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Abstract  41 
 42 
Background 43 
Patients undergoing allogeneic hematopoietic stem cell transplantation (HSCT) exhibit changes in their 44 
gut microbiota and are experiencing a range of complications, including acute graft-versus-host disease 45 
(aGvHD). It is unknown if, when, and under which conditions a re-establishment of microbial and 46 
immunological homeostasis occurs. It is also unclear whether microbiota long-term dynamics occur at 47 
other body sites than the gut such as the mouth or nose. Moreover, it is not known whether the patients’ 48 
microbiota prior to HSCT holds clues to whether the patient would suffer from severe complications 49 
subsequent to HSCT. Here, we performed integrated host-microbiota analyses of the gut, oral, and nasal 50 
microbiotas in 29 children undergoing allo-HSCT. 51 
 52 
Results 53 
The bacterial diversity decreased in the gut, nose, and mouth during the first month and reconstituted 54 
again 1-3 months after allo-HSCT. The microbial community composition traversed three phases over one 55 
year. Distinct taxa discriminated the microbiota temporally at all three body sides, including Enterococcus 56 
spp., Lactobacillus spp., and Blautia spp. in the gut. Of note, certain microbial taxa appeared already 57 
changed in the patients prior to allo-HSCT as compared to healthy children. Acute GvHD occurring after 58 
allo-HSCT could be predicted from the microbiota composition at all three body sites prior to HSCT, in 59 
particular from Parabacteroides distasonis, Lachnospiraceae NK4A136 sp. and Lactobacillus sp. 60 
abundances in the gut. The reconstitution of CD4+ T cells, TH17 and B cells was associated with distinct 61 
taxa of the gut, oral, and nasal microbiota. 62 
 63 
Conclusions 64 
This study reveals for the first time bacteria in the mouth and nose that may predict aGvHD. Surveillance 65 
of the microbiota at different body sites in HSCT may be of prognostic value and could assist in guiding 66 
personalized treatment strategies. The identification of distinct bacteria that have a potential to predict 67 
post-transplant aGvHD might provide opportunities for an improved preventive clinical management, 68 
including a modulation of microbiomes. The host-microbiota associations shared between several body 69 
sites might also support an implementation of more feasible oral and nasal swab sampling-based analyses. 70 
Altogether, the findings suggest that both, host factors and the microbiota, could provide actionable 71 
information to guiding precision medicine.  72 
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Background 73 
In allogeneic hematopoietic stem cell transplantation (allo-HSCT), the infusion of donor derived stem cells 74 
is employed as a curative treatment for various types of hematologic and non-hematologic disorders [1]. 75 
In allo-HSCT patients, the human gut microbiota changes subsequent to transplantation, which may  in 76 
part be  attributable to antimicrobial treatment and conditioning regimens [2–4]. Butyrate-producing 77 
bacteria affiliated with the order Clostridiales are depleted in the gut early after transplantation, while 78 
Proteobacteria, and Lactobacillales such as Enterococcus spp. expand, possibly due to both increased 79 
oxygen levels in the intestinal lumen in the absence of butyrate, and antimicrobial resistance [2–5]. 80 
However, microbiota dynamics in HSCT patients have so far mainly been monitored in detail during the 81 
first month post HSCT and not over longer periods of time. Hence, it is unclear whether and when the 82 
microbiota re-establishes to similar microbial community structures as prior to HSCT. 83 
Conditioning-induced intestinal epithelial permeability might promote bacterial translocation and 84 
bacteremia [6]. This is recognized as the initial step in the pathogenesis of acute graft-versus-host disease 85 
(aGvHD) [7]. Acute GvHD  is a common side effect of allo-HSCT in which alloreactive donor T cells exhibit 86 
cytotoxic activity against healthy tissue in the host, including the gut epithelium [7]. Acute GvHD severity 87 
can be distinguished in four grades dependent on the extent of organs affected: Grade 0-I presents as no 88 
or mild, and grade II-IV as moderate to severe aGvHD. Recently, studies have suggested that a lower gut 89 
microbiota diversity is associated with aGvHD and aGvHD-related mortality and that certain bacterial taxa 90 
dominating post HSCT may be involved in promoting aGvHD [3,8–12]. However, it has not been examined 91 
whether microbiota composition prior to HSCT has a predictive value in forecasting possible aGvHD 92 
severity, and which is addressed in the present study. 93 
The microbiota exerts immunomodulatory function on the host’s adaptive immune system, for example 94 
on T cells [13]. For instance, human commensal gut strains affiliated with Bacteroides and Clostridia can 95 
induce T regulatory (Treg) cells in germ-free mice [14]. Recent findings suggest that functionally different 96 
T cell subsets, such as  T helper 17 (TH17) and Treg cells are involved in the pathogenesis of aGVHD [15–97 
17]. The microbiota at body sites other than the gut, such as the oral and nasal cavities, have also been 98 
suggested to be involved in immunomodulation [18]. We have previously proposed that the gut 99 
microbiota is associated with immune cell reconstitution after allo-HSCT [4]. However, it is unknown if the 100 
microbiotas at other mucosal sites are affected by allo-HSCT, whether they are associated with aGvHD, 101 
and whether they are associated with recovery of the patients’ immune system.  102 
Here, we monitored the microbiota dynamics in the gut, oral, and nasal cavities in pediatric allogeneic 103 
HSCT patients over a period of one year. At all three body sites, we identify distinct temporal bacterial 104 
abundance trajectories. In a machine learning approach, we predict aGvHD severity from pre-transplant 105 
microbiotas in the gut, oral, and nasal cavities which may be useful for early preventive managements in 106 
the clinical setting. By relating the microbiota composition to immune cell counts, inflammation and 107 
infection markers, antibiotic treatment, clinical outcomes, and patients’ baseline parameters, we uncover 108 
similarities in host-microbial associations at different body sites.  109 
 110 

Results 111 
We characterized long-term microbiota dynamics in pediatric allo-HSCT at three body sites: the gut, and 112 
oral and nasal cavities (Figure 1). Fecal samples, buccal swabs, and anterior naris swabs were collected 113 
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from 29 children at 10 time points over a one-year period: Twice prior to HSCT, on the day of HSCT, weekly 114 
during the first month after HSCT, and at three follow-up time points up to twelve months post HSCT 115 
(Figure 1). Microbial community dynamics in these samples were determined by 16S rRNA gene profiling. 116 
A total of 709 patient samples (212 fecal samples, 248 oral swabs, and 249 nasal swabs from 10 time 117 
points) were characterized. Upon sequence filtering (see Methods), we retained 2465 ASVs for the fecal, 118 
377 ASVs for the oral, and 197 ASVs for the nasal core microbiota sets. We predicted the development of 119 
aGvHD severity from pre-transplant gut, oral, and nasal microbial abundances using machine learning. In 120 
addition, we assessed multivariate associations between the microbiota at the different body sites and 121 
immune reconstitution, immune markers, and clinical outcomes. Immune reconstitution was determined 122 
through quantitative measurements of T, B, and NK cells, and other leukocyte subpopulations in 123 
peripheral blood (Figure 1). We assessed systemic inflammation through levels of C-reactive protein (CRP), 124 
and measured procalcitonin as an approximation of infection (Figure 1, see Methods).   125 
 126 
Patient cohort and outcomes  127 
The 29 children had a median age of 8.2 years (range: 2.5-16.4) at the time of HSCT. Nine patients (31%) 128 
had no or mild aGvHD (grade 0 or I) and 20 patients (69%) developed moderate to severe aGvHD (grade 129 
II-IV) at median +14 days following HSCT (range: day +9 to day +61) (Supplementary Table S1, Additional 130 
file 1; and https://doi.org/10.6084/m9.figshare.13567502). The main organs involved in aGvHD included 131 
the skin (all), intestinal tract (n=3), and the liver (n=2). During the follow-up period of 21.4 months on 132 
average (range: 10.1 – 32.7 months), two patients (7%) relapsed and one patient underwent a donor 133 
lymphocyte infusion. Three patients (10%) died (one relapse-related death at day +91 and two treatment-134 
related deaths at days +111 and +241, respectively). Due to their low incidence, we did not focus our 135 
analysis on relapse and mortality. For 25 patients (86.2%) ³1 bacterial infection indicated by positive 136 
microbial culture was reported throughout the monitored period. All patients were treated 137 
prophylactically with trimethoprim and sulfamethoxazole prior to HSCT. In cases of fever or clinical signs 138 
of infections, antibiotic treatment with meropenem (28 patients), vancomycin (24 patients), ciprofloxacin 139 
(20 patients), phenoxymethylpenicillin (14 patients), or other antibiotics was commenced according to 140 
culture-based results or clinical presentation.  141 
 142 
Bacterial alpha diversity decreases in relation to allo-HSCT at all three body sites 143 
Alpha diversity (Inverse Simpson) in the gut was overall the highest, followed by the oral cavity, and the 144 
nose (Figure 1B). The lowest alpha diversity was observed within the first month post HSCT for all three 145 
body sites. However, the exact time points were somewhat different for each body site: the day of HSCT 146 
to week +3 for the gut, week +3 for the oral cavity, and week +1 for the nasal cavity. The decrease in 147 
microbial diversity was significant for the nasal cavity, where the median alpha diversity decreased from 148 
4.43 at the start of conditioning to 2.65 in week +1 (P = 0.02) (Figure 1B). Alpha diversity increased again 149 
at all body sites thereafter. However, alpha diversity was lower again at month +12 in the nasal cavity. 150 
 151 
 152 
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Figure 1. Monitoring gut, oral, and nasal microbiota and the host immune system in allogeneic hematopoietic 154 
stem cell transplantation (HSCT).  A) Twenty-nine children were monitored before, at the time of, and immediately 155 
post allogeneic HSCT, as well as at late follow-up time points. Patients’ baseline characteristics, clinical outcomes, as 156 
well as immune cell counts, and inflammation and infection markers over time were monitored. Patient 157 
characteristics are described in detail in Table S1 (Additional File 1). Host immune system parameters were related 158 
to longitudinal dynamics of the gut, oral, and nasal microbiota that was assessed at the denoted time points. B) 159 
Bacterial alpha diversity before, at the time of, and after HSCT at each body site, displayed on a log10 transformed 160 
y-axis for visualization purposes. Asterisks indicate significant differences in median inverse Simpson index between 161 
time points * P < 0.05. C) Tree-based sparse linear discriminant (LDA) analyses by time point in relation to HSCT. For 162 
fecal samples, the positive LDA scores were observed for samples collected immediately post HSCT. For both oral 163 
and nasal samples, the positive LDA scores were observed for samples from before HSCT and from late follow up-164 
time points.  165 
 166 
Microbial community composition in patients prior to HSCT differs from healthy controls 167 
We hypothesized that the bacterial alpha diversity at the first sampling time point (preexamination) might 168 
already be lower in these patients as compared to age-matched healthy children due to the treatment 169 
given prior to the referral to allo-HSCT and enrolment in this study. To assess this, we compared the gut 170 
microbiota at preexamination to that of healthy children (median age 6.8 years) [19]. As expected, the 171 
alpha diversity was 2.4-fold lower in the patients at preexamination (median InvSimpson 11.7) as 172 
compared to the healthy children (median InvSimpson 28.2) (Supplementary Figure S1A, Additional File 173 
2). Bacterial composition differed between the two groups (anosim, p=0.001, R=0.44, Figure S1B). This 174 
difference was to a certain extent due to a larger variation within the HSCT group (betadisper, p<0.001) 175 
(Supplementary Figure S1 B, Additional File 2). Through linear discriminant analysis (LEfSe) and differential 176 
abundance analysis (DeSeq2), we found taxa that were significantly more abundant in the patients already 177 
at preexamination as compared to the healthy controls: these included Bacilli (e.g. Lactobacillus, 178 
Enterococcus), Erysipelotrichaceae, and Enterobacteriaceae (e.g. Klebsiella). In contrast, certain taxa were 179 
more abundant in the healthy children, such as Prevotella, Ruminococcaceae (e.g. Ruminococcus), and 180 
Akkermansia, as compared to the patients at preexamination (Supplementary Figure S1 C and D, 181 
Additional File 2; and https://doi.org/10.6084/m9.figshare.13614230). 182 
 183 
Temporal microbial community dynamics appear in three interlaced phases over one year 184 
For a more detailed assessment of gut, oral, and nasal ASVs that best characterized samples from different 185 
time points, we performed tree-based sparse linear discriminant analyses (LDA). We observed at all three 186 
body sites that samples divided into three partly interlaced phases; phase I: samples at pre-examination 187 
and conditioning start, phase II: day of HSCT to month +1, and phase III: month +3 to month +12 (Figure 188 
1C). Interestingly, samples from phase I and III overlapped for the oral and nasal cavities, suggesting a 189 
possible return of microbial communities from later time points to a state similar to before HSCT. Of note, 190 
the nasal community composition at month +12, that exhibited low alpha diversity, was different from 191 
samples of week +1 (phase II) that also exhibited low alpha diversity (Figure 1B and C). 192 
To get a more detailed view of the microbial abundance dynamics, we examined the 12 most abundant 193 
families at each body site, respectively (Figures 2A, 3A, Additional File 2: Figures S2 and S3A). In the gut, 194 
we observed a reduction in Lachnospiraceae in phase II, immediately after HSCT, from 13% at pre-195 
examination to 4.7% in week +1, followed by a recovery to 27.5% in month +3 at the start of phase III 196 
(Figure 2A). Concurrently, an expansion of Enterococcaceae in phase II (pre-examination: 6.1%; week +1: 197 
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22.8%) and Lactobacillaceae in phase II (pre-examination: 2%; week +1: 7%) occurred, followed by a 198 
reduction in phase III from month +3 onwards to 0.2% and 0.6%, respectively (Figure 2A).  199 
In the oral cavity, we observed a reduced relative abundance of Actinomycetaceae for several time points 200 
in phase II as compared to the time points in phase I (prior to HSCT) and at later follow-up time points. 201 
For example, Actinomycetaceae abundances were 9.7% at pre-examination and 2.9% in week +3 (Figure 202 
3A). Furthermore, Streptococcaceae abundances were lower from the day of HSCT until week +2 203 
compared with before HSCT and late follow-up time points (pre-examination: 44.6%; week +1: 23.3%; 204 
month +3: 51.3%, Figure 3A). 205 
In the nasal cavity, we observed a reduced relative abundance of Corynebacteriaceae and Moraxellaceae 206 
at most time points in phase II, as compared to samples from phase I and III (Additional File 2: Figure S3). 207 
For example, Corynebacteriaceae abundances were 28.7% at pre-examination and 0.7% in week +1 208 
(Additional File 2: Figure S3). 209 
 210 
 211 

 212 
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Figure 2. Temporal microbial community dynamics in the gut. A) Relative abundances over time of the 12 most 213 
abundant families in the gut. B) Tree-based sparse linear discriminant analysis (LDA). Coefficients of discriminating 214 
clades of ASVs on the first LDA axis, colored by taxonomic family, and plotted along the phylogenetic tree. C) 215 
Trajectories of ASVs affiliated with the families Enterococcaceae and Lactobacillaceae, with increasing abundances 216 
after HSCT. The most abundant discriminating ASV for each family is indicated. D) Trajectories of ASVs affiliated with 217 
the families Lachnospiraceae and Ruminococcaceae, with decreasing abundances after HSCT and recovery at late 218 
follow-up time points. The most abundant discriminating ASV for Blautia spp. is indicated. Detailed taxonomic 219 
information and LDA-coefficients of the displayed ASVs are listed in Additional File 1: Table S2. 220 
 221 
Distinct Enterococcus, Lactobacillus, and Blautia lineages discriminate the gut microbiota temporally 222 
In order to determine which specific taxa in the gut were driving the differences between samples in the 223 
LDA (Figure 1C), we examined the individual discriminating ASVs. In general, in tree-based sparse LDA, 224 
ASVs with positive LDA coefficients are overrepresented in samples with positive LDA scores, while ASVs 225 
with negative LDA coefficients likewise are associated with samples with negative LDA scores (Figures 1C, 226 
2B, 2C, and 2D). The LDA revealed 19 clades (total 102 ASVs) in the gut that best separated samples by 227 
time point (Figure 2B).  The two most discriminating clades with positive LDA-coefficients comprised ASVs 228 
of the family Enterococcaceae and Lactobacillaceae (Figure 2B). The ASVs of these two clades increased 229 
in abundance from the day of HSCT (Enterococcaceae) and week +1 (Lactobacillaceae), respectively, in 230 
support of the family abundances and in line with the positive LDA scores of phase II samples (Figures 2A, 231 
2C, and 1C). Of note, the order Lactobacillales and genus Lactobacillus (family Lactobacillaceae) appeared 232 
already to be higher at pre-examination as compared to healthy children (Supplementary Figure S1D, 233 
Additional File 2). From month +3 onwards, their abundances decreased again to levels comparable to the 234 
time of pre-examination (i.e. pre-treatment) (Figure 2C). All members of the Enterococcaceae clade, with 235 
the exception of one ASV, were Enterococcus spp. (Additional File 1: Table S2). The most abundant and 236 
most frequently observed Enterococcus was ASV 1 (Figure 2C and Additional File 1: Table S2). More 237 
detailed sequence analysis of the partial 16S rRNA gene sequence using SINA and BLAST alignments 238 
revealed that it belonged to the Enteroccoccus faecium group.  The most abundant and most frequently 239 
observed Lactococcus was ASV 3 (Figure 2C and Additional File 1: Table S2), and its partial 16S rRNA gene 240 
sequence exhibited a high sequence similarity to Lactobacillus rhamnosus. 241 
The two most discriminative clades with negative LDA-coefficients included two individual ASVs and one 242 
clade of the Lachnospiraceae family, and two Ruminococcaceae clades (Figure 2B, Additional File 1: Table 243 
S2). The abundances of these ASVs decreased in week +1 and recovered from month +3 onwards, 244 
returning to abundances comparable with before HSCT or higher (Figure 2D), in agreement with the 245 
abundance patterns for those families (Figure 2A). Of note, the family Ruminococcaceae appears already 246 
to be lower at pre-examination as compared to healthy children (Supplementary Figure S1 C and D, 247 
Additional File 2). All ASVs within the Lachnospiraceae group belonged to the genus Blautia (Additional 248 
File 1: Table S2). The most abundant and most frequently observed Blautia was ASV 78 (Figure 2D and 249 
Additional File 1: Table S2), and its partial 16S rRNA gene sequence exhibited a high sequence similarity 250 
to Blautia wexlerae. 251 
 252 
Distinct Actinomyces and Streptococcus lineages discriminate the oral microbiota temporally 253 
The tree-based sparse LDA identified 10 clades of in total 71 ASVs in the oral cavity that best separated 254 
samples by time points along the first axis (Figure 3B). The two largest discriminating groups of ASVs were 255 
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affiliated with Actinomycetaceae and Streptococcaceae (Figure 3B, Additional File 1: Table S2). The most 256 
abundant and among the most frequently observed ASVs were Actinomyces ASV 18 and Streptococcus 257 
ASV 28 (Figure 3C and Additional File 1: Table S2), and their partial 16S rRNA gene sequence exhibited a 258 
high sequence similarity to the Actinomyces viscosis and Streptococcus mitis groups, respectively. 259 
Additional discriminating ASVs were affiliated with Prevotellaceae, and Bacillales Family XI (Gemella spp.), 260 
respectively. The most abundant and frequently observed ASVs were affiliated with Prevotella 261 
melaninogenica (ASV 42) and Gemella sanguis (ASV 208). In agreement with the relative family abundance 262 
dynamics, these clades shared a pattern of depletion from the day of HSCT or week +1 onwards (phase 263 
II), until their abundances recovered from month +3 onwards (phase III) (Figures 3A and 3C) to an 264 
abundance similar to before HSCT, as observed for Ruminococcaceae and Lachnospiraceae in the gut. 265 
 266 
Distinct Corynebacteriaceae and Streptococcaceae lineages discriminate the nasal microbiota 267 
temporally 268 
The LDA revealed 30 discriminating nasal clades on axis 1 (comprising in total 36 ASVs), many of which 269 
consisted of individual ASVs (Additional File 2: Figure S3B). ASVs affiliated with the same family did not 270 
always covary in abundance. The Corynebacteriaceae, Streptococcaceae, and Moraxellaceae ASVs all had 271 
positive LDA-coefficients, i.e. their abundances decreased after HSCT and increased again from month+3 272 
onwards (Additional File 2: Figures S3B and S3C). The most abundant and most frequently observed 273 
Corynebacteriaceae was ASV 14 (Additional File 2: Figure S3C and Additional File 1: Table S2), and its 274 
partial 16S rRNA gene sequence exhibited a high sequence similarity to Corynebacterium propinquum. 275 
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 276 
Figure 3. Temporal microbial community dynamics in the oral cavity. A) Relative abundances over time of the 12 277 
most abundant families in the oral cavity. B) Tree-based sparse linear discriminant analysis (LDA). Coefficients of 278 
discriminating clades of ASVs on the first LDA axis, colored by taxonomic family, and plotted along the phylogenetic 279 
tree. C) Trajectories of ASVs affiliated with the families Actinomycetaceae, Streptococcaceae, Prevotellaceae, and 280 
Family XI (Class Bacillales), with decreasing abundances after HSCT and recovery at late follow-up time points. The 281 
most abundant discriminating ASV for each family is indicated. Detailed taxonomic information and LDA-coefficients 282 
of the displayed ASVs are listed in Additional File 1: Table S2. 283 
 284 
 285 
Acute GvHD severity can be predicted from gut microbiota composition prior to HSCT 286 
To reveal potential associations between the gut microbiota and the severity of acute GvHD, we examined 287 
the 12 most abundant families at each body site in patients with no or mild (grade 0-I) and moderate to 288 
severe (grade II-IV) aGvHD. In the gut, Tannerellaceae were less abundant at time points before HSCT in 289 
patients with grade 0-I compared to grade II-IV, especially at pre-examination and at start of conditioning 290 
(Figure 4A). In order to predict aGvHD (grade 0-I versus grade II-IV) from microbial abundances at time 291 
points up until the time of stem cell infusion, we implemented machine-learning models (see Methods – 292 
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Statistical anlysis). This analysis revealed 3 significant predictive ASVs in the gut: ASV 128 (Parabacteroides 293 
distasonis, Tannerellaceae, P < 0.01), ASV 268 (Lachnospiraceae NK4A136 group sp., Lachnospiraceae, P 294 
= 0.01) and ASV 3 (Lactobacillus sp., Lactobacillaceae, P < 0.01) (Figures 4B and 4C, and Additional File 1: 295 
Table S3). This means, high abundances of these ASVs before HSCT were associated with the subsequent 296 
development of aGvHD grade II-IV post HSCT (Figure 4C). For instance, all pre-transplant samples with a 297 
variance stabilized abundance >5.7 of ASV 128 (Parabacteroides distasonis) and 67% with a variance 298 
stabilized abundance >3 of ASV 3 (Lactobacillus sp.) originated from patients who later developed aGvHD 299 
grade II-IV (Figure 4C). In agreement, log transformed relative abundances of these ASVs were mostly 300 
higher at pre-examination, conditioning start, and the day of HSCT in patients who later developed aGvHD 301 
grade II-IV compared with those exhibiting grade 0-I (Figure 4D). For instance, the average abundance of 302 
ASV 128 (Parabacteroides distasonis) was 5.5 times higher at pre-examinantion in grade II-IV versus in 303 
grade 0-I patients (Figure 4D). The temporal trajectory of ASV 3 (Lactobacillus sp.) also revealed a higher 304 
abundance at time points up to the transplantation in patients with grade II-IV aGvHD compared to those 305 
with grade 0-I (Figure 4E). Within the Lactobacillaceae identified by the LDA, this pattern seemed to be 306 
restricted to ASV3 (Figure 4E). ASV 128 (Parabacteroides distasonis) was part of the discriminating group 307 
of Tannerellaceae identified in the LDA (Figure 4E, and Additional File 1: Table S3). Its trajectory facetted 308 
by aGvHD severity confirmed the observation of increased pre-HSCT abundances in patients with 309 
subsequent development of aGvHD grade II-IV (Figure 4E).  310 
 311 
Acute GvHD severity can be predicted from oral microbiota composition prior to HSCT 312 
In the oral cavity, the bacterial community before HSCT in patients with grade II-IV aGvHD was 313 
characterized by a lower relative abundance of Neisseriaceae, and higher relative abundances of 314 
Aerococcaceae and Prevotellaceae, compared with grade 0-I aGvHD, especially at pre-examination and 315 
conditioning start (Figure 5A). Our machine learning approach predicted aGvHD severity (grade 0-I versus 316 
II-IV) from the abundances of 3 significant oral ASVs pre-HSCT: ASV 568 (Actinomyces sp., 317 
Actinomycetaceae, P < 0.001), ASV 226 (Prevotella melaninogenica, Prevotellaceae, P < 0.001) and ASV 318 
500 (Pseudopropionibacterium propionicum, Propionibacteriaceae, P < 0.001) (Figures 5B and 5C, and 319 
Additional File 1: Table S3). High abundances of these ASVs before transplantation predicted the 320 
development of aGvHD grade II-IV after HSCT (Figure 5C). For instance, 91% of samples with a variance 321 
stabilized abundance >0.4 of ASV 568 (Actinomyces sp.) and 92% of samples with a variance stabilized 322 
abundance >6.1 of ASV 226 (Prevotella melaninogenica) originated from patients with subsequent 323 
development of aGvHD grade II-IV (Figure 5C). In support, pre-HSCT log transformed relative abundances 324 
of these ASVs were higher in those patients. For example, the median relative abundance of ASV 500 325 
(Pseudopropionibacterium propionicum) on the day of HSCT was 10 times higher in grade II-IV versus in 326 
grade 0-I patients (Figure 5D). Temporal trajectories of oral Actinomycetaceae and Prevotellaceae, 327 
identified also in the LDA, showed that the abundances of ASV 226 (Prevotella melaninogenica) and ASV 328 
568 (Actinomyces sp.) were higher at time points up to the transplantation in patients with grade II-IV 329 
versus those with grade 0-I (Figure 5E).  330 
 331 
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 332 
Figure 4. Machine learning-based prediction of aGvHD severity from the pre-HSCT gut microbiota composition. A) 333 
Relative abundances of the 12 most abundant families over time in the gut in patients with aGvHD grade 0-I versus 334 
II-IV. B) Importance plot of top 20 predictive gut ASVs identified by the svmLinear model with importance scores 335 
indicating the mean decrease in prediction accuracy in case the respective ASV would be excluded from the model. 336 
The final cross-validated svmLinear model predicted aGvHD (0-I versus II-IV) from the abundances of gut ASVs pre-337 
HSCT with 86% accuracy (95% CI: 65% to 97%). The ASVs that were also confirmed by Boruta feature selection are 338 
indicated with asterisk. C) Conditional inference tree (CTREE) displaying ASVs identified as significant split nodes by 339 
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nonparametric regression for prediction of aGvHD. Numbers along the branches indicate split values of variance 340 
stabilized bacterial abundances. The terminal nodes show the proportion of samples originating from patients (n = 341 
number of samples) with aGvHD grade 0-I vs II-IV. D) Boxplots depicting the log transformed relative abundances of 342 
the predictive ASVs at time points up to the transplantation in aGvHD grade 0-I compared with grade II-IV patients. 343 
E) Trajectories of Lactobacillaceae and Tannerellaceae ASVs that were identified by tree-based sparse LDA, including 344 
ASV 3 and ASV 128 that were predictive for aGvHD (bold lines), in patients with aGvHD grade 0-I vs II-IV. 345 
 346 

 347 
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Figure 5. Machine learning-based prediction of aGvHD severity from the pre-HSCT oral microbiota composition. 348 
A) Relative abundances the 12 most abundant families over time in the oral cavity in patients with aGvHD grade 0-I 349 
versus II-IV. B) Importance plot of top 20 predictive oral ASVs identified by the svmLinear model with importance 350 
scores indicating the mean decrease in prediction accuracy in case the respective ASV would be excluded from the 351 
model. The final cross-validated svmLinear model predicted aGvHD (0-I versus II-IV) from the abundances of oral 352 
ASVs pre-HSCT with 92% accuracy (95% CI: 73% to 99%). The ASVs that were also confirmed by Boruta feature 353 
selection are indicated with asterisk. C) Conditional inference tree (CTREE) displaying ASVs identified as significant 354 
split nodes by nonparametric regression for prediction of aGvHD. Numbers along the branches indicate split values 355 
of variance stabilized bacterial abundances. The terminal nodes show the proportion of samples originating from 356 
patients (n = number of represented samples) with aGvHD grade 0-I vs II-IV. D) Boxplots depict the log transformed 357 
relative abundances of the predictive ASVs at time points up to the transplantation in aGvHD grade 0-I compared 358 
with grade II-IV patients. E) Trajectories of Prevotellaceae and Actinomycetaceae ASVs that were identified by tree-359 
based sparse LDA, including ASV 226 and ASV 568 that were predictive for aGvHD (bold lines), in patients with aGvHD 360 
grade 0-I vs II-IV. 361 
 362 
 363 
Acute GvHD severity can be predicted from nasal microbiota composition prior to HSCT 364 
The proportion of nasal Neisseriaceae prior to HSCT was higher in patients with aGvHD grade 0-I as 365 
compared to grade II-IV (Additional File 2: Figure S4A). In contrast, Actinomycetaceae and 366 
Corynebacteriaceae exhibited a higher abundance in aGvHD grade II-IV patients prior to HSCT compared 367 
to those with grade 0-I (Additional File 2: Figure S4A).  We found two ASVs significantly predicting aGvHD 368 
grade with opposite effects, ASV 66 and ASV 47. A high pre-HSCT abundance of ASV 66 (Actinomyces sp., 369 
Actinomycetaceae, P = 0.03) predicted development of aGvHD grade II-IV. The partial 16S rRNA gene 370 
sequence of ASV 66 exhibited a high sequence similarity to Actinomyces viscosus. A total of 94% of 371 
samples with a variance stabilized abundance >6.4 of ASV 66 originated from patients with subsequent 372 
development of aGvHD grade II-IV (Additional File 2: Figures S4B and S4C). In support, pre-HSCT log 373 
transformed relative abundances of ASV 66 (Actinomyces sp.) were 2.3 times higher in patients with 374 
aGvHD grade II-IV compared to those with grade 0-I (Additional File 2: Figure S4C). In contrast, high pre-375 
HSCT abundance of ASV 47 (Rothia sp., P = 0.03) predicted that patients would be spared from aGvHD. 376 
The partial 16S rRNA gene sequence of ASV 47 exhibited a high sequence similarity to Rothia aeria.  All 377 
nasal samples with a variance stabilized pre-HSCT abundance >-3.05 of ASV 47 (Rothia sp.) originated from 378 
patients who subsequently developed no or mild aGvHD (grade 0-I) (Additional File 2: Figure S4B and S3C).  379 
 380 
Reconstitution of CD4+ T cells and the TH17 subpopulation is associated with gut, oral, and nasal 381 
microbiota 382 
In order to characterize associations between the microbiota and immune cell counts, immune markers, 383 
and clinical outcomes in HSCT that potentially might impact our predictions of aGvHD, we implemented 384 
two multivariate multi-table approaches, namely sparse partial least squares (sPLS) regression and 385 
canonical correspondence analyses (CCpnA). Using sPLS regression, we identified three clusters of ASVs 386 
for each body site, respectively (Figures 6A, and Additional File 2: S5A and S6A), which was supported by 387 
the CCpnA (Figure 6B, and Additional File 2: S5B and S6B). Several cell populations of the adaptive immune 388 
response were associated with one cluster each at all three body sites according to the sPLS analysis. 389 
These included T cell counts at late follow-up time points, particularly CD4+ T cells in months +3 and +6, 390 
and the subpopulation of TH17 cells in months +1 and +3. In the gut, high numbers of these adaptive 391 
immune cell populations were associated with high abundances of mainly Lachnospiraceae, 392 
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Ruminococcaceae, and Lactobacillaceae ASVs (gut cluster 1, Figure 6A). Of note, two of the Lactobacillus 393 
spp. ASVs in gut cluster 1 (ASV 31 and ASV 586) were also observed as members of the group of 394 
Lactobacillaceae that discriminated samples from different time points in the LDA (Figure 2C). In the oral 395 
cavity, the same lymphocyte subsets were positively correlated with specific Flavobacteriaceae, 396 
Prevotellaceae, Veillonellaceae, and Neisseriaceae ASVs (oral cluster 3, Additional File 2: Figure S5A). The 397 
nasal cluster 1 that was affiliated with high T cell counts comprised predominantly Veillonellaceae 398 
(Additional File 2: Figure S5A). The nasal cluster 3 was characterized by high T cell counts at pre- 399 
examination and exhibited a high abundance of ASV 47 (Rothia sp.) and other taxa that were associated 400 
with no to mild aGvHD (grade 0-I) (Additional File 2: Figure S4). 401 
In the CCpnA, we observed that samples in gut cluster 1 (mainly from months +3 and +6) belonged to 402 
patients with benign primary diseases, who received conditioning regimens involving fludarabine (Figure 403 
6B). Moreover, these patients had a high number of bacterial and viral infections and were treated often 404 
with phenoxymethylpenicillin compared to the overall patient population. In the oral cavity, samples 405 
associated with CD4+ T cell reconstitution similarly stemmed from late follow-up time points and from 406 
pre-examination. Patients in oral cluster 3 were generally treated with few antibiotics. The CCpnA of the 407 
nasal data set indicated that patients with high CD4+ T cell and TH17 cell counts at late follow-up time 408 
points exhibited moderate to severe aGvHD (grade II-IV). Furthermore, these patients were treated with 409 
meropenem, ciprofloxacin, and vancomycin more often compared with the remaining patient population 410 
(Figure S6B). Most samples in the nasal cluster 1 were collected in weeks +2 and +3.  411 
 412 
Reconstitution of B cells is associated with gut, oral, and nasal microbiota 413 
At all three body sites, B cell counts at several late follow-up time points exhibited associations with 414 
microbial abundances. High B cell counts were positively correlated with high abundances of 415 
Ruminococcaceae, Lachnospiraceae, and Rikenellaceae, as well as few Veillonellaceae and 416 
Lactobacillaceae in the gut (cluster 2, Figure 6A). In addition, the gut cluster 2 was associated with high 417 
NK cell counts in month +1. In the oral cavity, ASVs within the small cluster 1, particularly ASV 422 418 
(Actinomyces odontolyticus) and ASV 546 (Veillonella parvula), were positively correlated with these cell 419 
counts, whereas ASVs affiliated with Staphylococcaceae and Lactobacillaceae (oral cluster 2) exhibited 420 
negative correlations (Additional File 2: Figure S5A). ASV 422 (Actinomyces odontolyticus) was also 421 
observed within the group of Actinomycetaceae ASVs in the LDA of the oral microbiota. In the nasal cavity, 422 
abundances of Streptococcaceae, Moraxellaceae, and Corynebacteriaceae within nasal cluster 3 were 423 
positively correlated with high B cell counts, particularly in month +3 (Additional File 2: Figure S6A). The 424 
CCpnA indicated that samples in gut cluster 2 were taken predominantly in week +2, whereas samples in 425 
oral cluster 1 were mainly collected in months +3 and +6 (Figures 6B and Additional File 2: Figure S5B).  426 
Both the gut and oral CCpnA indicated that the associations between B cell counts and microbial 427 
abundances predominantly occurred in patients who underwent a conditioning regimen without TBI and 428 
without fludarabine (in contrast to conditioning regimens involving TBI or fludarabine). Furthermore, 429 
these patients were treated with ceftazidime, vancomycin, and ciprofloxacin, but sparsely with other 430 
antimicrobial agents (Figure 6B and Additional File 2: Figure S5B). The CCpnA on the gut data set revealed 431 
that samples in this cluster (gut cluster 2) originated from both patients diagnosed with malignant diseases 432 
and benign diseases (Figure 6B).   433 
 434 
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Figure 6. Multivariate associations of the gut microbiota with immune and clinical parameters in HSCT.  A) 436 
Clustered image map (CIM) based on sparse partial least squares (sPLS) regression analysis (dimensions 1, 2, and 3) 437 
displaying pairwise correlations >0.3/<-0.3 between ASVs (bottom) and continuous immune and clinical parameters 438 
(right). Red indicates a positive correlation, and blue indicates a negative correlation, respectively. Based on the sPLS 439 
regression model, hierarchical clustering (clustering method: complete linkage, distance method: Pearson’s 440 
correlation) was performed resulting in the three depicted clusters. B) Canonical correspondence analysis (CCpnA) 441 
relating gut microbial abundances (circles) to continuous (arrows) and categorical (+) immune and clinical 442 
parameters. ASVs and variables with at least one correlation >0.3/<-0.3 in the sPLS analysis were included in the 443 
CCpnA. The triplot shows variables and ASVs with a score >0.3/<-0.3 on at least one of the first three CCpnA axes, 444 
displayed on axis 1 versus 2 with samples depicted as triangles. The colored ellipses (depicted with 80% confidence 445 
interval) correspond to the clusters of ASVs identified by the sPLS-based hierarchical clustering. Abbreviations not 446 
mentioned in text: ATGmm, anti-thymocyte globulin; B_, blood; BU, busulfan; CY, Cyclophosphamide; DonorMatch6, 447 
matched unrelated donor; FLU_other, fludarabine combinations without thiotepa; GvHD.Prophylaxis1, treatment 448 
with cyclosporine; GvHD.Prophylaxis7, treatment with cyclosporine and methotrexate; immat_B, immature B cells; 449 
K_d100, Karnofsky score on day +100; K_pre, Karnofsky score before HSCT; m1, month+1; m3, month+3; m6, 450 
month+6; m12, month+12; mat_B, mature B cells; MEL, melphalan; total_B, total B cells; P_, plasma; parasitic, 451 
parasitic infection; pre_cond, before conditioning start; pre_exam, pre-examination; THIO, thiotepa; viral, viral 452 
infection; VP16, Etoposide. 453 
 454 
Body site-specific immune-microbial associations 455 
In addition to immune-microbial associations shared between two or three of the examined body sites, 456 
we observed a few patterns that were exclusive to individual sites. In cluster 3 in the gut, we observed 457 
ASVs primarily affiliated with Bacteroidaceae and Tannerellaceae whose abundances showed positive 458 
correlations with eosinophil counts in months +3, +6, and +12.  In the oral cavity, the sPLS analysis revealed 459 
a sub-cluster of oral cluster 3 comprising ASVs affiliated with various families, e.g. ASV 1172 (Actinomyces 460 
sp.), which was also identified as one of the discriminating Actinomycetaceae ASVs in the LDA. In the sPLS 461 
analysis, this sub-cluster was associated with high counts of Treg and TH17 cells at late follow-up time points 462 
(Additional File 2: Figure S6A).  463 
 464 
Discussion  465 
Both the microbiota and the immune system are subject to major changes during allogeneic HSCT. Failure 466 
to re-establish host-microbial homeostasis might have adverse consequences for the patients, such as 467 
prolonged immune deficiency. Long-term surveillance of microbial dynamics is required to understand i) 468 
the shifts in the microbial community structure induced by HSCT and its accompanying treatments, and 469 
ii) at which time points and under which conditions re-establishment of immunological and microbial 470 
homeostasis occurs. Such knowledge may be of great prognostic value and may assist in guiding 471 
personalized treatment strategies. Here, we present a comprehensive assessment of temporal microbial 472 
abundance trajectories from before, at the time of, and after HSCT, to late follow-up time points up to 473 
one year.  474 
 475 
We have identified a group of Ruminococcaceae, and a clade of Blautia spp. (Lachnospiraceae), temporally 476 
discriminating microbial community structure in the gut in relation to HSCT. We show a clear pattern of 477 
depletion of fecal Blautia spp. immediately post HSCT, as well as their recovery from month +3 post HSCT 478 
onwards. One could describe the trajectories of these potentially beneficial taxa as a “smile”-shape. 479 
Previous studies have associated the taxonomic families of Ruminococcaceae and Lachnospiraceae (both 480 
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class Clostridia), and especially the genus Blautia (family Lachnospiraceae), with lower mortality, lower 481 
GvHD, and higher bacterial diversity in adult allo-HSCT recipients [4,9,20–22]. In turn, a loss of those taxa 482 
after HSCT was associated with subsequent adverse outcomes. Our findings extend the potential of 483 
Blautia spp. abundances as an indicator of favorable clinical outcomes, as we characterize abundance 484 
dynamics in children and provide important insight into the time point for the expected return to 485 
abundances comparable to pre-HSCT time points (i.e. between month +1 and +3). 486 
 487 
Adverse effects, like bacteremia and GvHD, have been found to accompany an expansion of the genus 488 
Enterococcus post transplantation [2,3,6,23]. We have found a characteristic expansion of this genus, as 489 
well as of certain Lactobacillaceae after HSCT, in agreement with other recent studies [4,6,11]. In addition, 490 
we were able to show a decrease of Enterococcus spp. and Lactobacillaceae from month +3 to abundances 491 
comparable to pre-HSCT levels. The abundance of these taxa over the course of one year might be 492 
described as a “frown”-shaped trajectory. As for the “smile”-trajectory of potentially beneficial taxa, the 493 
“frown”-trajectories of these taxa could be the first step towards a novel basis to evaluate the re-494 
establishment of patients’ microbial homeostasis and associated convalescence. Importantly, 495 
Enterococcus was already higher abundant in the patient cohort at preexamination prior to HSCT as 496 
compared to the healthy age-matched cohort, most likely due to prior chemotherapy and antibiotic 497 
treatment given before referral to HSCT. Knowledge about the abundance level of Enterococcus  before 498 
HSCT could therefore provide valuable information about potential high-risk individuals already prior to 499 
transplantation. It should be noted, however, that despite the observed different abundance levels in 500 
patients and healthy controls, and the further expansion of Enterococcus post HSCT being in line with 501 
previous studies, our multivariate analyses did not reveal direct detrimental host-microbial associations 502 
of Enterococcus in the present cohort.  503 
 504 
We have to our knowledge for the first time determined long-term dynamics of the oral and nasal 505 
microbiota in allogeneic HSCT patients. Interestingly, we identified abundance trajectories of 506 
phylogenetically closely related groups of Actinomycetaceae, Streptococcaceae, Prevotellaceae, and 507 
Family XI (Gemella spp., Class Bacillales) in the oral cavity, resembling the “smile”-shaped trajectories 508 
observed in gut. These taxa are part of the normal oral microbiota. Our findings are in agreement with 509 
previous studies reporting the detection of fewer Prevotella spp. and Streptococcus spp. in the oral cavity 510 
during the first month post HSCT [24,25]. In addition, our current study provides insight into the time of 511 
recovery of these taxa in month +3 after HSCT.  512 
 513 
For the oral cavity, a post-transplant expansion of Enterococcus spp. and Staphylococcus spp. has been 514 
reported previously [25,26]. Consistently, we observed an increased relative abundance of 515 
Staphylococcaceae during the first month post HSCT, but we did not identify Enterococcus spp. or 516 
Staphylococcus spp. as significant drivers of temporal dynamics in the oral cavity. Previously, increased 517 
Enterococcus abundances post HSCT were found predominantly in patients who developed oral mucositis, 518 
which was not directly assessed in our study [25,27]. Therefore, our findings suggest that further 519 
investigation of taxa that exhibit “smile”-like abundance trajectories could be relevant in direct relation 520 
to oral mucositis. Especially Actinomycetaceae, Streptococcaceae, and Prevotellaceae, when low-521 
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abundant, might be candidates for bacterial predictors of oral mucositis, and furthermore might be 522 
employed to facilitate preventive management. 523 
 524 
In the nasal cavity, the microbiota did not exhibit temporal patterns as distinct as the “smile“- and 525 
“frown“- shaped trajectories in the gut and the oral cavity. One could speculate that nasal bacterial 526 
abundance patterns might be more individualized, which might in turn conceal pronounced patterns 527 
when looking at the patient population as a whole. However, certain host-microbial associations observed 528 
in the gut were reflected in the nasal cavity. For instance, reconstitution of CD4+ T cells and the TH17 529 
subset were associated with distinct groups of ASVs at all three body sites.  530 
 531 
Together, these findings suggest that the oral and potentially also the nasal cavity might constitute easily 532 
accessible microbial niches suitable for investigating host-microbial associations in the context of HSCT, 533 
similar to current strategies for the gut. While mucous membranes that are in close association with 534 
distinct microbial communities characterize all three niches, it is more feasible to collect buccal and 535 
anterior naris swabs during clinical routine as compared to collecting fecal samples. Fecal sample 536 
collection is dependent on bowel movements, which often are impaired in this patient group. Therefore, 537 
our study provides valuable knowledge for possible future applications that could include the monitoring 538 
of oral microbial dynamics in clinical routine, which might be easier to implement than routine fecal 539 
sampling.  540 
 541 
We identified AVSs with the potential to predict post-transplant aGvHD, which might open opportunities 542 
to improved preventive clinical management, for example by intensified prophylactic immunosuppression 543 
for patients at increased risk. Some ASVs were significant for both, discriminating the microbiota in long-544 
term dynamics as well as in the prediction of aGVHD severity from the microbiotas prior to HSCT, such as 545 
ASV 3 (Lactobacillus sp.) in the gut, as well as ASV 568 (Actinomyces sp.) and ASV 226 (Prevotella 546 
melaninogenica) in the oral cavity. While we do not yet understand the biological mechanisms underlying 547 
this observation, these taxa could be of particular interest for a long-term monitoring in pediatric HSCT 548 
patients, starting prior to HSCT. Like the gut microbiota, the oral and nasal commensal residents might be 549 
of systemic relevance, and a more holistic picture of microbial influences might be drawn by examining 550 
various niches with bacterial communities potentially interacting across body sites. In light of intimate 551 
host-microbiota interactions, the microbial community patterns might also be a marker for underlying 552 
changes occurring in the immune system. 553 
 554 
High abundances at late follow-up time points of two fecal Lactobacillus spp. that expanded after HSCT 555 
showed positive correlations with T cell reconstitution. This is in line with previous studies suggesting that 556 
the expansion of Lactobacillus, a genus commonly associated with probiotic properties, might promote 557 
immune homeostasis and thereby exert a protective effect to limit Enterococcus expansion [4,23,28]. A 558 
potential explanation indicated by our results might be that high Lactobacillus abundances outlasting 559 
enterococcal dominance promotes T cell reconstitution. However, the associated cell populations include 560 
TH17 cells which can facilitate inflammation, and therefore it is difficult to determine whether the 561 
observed Lactobacillus expansion is exclusively beneficial [13]. However, Th17 cells could perhaps add to 562 
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the host defense in these patients and therefore be beneficial for local homeostasis, although with the 563 
unusual cost of harmful inflammation. 564 
 565 
Furthermore, we found associations of high Lachnospiraceae and Ruminococcaceae in the gut with rapid 566 
B and NK cell reconstitution, which is in support of our previous study [4]. These two Clostridiales families 567 
play an important role in providing the host with short-chain fatty acids (SCFAs), such as butyrate [5,29]. 568 
A study demonstrated that SCFAs can facilitate the differentiation of human naïve B cells to plasma cells 569 
in culture [30]. Whether SCFAs also directly influence B cell proliferation is yet unknown.  570 
 571 
We have made several observations in which infections and/or antibiotic treatments were associated with 572 
the abundance of specific bacterial clusters at certain body sites, immune cell counts, and aGvHD. For 573 
example, patients whose samples were represented by gut microbiota cluster 1 experienced a high 574 
number of infections and were treated often with phenoxymethylpenicillin compared to the overall 575 
patient population. In contrast, patients affiliated with gut microbiota cluster 2 experienced treatment 576 
with ceftazidime, vancomycin, and ciprofloxacin, but sparsely with other antimicrobial agents. 577 
Furthermore, patients affiliated with oral microbiota cluster 3 were generally treated with few antibiotics, 578 
and, patients whose sample were represented by the nasal microbiota cluster 1 were treated often with 579 
meropenem, ciprofloxacin, and vancomycin compared with the remaining patient population. However, 580 
it is challenging to interpret these observations, as these patient samples were also associated with other 581 
features, such as an increased or decreased abundance of certain immune cells (see Additional file 3 for 582 
further discussion), or the patients were exposed to other treatments as well, such as TBI or fludarabine. 583 
Overall, however, our observations are consistent with previous reports that antimicrobial treatment is 584 
associated with changes in microbiota composition in patients undergoing allo-HSCT and might impact 585 
clinical outcomes [4,11,31–33]. It will be important to gain a more mechanistic understanding of the 586 
possible effects of antimicrobial treatment to disentangle the effect of antibiotics from that of other 587 
medications and host responses. Such insight could for example allow selecting more suitable 588 
antimicrobials for treatment in HSCT patients that spare the elimination of beneficial taxa, whose decline 589 
might be associated with more severe clinical outcomes. The choice of antibiotic treatment might also be 590 
important to take into consideration in patients that might potentially be referred to HSCT eventually, 591 
given that we already observed certain changes in the microbiota in the patients at referral compared to 592 
healthy controls. The microbiota at referral already exhibited some features that were associated with 593 
more severe side effects.   594 
 595 
Associations between aGvHD severity and the microbiota have to date merely been based on logistic 596 
regression and correlation analyses [8,34–36]. In addition, microbial abundances at the time of neutrophil 597 
recovery or engraftment were assessed, i.e. at time points shortly before, concurrent to, or potentially 598 
after aGvHD onset [8,16,36]. Here, we have implemented machine learning techniques to take the 599 
assessment of microbiota-aGvHD relations from correlative to predictive modeling: We presented 600 
evidence that aGvHD severity may be predicted from pre-HSCT microbial abundances in the gut, as well 601 
as in the oral and nasal cavities. This could open up opportunities for the future where microbial markers 602 
guide early interventions to prevent aGvHD. This could include a modulation of the microbiota of patients 603 
predicted to be at high risk with synthetic microbiotas containing beneficial bacteria, including probiotics. 604 
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Notably, we have to our knowledge for the first time revealed microbial taxa in the oral and nasal cavity 605 
that may predict aGvHD. A further discussion on possible connections between specific microbial taxa of 606 
the gut, oral, and nasal cavity, immune responses, and aGvHD can be found in Additional file 3. 607 
 608 
Conclusions 609 
 610 
With the present study we bring forward a comprehensive framework of host-microbial associations in 611 
allogeneic HSCT. We focused on long-term microbial dynamics, demonstrating distinct microbial 612 
abundance patterns of disturbance and recovery, as well as making predictions about aGvHD from the 613 
pre-transplant microbiota. We discovered that the microbial community composition in patients prior to 614 
HSCT already differs somewhat from healthy controls in regard to key microbial taxa, opening up 615 
opportunities for potential preventive measure in the future. Moreover, we confirmed the depletion of 616 
Blautia spp. and expansion of Enterococcus spp. in the gut after HSCT and expand this knowledge by 617 
precisely defining which phylogenetically closely related sequence variants of these genera are 618 
characteristic for those patterns, and when they return to pre-HSCT levels. We identified similar patterns 619 
for members of the oral and nasal microbiota and propose month +3 post-transplant as a possible 620 
universally crucial time point for microbiota reconstitution after HSCT. We demonstrate that high 621 
abundances of for example an intestinal P. distasonis ASV, and an oral P. melaninogenica ASV pre-HSCT 622 
predict the development of moderate to severe aGvHD post-transplant. When relating microbial 623 
abundances with immune cell counts, we found rapid B and NK cell reconstitution to be associated with 624 
high abundances of Lachnospiraceae and Ruminococcacea, which also depended on antibiotics treatment. 625 
Distinct ASVs at all three body sites were associated with TH17 cell counts, suggesting future research on 626 
a potential immunomodulatory involvement of the microbiota in inflammation regulation, which might 627 
play a role for aGvHD development. We have discovered host-microbial associations shared between two 628 
or more of the examined body sites. This may open up opportunities for implementing a more feasible 629 
oral and nasal swab sampling into research and clinical diagnostic activities to design more precise patient 630 
treatment strategies to reduce serious side effects and improve immune and microbiota reconstitution. 631 
 632 
 633 
Materials and Methods 634 
 635 
Patient recruitment and sample collection 636 
We recruited 29 children (age range:	2.5 - 16.4 years) who underwent their first myeloablative allogeneic 637 
hematopoietic stem cell transplantation at Copenhagen University Hospital Rigshospitalet (Denmark) 638 
between November 2015 and October 2017. We provide detailed information about the patients’ clinical 639 
characteristics in Table S1 (Additional File 1). Every patient underwent a myeloablative conditioning 640 
regimen starting on day -10 for patients receiving a graft from a haploidentical donor, and on day -7 for 641 
patients with sibling or matched unrelated donors (Additional File 1: Table S1). One patient had a donor 642 
lymphocyte infusion on day +223 after the first transplantation. Immune cell count date of this patient 643 
was excluded from our analysis from the time of donor lymphocyte infusion. We grouped the patients 644 
into four categories of conditioning regimens: 1. TBI_CY_or_TBI_VP16 (n=6; TBI + cyclophosphamide or 645 
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TBI + etoposide), 2. BU_CY_VP16_MEL_combos (n=6; Combinations of busulfan, cyclophosphamide, 646 
etoposide and melphalan), 3. FLU_THIO (n=12; subgroups: fludarabine + busulfan + thiotepa (n=6); 647 
fludarabine + treosulfan + thiotepa (n=4); fludarabine + thiotepa (n=1); fludarabine + cyclophosphamide 648 
+ thiotepa (n=1)), and 4. FLU_other (n=5; subgroups: fludarabine + busulfan (n=2); fludarabine + 649 
cyclophosphamide (n=2); fludarabine + treosulfan (n=1)) (Additional File 1: Table S1). The following 650 
sampling time points were defined: pre-examination (between day -57 and day -15), around the start of 651 
conditioning (between day -14 and day -3 and latest 2 days after conditioning start), at time of HSCT 652 
(between day -2 and day +2), and weekly during the first 3 weeks after transplantation (week +1: day +3 653 
to day +10, week +2: day +11 to day +17, week +3: day +18 to day +24) (Figure 1A). Broader intervals 654 
applied to follow-up time points: Month +1 (between days +25 and +45), month +3 (between days +46 655 
and +120), month +6 (between days +121 and +245), and month +12 (between day +246 and +428). Acute 656 
GvHD was graded by daily clinical assessment of skin, liver and gastro-intestinal manifestations according 657 
to the Glucksberg criteria [37]. We group aGvHD severity into grade 0-I and grade II-IV, reflecting clinical 658 
practice where grade I represents limited alloreactivity with no (or very limited) impact on the overall 659 
clinical outcome of HSCT, and therefore no need for medical treatment of these patients, such as the use 660 
of glucocorticoids, which is first-line treatment for grade II-IV aGvHD. 661 
To address certain specific questions, we also analyzed the microbiota (from time point 0) of a cohort of 662 
18 healthy children that were part of a previous study [19]. The median age of these children was 6.8 663 
years (interquartile range 4.6 to 9.6). A total of 30 fecal samples were obtained (11 children provided two 664 
samples each within an interval of six months). The children did not receive any antibiotics within the 665 
month prior to sample collection. The samples were processed in the same way as the fecal samples of 666 
the patients of this study (described below). 667 
 668 
Infections and antibiotics 669 
Records of bacterial, fungal, viral, and parasitic infections and antibiotic treatment from before HSCT 670 
(from day -30 or at the collection time of the first microbiota sample in case this was earlier) until month 671 
+12 (day +428) were taken into consideration (or as long as data was available for the most recent 672 
patients; data accessed in July 2018). This corresponds to the length of the sampling period of fecal and 673 
swab samples.   674 
 675 
Analysis of immune cell subpopulations  676 
Leukocyte counts were recorded daily during hospitalization starting prior to HSCT, and later weekly in 677 
the outpatient clinic by flow cytometry (Sysmex XN) or microscopy (CellaVision DM96 microscope) in case 678 
of very low counts. Monitored subpopulations included lymphocytes, monocytes, neutrophils, basophils, 679 
and eosinophils. 680 
 681 
Analysis of T, B and NK cells in peripheral blood 682 
T, B, and NK cell counts in x109/L were determined at pre-examination, and in month +1, +3, +6, and +12. 683 
Trucount Tubes (Becton Dickinson, Albertslund, Denmark) were used to quantify these cell types in 684 
peripheral blood on a FC500 flow cytometer (Beckman Coulter, Copenhagen, Denmark). For 685 
immunofluorescence staining, the following conjugated monoclonal antibodies were used for CD3+ T 686 
cells, CD3+CD4+ T cells and CD3+CD8+ T cell quantification: CD3-PerCP, CD3-FITC, CD4-FITC, CD8-PE 687 
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(Becton Dickinson). CD45-PerCP, CD16/56-PE antibodies were used to determine NK cells based on their 688 
CD45+CD16+CD56+ phenotype. For B cells, total B cells (CD45+CD19+), mature B cells 689 
(CD45+CD19+CD20+) and immature B cells (CD45+CD19+CD20-) were differentiated by using CD20-FITC 690 
and CD19-PE antibodies. 691 
 692 
Subtyping of T cells  693 
Peripheral blood samples were collected in month +1, +3 and +6 for isolation of peripheral blood 694 
mononuclear cells (PBMCs) by gradient centrifugation of heparinized blood with Lymphoprep™ (Axis-695 
Shield, Oslo, Norway). PBMCs were washed in PBS (Life Technologies, Invitrogen, Paisley, U.K.) three times 696 
and then resuspended in RPMI 1640 buffer containing HEPES (Biological Industries Israel Beit-Haemek Ltd, 697 
Kibbutz Beit-Haemek, Israel), L-glutamine (GIBCO, Invitrogen, Carlsbad, CA) and Gentamycin (GIBCO), 30% 698 
fetal bovine serum (Biological Industries) and 10% Dimethyl Sulfoxide (VWR, Herlev, Denmark) for cryo-699 
preservation in liquid nitrogen. 700 
T cell subsets, i.e. TH17 cells and Treg cells, were quantified from frozen PBMCs by flow cytometry on a 701 
FACS Fortessa III flow cytometer (Becton Dickinson, Albertslund, Denmark). PBMCs were thawed and 702 
washed before incubation with Fixable viability stain 620 (Becton Dickinson) and a set of conjugated 703 
monoclonal antibodies for 30 minutes on ice: CD3-APC-A750 (Beckmann Coulter), CD4-PE-Cy7 (Beckmann 704 
Coulter), CD8-A700 (Becton Dickinson), CD25-PE (Becton Dickinson), CD39-PerCP-Cy5.5 (Beckmann 705 
Coulter), CD196-BV510 (Biolegend, San Diego, USA), CD127-BV711 (Biolegend), CD161-BV650 (Becton 706 
Dickinson) and CD45RA-BV786 (Becton Dickinson). Next, PBMCs were washed and incubated with 707 
transcription factor buffer set (BD) for 45 min on ice. Afterwards, PBMCs were washed twice and 708 
intracellular monoclonal antibodies were added and incubated for 45 minutes on ice: RORγT-A488 709 
(Becton Dickinson), FOXp3-A647 (Becton Dickinson) and Helios-PB (Beckmann Coulter). TH17 cells were 710 
determined by the CD4+RORγT+ phenotype, and Treg cells by the CD4+CD25highFOXp3+ phenotype. 711 
Absolute cell counts in x109/L were obtained by multiplying the frequency of TH17 and Treg cells with the 712 
CD4+ T cell count from the same time point. 713 

 714 
Quantification of inflammation and infection markers 715 
Markers were measured at the Department of Clinical Biochemistry, Copenhagen University Hospital 716 
Rigshospitalet, Denmark. As a marker of infection, plasma procalcitonin was determined by sandwich 717 
electrochemiluminescence immunoassays (ECLIA). As a marker of systemic inflammation, CRP was 718 
measured by latex immunoturbidimetric assays (LIA).  719 
  720 
DNA isolation from fecal, oral, and nasal samples and 16S rRNA gene sequencing  721 
A total of 212 fecal samples for analysis of the intestinal microbiota were collected from 29 patients at 722 
the 10 time points described above. The gut microbiota was characterized at ≤6 time points in 9 patients 723 
(31%), at 7-8 time points in 13 patients (45%) and at 9-10 time points in 7 patients (24%) (Additional File 724 
1: Table S1). DNA from fecal samples, one blank control per extraction round (thereof sequenced: 14), 725 
one mock community sample (Biodefense and Emerging Infectious Research (BEI) Resources of the 726 
American Type Culture Collection (ATCC) (Manassas, VA, USA), Catalog No. HM-276D) per sequencing run 727 
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and two collection tube controls was isolated using the QIAamp Fast DNA Stool Mini kit (Qiagen, Venlo, 728 
Netherlands), following the manufacturer’s instructions with modifications according to [38].  729 
We collected 248 buccal swabs (3x at ≤6 time points (10%), 11x at 7-8 time points (38%), 15x at 9-10 time 730 
points (52%)) and 249 anterior naris swabs (3x at ≤6 time points (10%), 9x at 7-8 time points (31%), 17x at 731 
9-10 time points (59%)). DNA from swab samples, one blank control per extraction round (therof 732 
sequenced: 28), one mock community sample per run, two collection tube controls, and two sampling 733 
swab controls was isolated using the QIAamp UCP Pathogen Mini kit (Qiagen, Venlo, Netherlands), with 734 
the ‘Protocol: Pretreatment of Microbial DNA from Eye, Nasal, Pharyngeal, or other Swabs (Protocol 735 
without Pre-lysis)’ and subsequently the ‘Protocol: Sample Prep (Spin Protocol)’, following the 736 
manufacturer’s instructions with the following modifications: 550µl instead of 500µl Buffer ATL was used 737 
during pretreatment; DNA was eluted twice with 20µl Buffer AVE into 1.5 ml DNA LoBind tubes 738 
(Eppendorf, Hamburg, Germany) instead of the tubes provided with the kits.   739 
Library construction and sequencing on an Illumina MiSeq instrument (Illumina Inc., San Diego, CA, USA) 740 
was performed at the Multi Assay Core facility (DMAC), Technical University of Denmark. DNA 741 
concentration of each sample was measured using a NanoDrop spectrophotometer (Thermo Scientific, 742 
Waltham, MA, USA). Library construction was performed according to the 16S Metagenomic Sequencing 743 
Library Preparation protocol by Illumuna [39]: The V3-V4 region of the 16S ribosomal RNA gene were 744 
amplified in a PCR in each sample and in the controls, using the following previously evaluated primers, 745 
preceded by Illumina adapters [40]: 341F (5’-746 
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3’) and 805R (5’-747 
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3’). Amplicons were then 748 
analyzed for quantity and quality in an Agilent 2100 Bioanalyzer with the use of an Agilent RNA 1000 Nano 749 
Kit (Agilent Technology, Santa Clara, CA, USA). Subsequently, the amplicons were purified on AMPure XP 750 
Beads (Beckman Culter, Copenhagen, Denmark) according to the manufacturer’s instructions. Illumina 751 
adapters and dual-index barcodes were then added to the amplicon target in a PCR according to Illumina 752 
[39] using the 96 sample Nextera XT Index Kit (Illumina, FC-131–1002). A final clean-up of the libraries was 753 
performed in another PCR step, using AMPure XP Beads (Beckman Culter, Copenhagen, Denmark) 754 
according to the manufacturer’s instructions, followed by a confirmation of the target size in an Agilent 755 
2100 Bioanalyzer (Agilent Technologies). Before sequencing, DNA concentration was determined with a 756 
Qubit (Life Technologies, Carlsbad, CA, USA) and libraries were pooled. In preparation for sequencing, the 757 
pooled libraries were denatured with NaOH, diluted with hybridization buffer, and heat denatured. 5% 758 
PhiX was included as an internal control for low-diversity libraries. Paired-end sequencing with 2 × 300bp 759 
reads was performed with a MiSeq v3 reagent kit on an Illumina MiSeq instrument (Illumina Inc., San 760 
Diego, CA, USA). 761 
 762 
16S rRNA gene sequence pre-processing 763 
Raw sequence reads were demultiplexed based on sample-specific barcodes and ‘read 1’ and ‘read 2’ 764 
FASTQ files for each sample were generated on the Illumina MiSeq instrument by the MiSeq reporter 765 
software. Primers were removed by using cutadapt (version 1.16) [41] at a tolerated maximum error rate 766 
of 15% for matching the primer sequence anchored in the beginning of each read. In the case that at least 767 
one read of a pair did not contain the primer, the pair was discarded. Only pairs in which the forward read 768 
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contained the forward primer (341F) and the reverse read contained the reverse primer (805R) were 769 
retained.  770 
The resulting reads were further processed using the R package DADA2 (version 1.8) to infer high-771 
resolution amplicon sequence variants (ASV) [42]. Forward and reverse reads were truncated at 280 bp 772 
and 200 bp respectively. This way, the majority of reads retained a quality score >25 according to MultiQC 773 
analysis [43]. These truncation thresholds also ensured an overlap of 480 bp (expected amplicon length 774 
of 460 bp + 20 bp), allowing to merge forward and reverse reads. Samples were pooled for the sample 775 
inference step (dada() function) to increase the power for detecting rare variants. Default values were 776 
used for all other quality filtration parameters in DADA2. DNA from samples with a read count <10,000 777 
after preliminary chimera and contaminant removal were re-sequenced. DNA from feces samples with a 778 
read count <5,000 were re-extracted. Eventually, chimeras were identified by sample and removed from 779 
the whole data set (over all sequencing runs) based on a consensus decision (removeBimeraDenovo() 780 
function, method “consensus”). Taxonomic assignment on ASVs was done by using the Silva reference 781 
data base (version 132), formatted for DADA2 [44]. Additional species assignment by exact reference 782 
strain matching was performed using the Silva species-assignment training data base, formatted for 783 
DADA2 [44]. 784 
The resulting ASV and taxonomy tables were integrated with the R package phyloseq and its dependencies 785 
(version 1.24.0) [45]. The data was split into two data sets, one containing feces sample data and one 786 
containing nasal and oral swab data. Subsequently, contaminant removal was performed with the R 787 
package decontam [46]. Potential technical batch effects by sequencing run, 96-well plate, extraction kit, 788 
extraction round, experimenter, and extraction date were assessed by ordination (Principal Coordinates 789 
Analysis (PCoA)).  790 
For both, the fecal sample data set and the swab data set, contaminants were identified by sequencing 791 
run as a batch effect and a subsequent calculation of a consensus probability. For the feces sample data 792 
set, contaminants were identified by both, increased prevalence in 14 blank extraction controls and by 793 
relating ASV frequency to post-PCR sample DNA concentration, assuming inverse correlation (method 794 
“both”, frequency threshold: 0.2, prevalence threshold: 0.075) [46]. After manual evaluation of edge 795 
cases, 89 ASVs were removed from the fecal sample data set as contaminants. In an additional step, we 796 
identified 7 contaminants from 2 sampling tube controls (method and thresholds as stated above). In 797 
total, 96 ASVs were removed as contaminants from the fecal sample data set. 798 
For the swab sample data set, contaminants were identified by both, increased prevalence in 28 blank 799 
extraction controls and by relating ASV frequency to post-PCR sample DNA concentration (method “both”, 800 
frequency threshold: 0.1, prevalence threshold: 0.6) [46]. A more stringent threshold for prevalence 801 
compared to frequency was chosen here, given the low biomass of the swab samples, accompanied by 802 
post-PCR DNA concentrations similar to those in blank controls. After manual evaluation of edge cases, 803 
1137 ASVs were removed from the swab sample data set as contaminants. In an additional step, we 804 
identified 16 contaminants from 2 sampling tube controls and 2 swab controls (method “both”, frequency 805 
threshold: 0.075, prevalence threshold: 0.5). In total, 1153 ASVs were removed as contaminants from the 806 
oral and nasal swab sample data set.  807 
For each subset, we created a phylogenetic tree by de novo alignment of the inferred ASVs, following a 808 
previously described workflow [47]. First, we performed multiple alignment with the package DECIPHER 809 
[48]. Subsequently, we built a neighbor-joining tree using the package phangorn [49], based on which we 810 
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fitted a GTR+G+I (Generalized time-reversible with Gamma rate variation) maximum likelihood tree. The 811 
phylogenetic tree for each data set (fecal, oral, and nasal) was then integrated with the respective 812 
phyloseq object.  813 
Next, we took core subsets of the ASVs remaining after contaminant removal using the function kOverA() 814 
from R package genefilter [50]. In the fecal set, 2465 ASVs with ≥5 reads in ≥2 samples were retained. 815 
With ≥5 reads in ≥10 samples, 509 ASVs were retained from the oral sample set, and 602 ASVs from the 816 
nasal sample set. Additional manual contaminant filtering was applied to the oral and nasal core sets. 817 
ASVs affiliated with taxonomic families commonly found in both the oral or nasal cavity and the gut were 818 
only retained in the oral sample set in case they had ≥10 reads in ≥10 samples. ASVs of families only 819 
expected in the gut were removed from the oral and nasal sample sets after manually assessing their 820 
abundances. Subsequently, we retained 377 ASVs in the oral sample set, and 197 ASVs in the nasal sample 821 
set. 822 
For the comparison of the fecal microbiota in preexaminantion samples (n=15) of HSCT patients and 823 
healthy children (n=18), these data were combined in a phyloseq object. The same set of putative 824 
contaminants was removed from the healthy data set as were identified within the full fecal data set of 825 
HSCT patients. Subsequently, a core subset was taken as described above (retaining ASVs with ≥5 reads 826 
in ≥2 samples).  827 
 828 
Statistical analysis 829 
Statistical analyses and generation of graphs was performed in R (version 3.5.1, R Foundation for 830 
Statistical Computing, Vienna, Austria) [51]. The R scripts documenting the major steps of our statistical 831 
analyses are available from figshare (https://doi.org/10.6084/m9.figshare.12280001). Sequencing data, 832 
and experimental and clinical data (https://doi.org/10.6084/m9.figshare.12280028 ) were integrated for 833 
analysis by using the R package phyloseq and its dependencies [45]. We also provide the resulting 834 
phyloseq objects through figshare (https://doi.org/10.6084/m9.figshare.12280004). Plots were 835 
generated with the packages ggplot2 [52], mixOmics [53], treeDA [54], caret [55], and partykit [56,57].  836 
From the core sets of ASV counts for each body site, bacterial alpha diversity (denoted by the inverse 837 
Simpson index) was calculated and compared between time points by using a Friedman test with 838 
Benjamini-Hochberg correction for multiple testing, and a post-hoc Conover test. To gain insight into 839 
changes of microbial abundances over time in relation to HSCT, we agglomerated ASV counts on family 840 
levels with the function tax_glom() in phyloseq [45]. Thereafter, we displayed the relative abundances of 841 
the 12 most abundant families at each body site for each time point. We also depicted relative abundances 842 
over time on family level in patients with aGvHD grade 0-I versus grade II-IV.  843 
In order to determine which particular ASVs are relevant in temporal microbial abundance dynamics at 844 
each body site, we implemented tree-based sparse linear discriminant analysis (LDA) with the package 845 
treeDA [54]. This supervised method implements prior information about phylogenetic relationships 846 
between ASVs to perform supervised discrimination of classes, here time points, and induces sparsity 847 
constraints to increase interpretability [58]. Leaves and nodes of the phylogenetic tree, representing log+1 848 
transformed ASV abundances and the sums thereof respectively, were used as predictive features. The 849 
core oral and nasal sets were used as input as described above, while the fecal set was further reduced to 850 
389 ASVs with >5 reads in >10 samples for this analysis. Leave-one-out cross validation (LOOCV) was 851 
performed to choose the optimal minimum number of predictive features ensuring sparse, interpretable 852 
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models. The resulting LDA models had 9 components. By default, this number corresponds to the number 853 
of predicted classes (here 10 time points) less one. To identify relevant components, we plotted sample 854 
scores colored by time points along each component and plotted the components pairwise against each 855 
other (Figure 1C). Thereby, we revealed that the first LDA-component for each body site showed the 856 
highest sample scores and best separated the samples by time point. Therefore, we proceeded with 857 
displaying temporal trajectories of clades of predictive features (ASVs) on the first component. For 858 
selected groups of predictive ASVs we displayed trajectories for patients with aGvHD grade 0-I versus with 859 
grade II-IV.  860 
Next, we implemented machine learning models to predict aGvHD grade post-transplant from preceeding 861 
ASV abundances. The strategy and R code for the machine learning approach was partially adapted from 862 
a previous approach [59,60]. As a preparative step for this analysis, we variance-stabilized the ASV count 863 
data. To do so, we first performed size factor estimation for zero-inflated data on the core data sets for 864 
each bbody site with the package GMPR [61]. Subsequently, we transformed the data by using the 865 
function varianceStabilizingTransformation() in the package DESeq2 [62]. The function implements a 866 
Gamma-Poisson mixture model to account for both library size differences and biological variability [63]. 867 
For the prediction of aGvHD grade, we compared the performances of four different classifiers (random 868 
forest (rf), boosted logistic regression (LogitBoost), support vector machines with linear kernel 869 
(svmLinear), and support vector machines with radial basis function kernel (svmRadial)) using the package 870 
caret [55]. We took subsets of the phyloseq objects comprising only the time points preceding aGvHD 871 
onset: pre-examination, conditioning start, and at the time of HSCT. Prior to fitting the models, we 872 
excluded ASVs with near zero variance, i.e. those that were not differentially abundant between any 873 
samples, by using the function nearZeroVar() in package caret [55]. Thereby we obtained sets of 238, 186, 874 
and 100 ASVs for the fecal, oral, and nasal data set, respectively, which were then assessed as potential 875 
predictors of subsequent aGvHD. All classifiers were trained on a randomly chosen subset of 70% of the 876 
data to build a predictive model evaluated on a test set (30% of the data). Splitting was performed in a 877 
way that samples from the same patient at different time points were kept together in either the testing 878 
or training set to ensure that the outcome of a patient can only appear in either the testing set or the 879 
training set, but not both. Thirty iterations of 10-fold cross-validation were performed for each classifier, 880 
both with and without up-sampling. Up-sampling refers to the process of replacement-based sampling of 881 
the class with fewer samples (here aGvHD grade II-IV) to the same size as the class with more samples 882 
(here aGvHD grade 0-I) to achieve a balanced design. SvmLinear on up-sampled data was chosen as the 883 
best performing predictive model for all three data sets (gut, oral, and nasal). Subsequently, we performed 884 
Boruta feature selection using the package Boruta [64]. The Boruta algorithm is a Random Forest 885 
classification based wrapper that compares the importance of real features to that of so called ‘shadow 886 
attributes’ with randomly shuffled values. Features that are less important than the ‘shadow attributes’ 887 
are iteratively removed. Here, we retained those ASVs in each data set that were both, among the 50 888 
most important predictors in the svmLinear model and confirmed by the Boruta algorithm (Additional File 889 
1: Table S3). Subsequently, we fitted a CTREE on each set of selected predictors (17 gut, 26 oral, and 12 890 
nasal ASVs) by using the package partykit (Additional File 1: Table S3) [56,57]. In the CTREE analysis the 891 
effect of the predictive ASVs on aGvHD grade is evaluated in a nonparametric regression framework. Using 892 
CTREE, we found 3 significant ASVs each in the gut and in the oral data set, and two significant ASVs in the 893 
nasal data set. CTREE iteratively tests if the abundance of any ASV has a significant effect on aGvHD grade. 894 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 23, 2021. ; https://doi.org/10.1101/2021.02.19.21252040doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.19.21252040
http://creativecommons.org/licenses/by-nd/4.0/


28 
 

In the case that a significant relation is found, the ASVs with the largest effect is picked as a node for the 895 
tree. The procedure is then recursively repeated until no further significant effect of any ASV on aGvHD is 896 
found. We plotted the result as a tree featuring the significant split nodes, represented by the ASVs and 897 
the Bonferroni-corrected p-values indication significant influence of their abundance on aGvHD grade. 898 
The terminal nodes of the tree show the proportion of samples stemming from patients with aGvHD grade 899 
0-I versus II-IV, under the condition of the abundance split criterion described on each branch. Since we 900 
used variance stabilized bacterial abundances as input for the machine learning analyses, abundances can 901 
be presented as negative values in some cases and are therefore not easy to interpret intuitively. 902 
Therefore, we additionally displayed the log-transformed relative abundances of all ASVs significantly 903 
predicting aGvHD in boxplots at the three investigated time points (pre-examination, conditioning start, 904 
and at the time of HSCT).   905 
Subsequently, we were interested in associations between the fecal, oral, and nasal microbiota and 906 
immune cell counts, and clinical outcomes in HSCT. Records of immune markers, and immune cell counts 907 
contained left- and right-censored measurements, i.e. observations below or above the detection (or 908 
recording) limit, respectively. In order to use these data in analyses that do not tolerate censored records, 909 
we needed to impute the censored data. Therefore, we first fitted the non-parametric maximum 910 
likelihood estimator (NPMLE, also called Turnbull estimator) for univariate interval censored data on each 911 
variable that contained censored records, using the function ic_np() in the R package icenReg [65]. 912 
Subsequently, censored records were imputed, informed by the model that was fitted on the entity of 913 
observed and censored data of each variable, using the imputeCens() function [65]. Next, we took the 914 
median of measurements for the time points defined above for those immune markers, and immune cell 915 
counts that have been measured more frequently than that. This way, we obtained comparable data sets. 916 
Continuous immune marker and cell count data that was systematically missing for certain sampling time 917 
points was split by time points and unavailable time points were excluded. Missing values in continuous 918 
immune marker and cell count data were imputed for variables with ≤ 50% missingness. Simultaneous 919 
multivariate non-parametric imputation was performed using the R package missForest [66]. Variables 920 
with more than 50% missing values were excluded from the analysis.  921 
Next, we implemented two multivariate multi-table approaches to gain a detailed understanding of how 922 
the fecal, oral, and nasal microbiota might be associated with immune cell counts, immune markers, and 923 
clinical outcomes in HSCT. Evaluated clinical outcomes comprised acute GvHD (grade 0-I versus II-IV), 924 
relapse, overall survival, and treatment-related mortality. Furthermore, we included bacterial alpha 925 
diversity (inversed Simpson index), antibiotic treatment, infections, Karnofsky scores before conditioning 926 
and at day +100, and patients’ baseline parameters (age, weight, sex, primary disease, malignant versus 927 
benign primary disease, conditioning regimen (including ATG treatment), chemotherapeutic agents’ 928 
dosages, TBI treatment and dosage, stem cell source, GvHD prophylactic regimen, donor type 929 
(sibling/matched unrelated/haploidentical), donor HLA-match, and donor sex). 930 
For each body site, we performed sparse partial least squares (sPLS) regression by using the function spls() 931 
in the package mixOmics [53]. In sPLS regression, two matrices are being integrated and both their 932 
structures are being modelled. Here, we used variance stabilized ASV abundances as explanatory variables 933 
and all continuous clinical and immune parameters as response variables. The method allows multiple 934 
response variables. Collinear, and noisy data can be handled by this method as well [67]. We did not limit 935 
the number of response variables to be kept for each component (keepY) prior to model calculation. The 936 
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number of explanatory variables (ASVs) to be kept on each component (keepX) was set to 25 after running 937 
the sPLS regression models for each body site with a range of values between 20 and 40 for keepX, 938 
showing results robust to keepX. The perf() function was used to inform the choice of 3 relevant 939 
components. Based on the sPLS regression models for each body site, we then performed hierarchical 940 
clustering with the cim() function, using the clustering method “complete linkage” and the distance 941 
method “Pearson’s correlation”. Thereby, we generated matrices of coefficients indicating correlations 942 
between ASV abundances and continuous clinical and immune parameters.  943 
Subsequently, we carried out canonical (i.e. bidirectional) correspondence analysis (CCpnA), which is a 944 
multivariate constrained ordination method. This method allow us to assess associations of both 945 
categorical and continuous clinical and immune parameters to ASV abundances. We included ASVs and 946 
variables with a correlation of >0.2/<-0.2 (oral and nasal data set) or >0.3/<-0.3 (fecal data set) in the sPLS 947 
analysis into the CCpnA, and additionally included categorical variables that could not be included in the 948 
sPLS. The method was implemented with the cca() function in package vegan [68]. It implements a Chi-949 
square transformation of the log+1 transformed ASV count matrix and subsequent weighted linear 950 
regression, followed by singular value decomposition. We depicted the CCpnA results as a triplot with plot 951 
dimensions corresponding in length to the percentage of variance explained by each axis. At each body 952 
site, we identified three clusters of ASVs through hierarchical clustering based on the first three latent 953 
dimensions of each sPLS analysis (Figure 6A, and Additional File 2: Figures S5A and S6A). The CCpnA 954 
analyses reinforced the cluster separations and additionally provided insight into associations with 955 
categorical variables, including patient baseline parameters, the occurrence of infections, antibiotics 956 
treatment, and clinical outcomes (Figure 6B, and Additional File 2: Figures S5B and S6B). 957 
We compared bacterial alpha diversity and community composition in the gut of HSCT patients at 958 
preexamination with that of healthy children. Alpha diversity (inverse Simpson index) between the two 959 
groups was compared by a Kruskal-Wallis test. Community composition was visualized in a principal 960 
coordinates analysis (PCoA), and analysis of similarities (ANOSIM, package vegan) was used to assess 961 
significant differences in the means of rank dissimilarities between the two groups. DESeq2 was employed 962 
for identification of differentially abundant genera among the top 100 most abundant genera with >10 963 
total reads [62]. Differences in relative abundance of genera identified as differentially abundant were 964 
visualized in a heat tree (package metacoder) [69]. Higher taxonomic level differential abundance was 965 
assessed by linear discriminant analysis effect size (LEfSe) on centered-log ratio (CLR) transformed data 966 
with an LDA cutoff of 4 (package microbiomeMarker) [70]. LefSe accounts for the hierarchical structure 967 
of bacterial phylogeny, thereby allowing identification of differentially abundant taxa on several 968 
taxonomic levels (here kingdom to genus). For additional information see 969 
https://doi.org/10.6084/m9.figshare.13614230). 970 
 971 
 972 
List of abbreviations 973 
AML: Acute myeloid leukemia 974 
ASV: Amplicon sequence variant 975 
ATG: Anti-thymocyte globulin 976 
CCpnA: Canonical correspondence analysis 977 
CML: Chronic myeloid leukemia 978 
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CRP: C-reactive protein 979 
CTREE: Conditional inference tree 980 
ECLIA: Electrochemiluminescence immunoassays  981 
GvL effect: Graft-versus-leukemia effect 982 
(a)GvHD: (Acute) graft-versus-host disease 983 
HSCT: Hematopoietic stem cell transplantation 984 
IDS: Immunodeficiency syndromes 985 
IEA: Inherited abnormalities of erythrocyte differentiation or function  986 
IMD: Inherited disorders of metabolism 987 
LIA: Latex immunoturbidimetric assay 988 
LDA: Linear discriminant analysis 989 
LogitBoost: Boosted logistic regression 990 
LOOCV: Leave-one-out cross validation 991 
MDS: Myelodysplastic or myeloproliferative disorders 992 
MM: Multiple myeloma 993 
NHL: Non-Hodgkin lymphomas 994 
NPMLE: Non-parametric maximum likelihood estimator  995 
OL: Other leukemia 996 
OTU: Operational taxonomic unit 997 
PBMC: Peripheral blood mononuclear cell 998 
PCoA: Principal Coordinates Analysis 999 
Rf: Random forest 1000 
SAA: Severe aplastic anemia 1001 
SCFA: Short-chain fatty acid 1002 
sPLS: Sparse partial least squares analysis 1003 
svmLinear: Support vector machines with linear kernel 1004 
svmRadial: Support vector machines with radial basis function kernel 1005 
TBI: Total body irradiation 1006 
TH17 cell: T helper 17 cell 1007 
Treg cell: T regulatory cell  1008 
UCB: Umbilical cord blood 1009 
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Figure and Table Legends 1273 
 1274 
Figure 1. Monitoring gut, oral, and nasal microbiota and the host immune system in allogeneic 1275 
hematopoietic stem cell transplantation (HSCT).  A) Twenty-nine children were monitored before, at the 1276 
time of, and immediately post allogeneic HSCT, as well as at late follow-up time points. Patients’ baseline 1277 
characteristics, clinical outcomes, as well as immune cell counts, and inflammation and infection markers 1278 
over time were monitored. Patient characteristics are described in detail in Table S1 (Additional File 1). 1279 
Host immune system parameters were related to longitudinal dynamics of the gut, oral, and nasal 1280 
microbiota that was assessed at the denoted time points. B) Bacterial alpha diversity before, at the time 1281 
of, and after HSCT at each body site, displayed on a log10 transformed y-axis for visualization purposes. 1282 
Asterisks indicate significant differences in median inverse Simpson index between time points * P < 0.05. 1283 
C) Tree-based sparse linear discriminant (LDA) analyses by time point in relation to HSCT. For fecal 1284 
samples, positive LDA scores were observed for samples collected immediately post HSCT. For both oral 1285 
and nasal samples, positive LDA scores were observed for samples from before HSCT and from late follow 1286 
up-time points.  1287 
 1288 
Figure 2. Temporal microbial community dynamics in the gut. A) Relative abundances over time of the 1289 
12 most abundant families in the gut. B) Tree-based sparse linear discriminant analysis (LDA). Coefficients 1290 
of discriminating clades of ASVs on the first LDA axis, colored by taxonomic family, and plotted along the 1291 
phylogenetic tree. C) Trajectories of ASVs affiliated with the families Enterococcaceae and 1292 
Lactobacillaceae, with increasing abundances after HSCT. The most abundant discriminating ASV for each 1293 
family is indicated. D) Trajectories of ASVs affiliated with the families Lachnospiraceae and 1294 
Ruminococcaceae, with decreasing abundances after HSCT and recovery at late follow-up time points. The 1295 
most abundant discriminating ASV for Blautia spp. is indicated. Detailed taxonomic information and LDA-1296 
coefficients of the displayed ASVs are listed in Additional File 1: Table S2. 1297 
 1298 
Figure 3. Temporal microbial community dynamics in the oral cavity. A) Relative abundances over time 1299 
of the 12 most abundant families in the oral cavity. B) Tree-based sparse linear discriminant analysis (LDA). 1300 
Coefficients of discriminating clades of ASVs on the first LDA axis, colored by taxonomic family, and plotted 1301 
along the phylogenetic tree. C) Trajectories of ASVs affiliated with the families Actinomycetaceae, 1302 
Streptococcaceae, Prevotellaceae, and Family XI (Class Bacillales), with decreasing abundances after HSCT 1303 
and recovery at late follow-up time points. The most abundant discriminating ASV for each family is 1304 
indicated. Detailed taxonomic information and LDA-coefficients of the displayed ASVs are listed in 1305 
Additional File 1: Table S2. 1306 
 1307 
Figure 4. Machine learning-based prediction of aGvHD severity from the pre-HSCT gut microbiota 1308 
composition. A) Relative abundances of the 12 most abundant families over time in the gut in patients 1309 
with aGvHD grade 0-I versus II-IV. B) Importance plot of top 20 predictive gut ASVs identified by the 1310 
svmLinear model with importance scores indicating the mean decrease in prediction accuracy in case the 1311 
respective ASV would be excluded from the model. The final cross-validated svmLinear model predicted 1312 
aGvHD (0-I versus II-IV) from the abundances of gut ASVs pre-HSCT with 86% accuracy (95% CI: 65% to 1313 
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97%). The ASVs that were also confirmed by Boruta feature selection are indicated with asterisk. C) 1314 
Conditional inference tree (CTREE) displaying ASVs identified as significant split nodes by nonparametric 1315 
regression for prediction of aGvHD. Numbers along the branches indicate split values of variance stabilized 1316 
bacterial abundances. The terminal nodes show the proportion of samples originating from patients (n = 1317 
number of samples) with aGvHD grade 0-I vs II-IV. D) Boxplots depicting the log transformed relative 1318 
abundances of the predictive ASVs at time points up to the transplantation in aGvHD grade 0-I compared 1319 
with grade II-IV patients. E) Trajectories of Lactobacillaceae and Tannerellaceae ASVs that were identified 1320 
by tree-based sparse LDA, including ASV 3 and ASV 128 that were predictive for aGvHD (bold lines), in 1321 
patients with aGvHD grade 0-I vs II-IV. 1322 
 1323 
Figure 5. Machine learning-based prediction of aGvHD severity from the pre-HSCT oral microbiota 1324 
composition. A) Relative abundances the 12 most abundant families over time in the oral cavity in patients 1325 
with aGvHD grade 0-I versus II-IV. B) Importance plot of top 20 predictive oral ASVs identified by the 1326 
svmLinear model with importance scores indicating the mean decrease in prediction accuracy in case the 1327 
respective ASV would be excluded from the model. The final cross-validated svmLinear model predicted 1328 
aGvHD (0-I versus II-IV) from the abundances of oral ASVs pre-HSCT with 92% accuracy (95% CI: 73% to 1329 
99%). The ASVs that were also confirmed by Boruta feature selection are indicated with asterisk. C) 1330 
Conditional inference tree (CTREE) displaying ASVs identified as significant split nodes by nonparametric 1331 
regression for prediction of aGvHD. Numbers along the branches indicate split values of variance stabilized 1332 
bacterial abundances. The terminal nodes show the proportion of samples originating from patients (n = 1333 
number of represented samples) with aGvHD grade 0-I vs II-IV. D) Boxplots depict the log transformed 1334 
relative abundances of the predictive ASVs at time points up to the transplantation in aGvHD grade 0-I 1335 
compared with grade II-IV patients. E) Trajectories of Prevotellaceae and Actinomycetaceae ASVs that 1336 
were identified by tree-based sparse LDA, including ASV 226 and ASV 568 that were predictive for aGvHD 1337 
(bold lines), in patients with aGvHD grade 0-I vs II-IV. 1338 
 1339 
Figure 6. Multivariate associations of the gut microbiota with immune and clinical parameters in HSCT.  1340 
A) Clustered image map (CIM) based on sparse partial least squares (sPLS) regression analysis (dimensions 1341 
1, 2, and 3) displaying pairwise correlations >0.3/<-0.3 between ASVs (bottom) and continuous immune 1342 
and clinical parameters (right). Red indicates a positive correlation, and blue indicates a negative 1343 
correlation, respectively. Based on the sPLS regression model, hierarchical clustering (clustering method: 1344 
complete linkage, distance method: Pearson’s correlation) was performed resulting in the three depicted 1345 
clusters. B) Canonical correspondence analysis (CCpnA) relating gut microbial abundances (circles) to 1346 
continuous (arrows) and categorical (+) immune and clinical parameters. ASVs and variables with at least 1347 
one correlation >0.3/<-0.3 in the sPLS analysis were included in the CCpnA. The triplot shows variables 1348 
and ASVs with a score >0.3/<-0.3 on at least one of the first three CCpnA axes, displayed on axis 1 versus 1349 
2 with samples depicted as triangles. The colored ellipses (depicted with 80% confidence interval) 1350 
correspond to the clusters of ASVs identified by the sPLS-based hierarchical clustering. Abbreviations not 1351 
mentioned in text: ATGmm, anti-thymocyte globulin; B_, blood; BU, busulfan; CY, Cyclophosphamide; 1352 
DonorMatch6, matched unrelated donor; FLU_other, fludarabine combinations without thiotepa; 1353 
GvHD.Prophylaxis1, treatment with cyclosporine; GvHD.Prophylaxis7, treatment with cyclosporine and 1354 
methotrexate; immat_B, immature B cells; K_d100, Karnofsky score on day +100; K_pre, Karnofsky score 1355 
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before HSCT; m1, month+1; m3, month+3; m6, month+6; m12, month+12; mat_B, mature B cells; MEL, 1356 
melphalan; total_B, total B cells; P_, plasma; parasitic, parasitic infection; pre_cond, before conditioning 1357 
start; pre_exam, pre-examination; THIO, thiotepa; viral, viral infection; VP16, Etoposide. 1358 
 1359 
Supplementary Table S1. Patient characteristics. Abbreviations: HLA, human leukocyte antigen; TBI, total 1360 
body irradiation; CY, Cyclophosphamide; VP16, Etoposide; BU, Busulfan; MEL, Melphalan; GvHD, graft-1361 
versus-host disease. 1362 
 1363 
Supplementary Table S2. Taxonomy of a subset of LDA clade members and corresponding LDA-1364 
coefficients in the gut, oral cavity, and nasal cavity. 1365 
 1366 
Supplementary Table S3. Taxonomy of aGvHD predictors within the fecal, oral, and nasal microbiota. 1367 
ASVs that were significantly predicting aGvHD severity according to the conditional inference tree 1368 
regression model are highlighted in bold. Of the 50 most important gut ASVs identified by the svmLinear 1369 
model, 17 were confirmed by Boruta feature selection and are listed here. In the oral and nasal cavities, 1370 
26 and 12 ASVs were confirmed by Boruta selection, respectively.  Listed in bold are those ASVs with a 1371 
significant predictive effect on aGvHD severity, tested in a regression framework with CTREE (see 1372 
Methods).  1373 
 1374 
Figure S1. The gut microbiota in the HSCT patients at pre-exam differs from the gut microbiota of age-1375 
matched healthy children. A) Fecal bacterial alpha diversity (inverse Simpson index) was 2.4-fold higher 1376 
in healthy children (n=18) compared to children at pre-examination before HSCT (n=15). B) Fecal bacterial 1377 
composition was significantly different between the two groups (anosim, p=0.001, R=0.44), and within-1378 
group variance was significantly greater in the HSCT group (betadisper, p<0.001). C) The taxa which best 1379 
explain differences in community structure between HSCT patients at preexamination and healthy 1380 
children were identified by analysis of LEfSe (Linear discriminant analysis Effect Size). LefSe accounts for 1381 
the hierarchical structure of bacterial phylogeny, thereby allowing identification of differentially abundant 1382 
taxa on several taxonomic levels (here: kingdom to genus). Count data was centered-log ratio (CLR) 1383 
transformed within the LEfSe analysis. The higher the LDA score (log10), the higher the effect size of the 1384 
respective taxon in explaining group difference. Here, we show taxa with an LDA score >4. D) Differentially 1385 
abundant genera between the two groups were additionally identified by DESeq2. Of the top 100 most 1386 
abundant genera (of the whole gut microbiota data set), eighteen genera were significantly more 1387 
abundant in healthy children (yellow), and 15 genera were significantly more abundant in the patients at 1388 
preexam (purple). Differences in median proportions of these genera (and their supertaxa) are displayed 1389 
in a heat tree. See also additional information at https://doi.org/10.6084/m9.figshare.13614230.  1390 
 1391 
 1392 
Figure S2. Most abundant taxonomic families in the gut, oral cavity, and nasal cavity in allo-HSCT 1393 
patients. Rank abundance curves displaying the proportions of the 12 most abundant taxonomic families 1394 
at each body site (gut, oral cavity, and nasal cavity). 1395 
 1396 
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Figure S3. Tree-based sparse linear discriminant analysis revealing nasal ASVs that distinguish time 1397 
points from each other in relation to HSCT. A) Relative abundances over time of the 12 most abundant 1398 
families in the nasal cavity. B) Coefficients of discriminating clades of ASVs on the first LDA axis, colored 1399 
by taxonomic family, and plotted along the phylogenetic tree. C) Trajectories of ASVs in one discriminating 1400 
group, affiliated with the family Corynebacteriaceae, with decreasing abundances after HSCT and recovery 1401 
at late follow-up time points. The most abundant discriminating ASV is indicated Detailed taxonomic 1402 
information and LDA-coefficients of the displayed ASVs are listed in Table S2. 1403 
 1404 
Figure S4. Machine learning-based prediction of aGvHD severity from nasal microbial abundances pre-1405 
HSCT. A) Relative abundances of the 12 most abundant families over time in the nasal cavity in patients 1406 
with aGvHD grade 0-I versus II-IV. B) Importance plot of top 20 predictive nasal ASVs identified by the 1407 
svmLinear model with importance scores indicating the mean decrease in prediction accuracy in case the 1408 
respective ASV would be excluded from the model. The final cross-validated svmLinear model predicted 1409 
aGvHD (0-I versus II-IV) from the abundances of nasal ASVs pre-HSCT with 76% accuracy (95% CI: 56% to 1410 
90%). The ASVs that were also confirmed by Boruta feature selection are indicated with asterisk. C) 1411 
Conditional inference tree (CTREE) displaying ASVs identified as significant split nodes by nonparametric 1412 
regression for prediction of aGvHD. Numbers along the branches indicate split values of variance stabilized 1413 
bacterial abundances. The terminal nodes show the proportion of samples originating from patients with 1414 
aGvHD grade 0-I vs II-IV (n = number of samples). D) Boxplots depict the log transformed relative 1415 
abundances of the predictive ASVs at time points up to the transplantation in aGvHD grade 0-I compared 1416 
with grade II-IV patients.  1417 
 1418 
Figure S5. Multivariate associations of the oral microbiota with immune and clinical parameters in HSCT.  1419 
A) Clustered image map (CIM) based on sparse partial least squares (sPLS) regression analysis dimensions 1420 
1, 2, and 3, displaying pairwise correlations >0.2/<-0.2 between oral ASVs (bottom), and continuous 1421 
immune and clinical parameters (right). Red indicated positive correlation, and blue indicates negative 1422 
correlation, respectively. Based on the sPLS regression model, hierarchical clustering (clustering method: 1423 
complete linkage, distance method: Pearson’s correlation) was performed resulting in the three depicted 1424 
clusters. B) Canonical correspondence analysis (CCpnA) relating oral microbial abundances (circles) to 1425 
continuous (arrows) and categorical (+) immune and clinical parameters. ASVs and variables with at least 1426 
one correlation >0.2/<-0.2 in the sPLS analysis were included in the CCpnA. The triplot shows variables 1427 
and ASVs with a score >0.3/<-0.3 on at least one the first three CCpnA axes, displayed on axis 1 versus 2 1428 
with samples depicted as triangles. The colored ellipses (depicted with 80% confidence interval) 1429 
correspond to the clusters of ASVs identified by the sPLS-based hierarchical clustering. For visualization 1430 
purposes, a focused section of the CCpnA triplot is shown. Abbreviations are described in Figure 6. 1431 
Additional abbreviations: fungal, fungal infection; haploident, haploidentical donor; hemo, hemoglobin; 1432 
leuko, leukocytes; lympho, lymphocytes; w1, week+1; w2, week+2; w3, week+3. 1433 
 1434 
Figure S6. Multivariate associations of the nasal microbiota with immune and clinical parameters in 1435 
HSCT.  A) Clustered image map (CIM) based on sparse partial least squares (sPLS) regression analysis 1436 
dimensions 1, 2, and 3, displaying pairwise correlations >0.2/<-0.2 between nasal ASVs (bottom), and 1437 
continuous immune and clinical parameters (right). Red indicated positive correlation, and blue indicates 1438 
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negative correlation, respectively. Based on the sPLS regression model, hierarchical clustering (clustering 1439 
method: complete linkage, distance method: Pearson’s correlation) was performed resulting in the three 1440 
depicted clusters. B) Canonical correspondence analysis (CCpnA) relating nasal microbial abundances 1441 
(circles) to continuous (arrows) and categorical (+) immune and clinical parameters. ASVs and variables 1442 
with at least one correlation >0.2/<-0.2 in the sPLS analysis were included in the CCpnA. The triplot shows 1443 
variables and ASVs with a score >0.3/<-0.3 on at least one the first three CCpnA axes, displayed on axis 1 1444 
versus 2 with samples depicted as triangles. The colored ellipses (depicted with 80% confidence interval) 1445 
correspond to the clusters of ASVs identified by the sPLS-based hierarchical clustering. For visualization 1446 
purposes, a focused section of the CCpnA triplot is shown. Abbreviations are described in Figures 6 and 1447 
S5. Additional abbreviations: DonorMatch8, unrelated donor with 1 HLA mismatch; PB, peripheral blood. 1448 
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