Abstract
Parkinson’s disease (PD) is amongst the relatively prevalent neurodegenerative disorders with its course of progression classified as prodromal, stage1, 2, 3 and sever conditions. With all the shortcomings in clinical setting, it is often challenging to identify the stage of PD severity and predict its progression course. Therefore, there appear to be an ever-growing need need to use supervised and unsupervised artificial intelligence and machine learning methods on clinical and paraclinical datasets to accurately diagnose PD, identify its stage and predict its course. In today’s neuro-medicine practices, MRI-related data are regarded beneficial in detecting various pathologies in the brain. In addition, the field has recently witnessed a growing application of deep learning methods in image processing often with outstanding results. Here, we applied Convolutional Neural Networks (CNN) to propose a model helping to distinguish different stages of PD. The results showed that our current MRI-based CNN model may potentially be employed as a suitable method for the distinction of PD stages at a high accuracy rate (0.94).
- Deep Learning
- Parkinson’s Disease
- Convolutional Neural Network
- Clustering
Competing Interest Statement
The authors have declared no competing interest.
Clinical Trial
N/A
Clinical Protocols
https://samsat.sums.ac.ir/page-Novin/fa/84/form/pId15008
Funding Statement
N/A
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
IRB, Shiraz University of Medical Sciences
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes