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Abstract 
Social and behavioral non-pharmaceutical interventions (NPIs), such as mask-wearing, social 

distancing, and travel restrictions, as well as diagnostic tests, have been broadly implemented in 

response to the COVID-19 pandemic. Epidemiological models and data analysis affirm that wide 

adoption of NPIs helps to control the pandemic. However, SARS-CoV-2 has extensively 

demonstrated its ability to evolve. Therefore, it is crucial to examine how NPIs may affect the 

evolution of the virus. Such evolution could have important effects on the spread and impact of 

the pandemic. 

We used evo-epidemiological models to examine the effect of non-pharmaceutical interventions 

and testing on two evolutionary trajectories for SARS-CoV-2: attenuation and test evasion. Our 

results show that when stronger measures are taken, selection may act to reduce virulence. 

Additionally, the timely application of NPIs could significantly affect the competition between 

viral strains, favoring reduced virulence. Furthermore, a higher testing rate can select for a test-

evasive viral strain, even if that strain is less infectious than the detectable competing strain. 
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Importantly, if a less detectable strain evolves, epidemiological metrics such as confirmed daily 

cases may distort our assessment of the pandemic. Our results highlight the important 

implications NPIs can have on the evolution of SARS-CoV-2.  

Introduction 
Social and behavioral non-pharmaceutical interventions (NPIs) have been broadly applied to 

contain the COVID-19 pandemic. These interventions include use of face masks, implementation 

of social distancing, closure of educational institutions, individual movement restrictions, and 

quarantining cases confirmed using RT-PCR or serological testing. The role of NPIs in 

controlling the COVID-19 pandemic has been studied extensively1. Epidemiological models2–7 

have been used to assess the impact of these NPIs on the pandemic, aiming to forecast the levels 

of infection, hospitalization, and mortaility8,9. Both theoretical models6,7 and data analysis10–13 

affirm that wide and early adoption of interventions, such as limiting social contacts and wearing 

face masks, helps to control the pandemic. However, SARS-CoV-2 has broadly demonstrated its 

ability to evolve14: it has been suggested that a mutation conferring ability to infect humans15 

preceded its transmission to humans from bats16. Similar to other RNA viruses17, the mutation 

rate of SARS-CoV-2 is estimated at ~10-6 per site/cycle, relatively high18 (although lower than 

influenza19). Additionally, there is already significant variation in the viral population14,20 due to 

a high rate of recombination16, a very high number of copies produced in each infection18, a rapid 

replication cycle (around 10 hours18), and the large effective size of the SARS-CoV-2 

population. This variation can potentially lead to adaptive evolution21, as seen before, for 

example, in Influenza22, HIV23 and Ebola24
. 

Because the virus only recently emerged in humans, further adaptation of SARS-CoV-2 to its 

new host is likely. Indeed, new strains have recently emerged carrying mutations that may 
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increase transmission, lower detectability, and perhaps even reduce vaccine efficiency25–27. 

Importantly, by limiting the transmission of the virus, NPIs may exert strong selection on SARS-

CoV-228. Hence, it is crucial to examine how NPIs could affect the evolution of the virus. Such 

evolution may have important effects on the spread and control of the pandemic. To examine 

how the virus may evolve in response to NPIs, we have developed evo-epidemiological 

models29,30 that track both the infection status of the human hosts and the strain of the infecting 

virus. We use these models to examine how NPIs are expected to affect two evolutionary 

trajectories for SARS-CoV-2: attenuation and test evasion. 

Attenuation. An important epidemiological feature of the virus is the high frequency of 

asymptomatic infections2,3,31–33. It is suggested that asymptomatic individuals are infectious34 

and can transmit the disease but are less infectious than those who are symptomatic33,35. Due to 

limited resources, the COVID-19 testing policy in many countries does not include routine 

screening of asymptomatic individuals, unless they have been in direct contact with a confirmed 

case or are routinely exposed to infected individuals (e.g., health workers). Thus, these 

asymptomatic cases largely go undetected. Asymptomatic infection allows the individual to 

maintain their normal routine and social contact levels throughout the entire course of the 

infection, thus potentially producing many secondary infections. The tendency to develop 

asymptomatic infection is affected both by the individual characteristics, such as prior health 

status36, and by the virus itself. As asymptomatic cases are less likely to be diagnosed and 

isolated, we hypothesized that a decrease in the frequency of symptomatic cases can be favored 

by selection, leading to the evolution of an attenuated pathogen37. For example, a mutation 

causing decreased viral load may cause a higher frequency of asymptomatic cases and milder 

disease. However, asymptomatic individuals are likely less infectious33, and if the relative 
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transmissibility of asymptomatic cases is low enough, the more virulent strain may evolve. 

Increased awareness to the epidemic and application of NPIs may select for further increase in 

the frequency of asymptomatic infections. NPIs change the overall infection rate by reducing the 

number of contacts per individual, hence we expect that NPIs will have an important role in 

determining the outcome of competitions between attenuated and virulent strains.  

Test evasion. An active COVID-19 infection can be diagnosed using an RT-PCR test on a 

nasopharyngeal swab specimen38, detecting specific sites in the viral genome. The detected sites 

were chosen such that they are critical for virus function39,40. COVID-19 tests have been 

evaluated for their sensitivity, the expected fraction of infected individuals who receive a 

positive test result, and specificity, the fraction of uninfected individuals who erroneously 

receive a positive test result41. The conditions under which individuals are tested may differ 

between and even within different countries42. Given that individuals who receive a positive test 

result are isolated until recovery, largescale testing can exert strong selection pressure on the 

virus. The detectability of the virus may be directly under selection, potentially favoring two 

classes of mutants: (i) mutants presenting atypical infections, including affecting different age 

groups (e.g. children) or different tissues (e.g. gastrointestinal system43, heart and liver 

infections44,45). Undiagnosed COVID-19 patients may not be quarantined even when sick – heart 

disease, for example, is not usually infectious – and therefore might infect others, including 

healthcare workers and other patients. (ii) As PCR-based tests are used to determine who must be 

quarantined, selection might favor viruses with modifications in the RNA sequence used for the 

test46. We hypothesize that when testing is frequent and NPIs are significant, selection could 

favor strains that are harder to detect, even at the cost of lower transmissibility. 
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Model  
We use a SEIR compartmental epidemic model2,3,10. The model follows two viral strains 

simultaneously spreading in an initially susceptible population (Figure 1). We neglect births and 

deaths due to non-disease related causes and assume no superinfection and total cross-immunity, 

such that recovered individuals from either strain are immune to both strains47. For COVID-19, 

the latter is likely true in some strains for at least several months, due to the presence of 

antibodies47. Thus, we divide the host population to susceptible individuals (𝑆), individuals 

exposed to one of the strains (𝐸1, 𝐸2 for strain 1 and strain 2, respectively), asymptomatic (𝐼1
𝑎, 

𝐼2
𝑎), presymptomatic (𝐼1

𝑝, 𝐼2
𝑝
), and symptomatic individuals (𝐼1

𝑠, 𝐼2
𝑠), and “removed” individuals 

(𝑅1, 𝑅2), which effectively include both recovered individuals and fatalities.  
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Figure 1. Evo-epidemiological model. Our model follows two viral strains simultaneously 

spreading in an initially susceptible population. Susceptible (𝑆) individuals become exposed (𝐸) 

after contact with an infected individual with rate 𝛽𝑥 (where x=p, s, or a is the class of infected 

individual). Exposed individuals (𝐸) undergo an incubation period during which they are not 

infectious. After an average incubation period of 𝑍 days, exposed individuals become infected, 

with either a presymptomatic (𝐼𝑝) or asymptomatic (𝐼𝑎) infection, with probability 𝛼 and (1 −
 𝛼), respectively. Asymptomatic individuals (𝐼𝑎) are infectious but asymptomatic from disease 

onset until recovery. Presymptomatic individuals (𝐼𝑝) are infectious and may be asymptomatic or 

exhibit mild symptoms for several days, after which they exhibit clinical manifestation of the 

disease (𝐼𝑠) and are therefore isolated. Symptomatic and asymptomatic cases become recovered 

(𝑅) after an average of 𝐷𝑠 and 𝐷𝑎 days, respectively.  

 

Susceptible individuals become exposed through contact with an infected individual with rate 𝛽𝑥 

(where x=p, s or a is the class of infected individual). The distinction between 𝛽𝑝, 𝛽𝑠, and 𝛽𝑎 is 

central: asymptomatic infection is assumed to be less infectious (𝛽𝑎 < 𝛽𝑝), for example due to 

lower viral load, and 𝛽𝑠 can be very low if symptomatic cases are isolated.  
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The basic model is described by the following equations (𝑖 = 1,2):  

𝑑𝑆

𝑑𝑡
= −𝛽 ⋅

𝑆

𝑁
⋅ (𝐼1

𝑝 + 𝜇1 ⋅ 𝐼1
𝑎 + 𝐼2

𝑝 + 𝜇2 ⋅ 𝐼2
𝑎) 

(1.1) 

𝑑𝐸𝑖
𝑑𝑡

= 𝛽 ⋅
𝑆

𝑁
⋅ (𝐼𝑖

𝑝 + 𝜇𝑖 ⋅ 𝐼𝑖
𝑎) −

𝐸𝑖
𝑍

 
(1.2) 

𝑑𝐼𝑖
𝑝

𝑑𝑡
= 𝛼1 ⋅

𝐸𝑖
𝑍
−
𝐼𝑖
𝑝

𝐷𝑝
 

(1.3) 

𝑑𝐼𝑖
𝑠

𝑑𝑡
=
𝐼𝑖
𝑝

𝐷𝑝
−
𝐼𝑖
𝑠

𝐷𝑠
 

(1.4) 

𝑑𝐼𝑖
𝑎

𝑑𝑡
= (1 − 𝛼𝑖) ⋅

𝐸𝑖
𝑍
−
𝐼𝑖
𝑎

𝐷𝑎
 

(1.5) 

𝑑𝑅𝑖
𝑑𝑡

=
𝐼𝑖
𝑎

𝐷𝑎
+
𝐼𝑖
𝑠

𝐷𝑠
 

(1.6) 

 

Note that 𝑆, 𝐸1, 𝐸2, 𝐼1
𝑝, 𝐼2

𝑝, 𝐼1
𝑠, 𝐼2

𝑠, 𝐼1
𝑎 , 𝐼2

𝑎, 𝑅1, 𝑅2 ≥ 0  and 𝑆 + 𝐸1 + 𝐸2 + 𝐼1
𝑝 + 𝐼2

𝑝 + 𝐼1
𝑠 + 𝐼2

𝑠 + 𝐼1
𝑎 + 

𝐼2
𝑎 + 𝑅1 + 𝑅2 = 𝑁, where N is the constant host population size. 

Basic reproduction number and stability analysis. The basic reproduction number 𝑅0 of an 

epidemic can be interpreted as the expected number of secondary cases produced by a typical 

infected individual in a completely susceptible population48. It testifies for the transmissibility of 

the epidemic in a new host population. We define 𝑅0
𝑖 , (𝑖 = 1,2) as the basic reproductive 

number for each of the viral strains in our system. 

We applied the next-generation approach49–51 to compute the basic reproduction number. The 

infected compartments are 𝐸1, 𝐸2, 𝐼1
𝑝, 𝐼2

𝑝, 𝐼1
𝑠, 𝐼2

𝑠, 𝐼1
𝑎, 𝐼2

𝑎. The next-generation (i.e., transition) matrix 

is defined as 𝐹𝑉−1, where F describes the production of new infected and V describes transitions 

between infected states. The matrix has two nonzero eigenvalues, corresponding to the 
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reproductive numbers for each strain:  𝑅0
𝑖 = 𝛼𝑖 ⋅ 𝐷𝑝 ⋅ 𝛽⏟      

𝑝𝑟𝑒𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

+ (1 − 𝛼𝑖) ⋅ 𝐷𝑎 ⋅ 𝜇 ⋅ 𝛽⏟            
𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

 (see details in 

SI). Only the presymptomatic and the asymptomatic compartments contribute to 𝑅0, as 

individuals in the other compartments do not produce new infections. This can be interpreted as 

the probability that a given individual is either presymptomatic (𝛼𝑖) or asymptomatic (1 − 𝛼𝑖), 

multiplied by the number of days from beginning of infectiousness until recovery (𝐷𝑝, 𝐷𝑎 for 

presymptomatic and asymptomatic, respectively) and the transmission rate (𝛽). In the case of the 

test-evasive strain, the reproduction number for each strain is 𝑅0
𝑖 =

𝛼𝑖⋅𝛽

(𝑝⋅𝑑𝑖 +
1

𝐷𝑝
)⏟    

𝑝𝑟𝑒𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

+

(1−𝛼𝑖)⋅𝜇⋅𝛽

(𝑝⋅𝑑𝑖 +
1

𝐷𝑎
)⏟    

𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐

(see details in SI). The numerators are the expected numbers of secondary 

infections per day, and the denominators are the sums of removal rates from each infected 

compartment, where 𝑝 ⋅ 𝑑𝑖 is the daily detection rate. 

The disease-free equilibrium (𝐼𝑎 = 𝐼𝑝 = 𝐼𝑠 = 0) is locally unstable52 to the introduction of new 

exposed or infected individuals if 𝑅0
𝑖 > 1 for 𝑖 = 1 or 𝑖 = 2. Using parameters adjusted to 

realistic SARS-CoV-2 values (Table 1), and specifically a transmission rate 𝛽 ≥ 0.35,  we ensure 

that the disease-free equilibrium in our model is locally unstable, allowing the outbreak of the 

epidemic for both strains. 

Numerical solution. To analyze the model, we use parameters estimated from COVID-19 

literature (Table 1) and solve Eqs. (1.1)-(1.6) numerically using Python53. For the initial 

conditions, we assume a population of mostly susceptible individuals (𝑆0~𝑁), with a small 

number of exposed individuals, divided equally between the two strains (the attenuated strain can 
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also evolve from rarity, see Fig. S1). New hosts are not introduced, so after enough time has 

passed, the population reaches a disease-free equilibrium (𝐼𝑎 = 𝐼𝑝 = 𝐼𝑠 = 0). At this 

equilibrium, 𝑆∗ + 𝑅1
∗ + 𝑅2

∗ = 𝑁, meaning all individuals are either susceptible or have recovered 

from the disease. 

Selection coefficient. The selection coefficient54 of the attenuated strain is 𝑠 =

𝑅2
∗

𝑅1
∗

(𝐼2
𝑎+𝐼2

𝑝
+𝐼2
𝑠+𝐸2)

(𝐼1
𝑎+𝐼1

𝑝
+𝐼1
𝑠+𝐸1)

|
𝑡=0

⁄ , where 𝑅1
∗ and 𝑅2

∗ are the number of hosts at the disease-free equilibrium that 

have been infected by the virulent and attenuated strains, respectively, throughout the course of 

the epidemic. In the denominator is the ratio of initial frequencies of hosts infected by the 

attenuated and the virulent strain at 𝑡 = 0. When 𝑠 > 1 , this signifies that selection favors the 

attenuated virus and so the frequency of the attenuated strain increases, otherwise (𝑠 < 1) 

selection favors the virulent strain. That is, the attenuated strain is expected to evolve when 𝑠 >

1.  
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Parameter Description Estimate Source 

𝑁 Total population size 328,000,000 US population size (2019), 

U.S. Census Bureau55 

𝛽𝑝 Transmission rate in 

presymptomatic infected individuals 

0.35-1.2 Li, Ruiyun, et al. 20202. 

𝛽𝑎 Transmission rate in asymptomatic 

infected individuals 
𝜇 ⋅ 𝛽𝑝 Byambasuren, Oyungerel, 

et al. 202033. 

𝛽𝑠 Transmission rate in symptomatic 

infected individuals 

0 Simplifying assumption 

that all symptomatic 

individuals are isolated. 

𝛼1, 𝛼2 Fraction of presymptomatic 

infections 

0.6 Oran, Daniel P., Topol, 

Eric J. 202156. 

𝜇 Relative infectiousness of 

asymptomatic infected individuals 

0.65-0.75 Byambasuren, Oyungerel, 

et al. 202033. 

𝐷𝑝 Number of days in the 

presymptomatic phase 

3 Casey, Miriam, et al. 

202057. 

𝐷𝑎 Number of days in the 

asymptomatic phase 

6 Byrne, Andrew William, et 

al. 202058. 

𝐷𝑠 Number of days in the symptomatic 

phase 

13 Byrne, Andrew William, et 

al. 202058. 

𝑍 Length of incubation period, or 

number of days in the exposed 

phase 

5 McAloon, Conor, et al. 

202059. 

𝑝 Daily tests per thousand people 0.01-25 Coronavirus (COVID-19) 

Testing - Statistics and 

Research - Our World in 

Data60. Accessed Dec. 30, 

2020. 

𝑑1, 𝑑2 Detectability of detectable and test-

evasive strain, respectively (true 

positive rate) 

d1 = 0.9 Arevalo-Rodriguez, Ingrid, 

et al. 202041. 

 

Table 1. Model parameters with estimated values. 

Results 
 

Attenuation 
We first consider competition between a virulent strain and an attenuated strain, where the 

attenuated strain has a lower fraction of symptomatic cases compared to the virulent strain. The 

advantage of an attenuated strain is the longer period in which individuals are infectious, as 

asymptomatic individuals are generally not isolated nor seek medical treatment. The 
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disadvantage of the attenuated strain is a lower expected transmission rate (𝛽), as the relative 

infectiousness of asymptomatic individuals is lower compared to that of presymptomatic 

individuals (𝜇 < 1). We consider constant NPIs as a fixed reduction in the transmission 

rate during the entire intervention. Thus, when the impact of NPIs on transmission rates is low, 

the virus spreads rapidly, and the susceptible population is quickly infected by the more virulent 

strain. In contrast, when the impact of NPIs on transmission rates is high, the epidemic lasts 

longer (the curve is “flattened”), allowing the attenuated strain more time to spread. 

Additionally, when transmission rates are reduced, the transmission difference between the two 

strains is smaller. Indeed, Figure 2 shows that selection for the attenuated strain increases with 

the impact of NPIs and with the relative infectiousness of the attenuated strain (𝜇). We note that 

for a given 𝜇 and impact of NPI, the threshold for evolution of each strain (Fig. 2, contour line) 

is independent of 𝛼2, the fraction of symptomatic infected by the attenuated strain (Fig. S2). 
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Figure 2. Effective NPIs facilitate the evolution of the attenuated virus. This figure presents 

the conditions for evolution of either the attenuated (purple) or the virulent (orange) strains under 

constant NPIs. High impact NPIs (right side) facilitate the evolution of the attenuated strain, 

while low impact NPIs (left side) facilitate the evolution of the virulent strain. The attenuated 

strain can also evolve if asymptomatic individuals are infectious enough relative to 

presymptomatic individuals (𝜇 is high, top side). Here,  𝛽max = 1.2, 𝛼1 = 0.6, 𝛼2 = 0.05. 

 

NPIs have been implemented with various schedules, determined by epidemiological metrics61, 

economic pressures61, public opinion62, and in some cases have probably started later than 

planned63. Next, we explore the effects of temporal application of NPIs7,64 on the competition 

between attenuated and virulent strains. Figure 3 shows the effect of the number of days between 

the outbreak and start of NPIs on the competition between the two viral strains. Overall, if NPIs 

are implemented earlier, then the attenuated strain is more likely to evolve. As above (Figure 2), 

lower impact NPIs favor the virulent strain, while higher impact NPIs favor the attenuated strain.  
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Figure 3. Earlier start of NPIs favors the evolution of the attenuated strain. Each curve 

corresponds to a different relative transmissibility of infection by asymptomatic individuals, 𝜇. 

The colored areas below each curve show the regions in which the attenuated strain evolves. The 

areas above each of the curves show the regions in which the virulent strain evolves. Here, 

𝛽min = 0.35 , 𝛽max = 1.2, 𝛼1 = 0.6, 𝛼2 = 0.05. 

 

Figure 4 compares the dynamics without NPIs (left) and with NPIs that begin a certain number 

of days after the outbreak and are lifted after a limited time (right). We find that NPIs 

significantly affect the competition between the two strains, changing the direction of selection 

on the virus and leading to the evolution of the attenuated strain (compare panels a and b). While 

NPIs reduce the peak number of symptomatic cases (compare panels c and d), a “second wave” 

of infections may occur when NPIs are over (panels d and f). Here, this “second wave” is 

dominated by the attenuated strain (panel f) that produces more asymptomatic infections 

compared to the virulent strain (compare purple dashed line and orange solid line in panel d). 
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Figure 4. Temporal application of NPIs favors the evolution of the attenuated strain. 

Without NPIs (left), the virulent strain takes over the viral population. When NPIs are applied 

(right, shaded area), the virulent strain is more frequent among symptomatic (panel d), but the 

attenuated strain becomes more frequent in exposed individuals during the NPIs (panel f), and 

after the NPIs end it is the dominant strain (panel b). Parameters: NPIs start on day 31 and end 

on day 150. 𝜇 = 0.6, 𝛽min = 0.42, 𝛽max = 1.2. 

 

Test evasion  
We assume that a proportion 𝑝 of the population is tested for SARS-CoV-2 infection every day 

and consider the evolution of a test-evasive strain. Detectability is defined here as the test 

sensitivity, or the true positive rate: the probability that an infected individual will be correctly 

detected by a single test. The detectability of the detectable and test-evasive strains is 𝑑1, 𝑑2 

respectively, where 𝑑2 < 𝑑1. All else being equal, the test-evasive strain will evolve due to its 

lower detectability (Fig. S3a). However, lower detectability likely incurs a cost for the virus, as 

the target sequences for SARS-CoV-2 tests are in regions essential for replication and other 

critical aspects of the viral life cycle39. We assume this cost, 𝑐, is expressed in decreased 
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infectiousness, such that 𝛽2 = (1 − 𝑐) ⋅ 𝛽1 (see Eq. S2.1 in supplementary). Thus, we examine a 

competition between a detectable and a test-evasive strain that is less infectious compared to the 

virulent strain, 𝑐 > 0. 

 

Figure 5. High testing rate and effective NPIs favor the evolution of test-evasive strains. 

This figure presents the conditions for the evolution of test-evasive strains despite a cost of 

infectiousness (see Fig, S3b for further decreased infectiousness). Each line corresponds to a 

different testing rate, 𝑝. The colored areas below each line show the regions in which the test-

evasive strain evolves. The areas above each of the lines show the regions in which the 

detectable strain evolves. Test-evasive strains can also evolve if the detectability of the test-

evasive strain is low enough. For example, given that the impact of NPIs is 0.5, a test-evasive 

strain with detectability 𝑑2 = 0.4 (marked here with ‘X’) would evolve in Israel and the UK, but 

in the USA the more detectable strain would evolve. Here, 𝛼1 = 0.6, 𝛼2 = 0.6, 𝜇 = 0.6, 𝑐 =
0.01, 𝑑1 = 0.9. Estimated values for testing rates in different countries were accessed on 

December 30, 2020 (Table 1).  
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Figure 5 shows that a higher testing rate (p) may select for a test-evasive strain, even when 

reduced detectability incurs decreased infectiousness. When the impact of NPIs is higher (right), 

the test-evasive strain evolves even when the testing rate is low (solid line).   

    

Figure 6. Effects of decreased detectability on epidemiological metrics. These results 

demonstrate the outcomes of two separate outbreaks: (i) exclusively by a detectable strain (black 

lines) and (ii) exclusively by a test-evasive strain (green lines), under three testing regimes (solid, 

dashed, and dotted lines). Panels a and c show the maximum number of actual and test-

confirmed daily cases, respectively. Panels b and d show a timeline of these epidemiological 

metrics for a relatively high testing rate and low detectability. Higher detectability of the test-

evasive strain increases the daily number of confirmed cases (panel c, green lines) and decreases 

the daily number of actual cases (panel a, green lines). The effect of detectability on the number 

of daily actual cases is associated with the cost of infectiousness, c, producing a detectability 

threshold (panel a, marked with ‘X’), above which the number of actual daily cases for the test-

evasive strain is lower than for the detectable strain (see Fig. S4 for the effect of decreased 

detectability without cost of infectiousness). A higher testing rate increases the number of 

confirmed cases (panel c, compare solid, dashed and dotted lines) and decreases the number of 

actual cases (panel a, compare solid, dashed and dotted lines). Overall, when testing rate is high 

and the epidemic is driven by a test-evasive strain with low detectability (panels b and d), the 

number of confirmed cases is lower compared to an epidemic driven by a detectable strain, while 

the number of actual cases is higher. Here, 𝛽 = 0.42 (Impact of NPI = 0.65), 𝜇 = 0.6, 𝛼1 =
0.6, 𝛼2 = 0.6, 𝑑1 = 0.9, 𝑐 = 0.01. For panels b and d, 𝑑2 = 0.3, 𝑝 = 10.9 per 1K people. 
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In Figure 6, we examine the effects of decreased detectability on epidemiological metrics. We 

explore two scenarios of epidemic outbreaks: exclusively by a detectable strain (black lines), and 

exclusively by a test-evasive strain (green lines). The number of confirmed daily cases increases 

with the testing rate (Fig. 6c, compare solid, dashed, and dotted lines), while the number of 

actual daily cases decreases with it (Fig. 6a, compare solid, dashed and dotted lines). When the 

epidemic is driven by a test-evasive strain (green lines), the daily number of confirmed cases and 

daily percent of positive tests (Fig. S5) increase with the detectability of the test-evasive strain 

(Fig. 6c), while the daily number of actual cases decreases (Fig. 6a).  Overall, when testing rate 

is high and the epidemic is driven by a test-evasive strain with low detectability (Figs. 6b and 

6d), the number of confirmed cases can be misleading: it is significantly lower for the test-

evasive strain, despite the number of actual cases being higher. 

Discussion 
We examined the expected selection pressures exerted by non-pharmaceutical interventions and 

testing on virulence and detectability of SARS-CoV-2. We found that when stronger NPIs are 

applied, selection may act to reduce virulence. Additionally, the timely application of NPIs could 

significantly affect the competition between viral strains, favoring reduced virulence. 

Furthermore, a higher testing rate can select for a test-evasive viral strain, even if that strain is 

less infectious than the competing detectable strain. Our results also show that if a test-evasive 

strain evolves, reductions in epidemiological metrics such as confirmed daily cases may be due 

to reductions in test sensitivity rather than reductions in the actual number of cases. 

Our model makes several simplifying assumptions. We assume that individuals exhibiting 

clinical symptoms are isolated and therefore do not transmit the virus (𝛽𝑐 = 0). However, such 

individuals may still be able to infect others, whether it is in a medical facility, within the 
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household, or due to non-compliance with isolation guidelines. Nevertheless, practical strategies 

have been put in place to reduce nosocomial transmission65, and evidence suggests that the 

overall risk of hospital-acquired COVID-19 is low65. In our model, when the impact of NPIs is 

low, the susceptible population is infected rapidly by the more virulent strain. Our model could 

be extended by allowing individuals that recovered from one strain to become infected with 

another strain, and in that case the attenuated strain may evolve even when the impact of NPIs is 

low. We assume that the entire population is tested daily with a testing rate estimated by realistic 

parameters (Figs. 5 and 6). However, the average testing rate likely underestimates the rate for 

infected cohorts, as individuals who experience symptoms or have been exposed to a confirmed 

case are more inclined to be tested. Applying a higher testing rate would make the evolution of 

the test-evasive strain even more likely (Fig. 5).  

The recent emergence of novel SARS-CoV-2 variants has raised widespread concern26,27. SARS-

CoV-2 is likely a pathogen of recent zoonotic origin, and can therefore further adapt to its new 

human host66. Some existing mutations have been said to increase infectiousness67 and be 

associated with a younger patient age68. Some variants are suspected of ‘immune escape’, 

eluding the human immune response69,70, such that more recovered individuals remain 

susceptible to reinfection and possibly causing a reduction in the effectiveness of vaccines69,70. 

The future evolutionary and epidemiological trajectories of the virus are difficult to predict71,72, 

and it may evolve into different variants differing in their level of virulence and 

transmissibility66. Our results show that non-pharmaceutical interventions and testing policies, 

primarily designed and applied to control the spread of the pandemic, may also steer the 

evolution of the virus towards attenuation and test-evasion. 
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