of a previously detected case, correctly recalled and reported, and under 494 

surveillance). 495 
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496 
Figure 2: Directed acyclic graph showing the functional relationships of the surveillance model and 497 

the ratios observed in the surveillance. The blue nodes represent the parameters of the model that 498 

we want to infer (  is the proportion of cases detected or “re-captured” by community surveillance;  499 

 is the proportion of contacts actively under surveillance; is the proportion of contacts recalled 500 

by a case and is the scaling of reproduction number due to active surveillance (rapid isolation 501 

upon symptom onset)). The green terminal nodes are the potentially observable data (  is the ratio 502 

of cases who were contacts but not under surveillance versus the cases who were contacts and under 503 

surveillance; and  as the ratio of de novo cases versus detected cases that were contacts and under 504 

surveillance. The white nodes are our calculated terms (  is the proportion of cases that are not 505 

detected; and  relates the proportion of not detected cases to the other two types of cases). The 506 

arrows show the direction of the dependence.  507 

 508 

 509 
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510 
Figure 3: Comparison of NGM estimate of proportion of infections not detected against simulated 511 

proportion for 3 scenarios. The error bars parallel to the x-axis depict the 95% CrIs from the NGM 512 

estimates.  Figure 3A shows a scenario with contact tracing like SARS-CoV-2 in NZ, Figure 3B 513 

shows a scenario with contact tracing like Ebola from Guinea and Figure 3C shows a scenario in 514 

which contact tracing starts like the Ebola scenario and improves to be like the SARS-CoV-2 515 

scenario. The colors in Figure 3C refer to the two different time periods considered (worse contact 516 

tracing: days 100 to 500, better contact tracing days 500 to 900) in our scenarios. 517 
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 518 

 519 

Figure 4: Region of the parameter space compatible with the observed data New Zealand. Values of 520 

� and � are sampled uniformly from 	0,1
�. The dots show our feasible samples with the color 521 

indicating the proportion of not detected infections. 522 
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 523 

Figure 5: Region of the parameter space compatible with the observed data for the two scenarios in 524 

Guinea. Values of  and  are sampled uniformly from . The dots show our feasible samples 525 

with the color indicating the proportion of not detected infections. 526 

 527 

 528 

 529 

Table 1: Estimates of the parameters for SARS-CoV-2 in New Zealand 530 

Parameter Description Median estimates (95% CrI) 

 Proportion of cases detected in the community 84.8% (61.9, 99.2) 

 Scaling of the reproduction number for traced cases 50.2% (4.28, 98.3) 

 Proportion of contacts recalled 91.9% (86.6, 99.5) 

 Proportion of contacts under active surveillance 77.2% (71.2, 79.9) 

 Proportion of infections not detected 5.26% (0.243, 16.0) 
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Table 2: Estimates of the parameters for Ebola in Guinea 535 

  Median estimates (95% CrI) 

Parameter Description Scenario 1 (�� � 0.2)  Scenario 2 (�� � 0.5)  

�� 
Ratio of de novo cases versus detected cases that 

were contacts and under surveillance 
2.85 3.57 

� Proportion of cases detected in the community 54.0% (10.1, 97.8) 57.03% (16.0, 97.9) 

� Scaling of the reproduction number for traced cases 49.8% (2.51, 97.4) 49.7% (2.54, 97.6) 

	 Proportion of contacts recalled 35.7% (29.8, 83.1) 38.6% (29.9, 89.1) 


 Proportion of contacts under active surveillance 73.0% (33.6, 83.0) 53.3% (24.2, 66.2) 

��� Proportion of infections not detected 39.0% (1.69, 87.0) 37.7% (1.70, 80.9) 
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