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Abstract (100 words) 

Correctional facilities are at high risk of COVID-19 outbreaks due to the inevitable close 

contacts in the environment. Such facilities are a high priority in the public health response to 

the epidemic. We developed a user-friendly Excel spreadsheet model (building on the 

previously developed Recidiviz model) to analyze COVID-19 outbreaks in correctional 

facilities and the potential impact of prevention strategies - the COVID-19 Incarceration 

Model. The model requires limited inputs and can be used by non-modelers. The impact of a 

COVID-19 outbreak and mitigation strategies is illustrated for an example prison setting.  
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Introduction 

 

Substantial outbreaks of COVID-19 illness have occurred across the world within 

correctional facilities including prisons, jails, and detention centers (1-3). Such facilities, 

termed here as “prisons”, are at particular risk of COVID-19 outbreaks due to the dynamic 

interactions with the wider community and the largely unavoidable close contacts that occur 

within these settings. Inmates, correctional and healthcare staff, and visitors are all at risk of 

infection if an outbreak becomes established. Inmates may also be particularly vulnerable to 

COVID-19 illness, as well as to the accompanying morbidity and mortality, due to their high 

prevalence of underlying health conditions. In the United States, between 74-98% of 

infection rates among the prisoners in correctional facilities in Ohio, California, and 

Louisiana (4). Prisons are therefore a high priority setting in the public health response to the 

COVID-19 pandemic, and appropriate prevention and mitigation strategies need to be 

developed by correctional departments as part of the wider response (3). 

 

Mathematical models are useful tools for understanding infectious disease outbreaks, 

including explaining epidemiological patterns, evaluating the population-level impact of 

public health control programs, and forecasting epidemic trajectories (5, 6). Models can also 

be used to guide organizational responses by evaluating the potential impact of interventions 

to prevent or mitigate an outbreak of COVID-19 in prison settings (7-9). Traditionally, the 

development of epidemiological models is done by specialist researchers with the appropriate 

software coding skills, epidemiological expertise, and mathematical expertise. The 

development of many mathematical models requires significant time and resources followed 

by adaptation to local data inputs, hence prison settings are unlikely to be able to develop a 

model, acquire timely epidemiological information, and then apply the model to inform 

responses relevant to the local setting.   

We developed a simple modelling tool within Microsoft Excel (Redmond, WA) for 

simulation of outbreaks of COVID-19 within prisons, and the potential impact of control 

interventions. Our model was originally designed to model potential outbreaks within the 

state prisons service in the New South Wales, Australia and to assess the impact of 

intervention programs, including personal protective equipment (PPE), isolation, quarantine, 

thermal testing, reducing prisoner population, and reducing visitors. However, the finalized 

model can be customized to the unique behavioral and epidemiological context of any prison 
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or other closed setting. The model is sufficiently user-friendly to ensure that untrained 

correctional staff can perform their own analyses.  

 

The COVID-19 Incarceration Model incorporates virus transmission between inmates, 

correctional staff, healthcare staff, and visitors. It allows designation of the prevalence of 

vulnerabilities to severe COVID-19 in the population, varied numbers of close contacts, and 

the daily intake and release of inmates. We developed the model by modifying and expanding 

the scope of an existing Excel spreadsheet model developed by the non-profit organization 

Recidiviz (10), to capture additional complex features of prisons, a broad range of prison 

specific interventions for control of COVID-19 spread, and the mixing patterns between 

inmates and staff. It incorporates the latest international evidence on COVID-19 transmission 

and disease progression (Table 1).  

 

The Model ensures flexibility by allowing users to define and assess different outbreak 

scenarios and combinations of targeted control strategies to illustrate epidemic patterns and 

the effect of prevention or mitigation programs. The model is easily adopted for application 

to different prison settings. In this manuscript, we will demonstrate how the model works and 

its use for assessing the potential outcomes of a COVID-19 outbreak in a generic prison 

setting and the impact of associated interventions.  

 

Method 

 

To track an outbreak of COVID-19 in a prison setting and assess the potential impact of 

prevention strategies and interventions, we developed a simple compartmental deterministic 

model of COVID-19 transmission and disease progression within a Microsoft Excel 

spreadsheet (Redmond, WA). The model substantial extends the previously developed 

Recidiviz model to include key features of COVID-19 transmission, detailed demographics 

characteristics of inmates and prison staff, and more complex intervention strategies. Our 

Excel spreadsheet model is publicly available under an open-access license (GNU General 

Public License, Version 3) via https://github.com/The-Kirby-Institute/covid19-closed-pop-

models. The version used to generate the results in this manuscript is provided as 

supplementary material along with a user manual. 
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Model structure 

The model splits the prison population into the following compartments representing the 

overall number of inmates and staff who are: susceptible; exposed; infectious, with mild 

illness, with severe illness, hospitalized; and recovered (Figure 1). It then tracks the number 

of people in each compartment over time and calculates the number of deaths and new 

infections separately. Inmates are grouped by age in the model along with the proportion in 

each age group ‘vulnerable’ to severe COVID-19. The inmate population can be treated as a 

whole or split into seven-year age cohorts (0-19, 20-44, 45-54, 55-64, 65-74, 75-84, 85+). 

The model is implemented in a framework that updates the number of people in each 

compartment each day over a 120-day period. This is done using what is known as difference 

equations which are incorporated into the model and calculate the number of people who 

enter and leave each compartment each day to update the number for the next day. These 

calculations are done ‘internally’ using formulas within the model spreadsheet. For the 

infected population groups, COVID-19 disease progression is given by daily rates with 

assumptions based on up-to-date data from international settings of COVID-19 infection. 

This includes age-specific values for the development of symptoms, severe disease, 

hospitalization, and death (Table 1).  

The model is specifically designed for each prison setting with the daily number of inmates 

coming into the prison (either from the community or via transfer from another prison 

setting), the daily number of visitors, and staff working at the site described. As inmates enter 

the prison, they are allocated to age groups based on the age distribution of current inmates. 

The discharge of inmates is also described (but the model does not track where they go), with 

the number of inmates who are infected when they are discharged recorded. However, within 

the model, inmates are not released while they are symptomatic. Staff are assumed to attend 

the prison site every day, while family visitors only attend the site once.   

The COVID-19 transmission from infected to susceptible people is via close contact (defined 

to be less than 1.5 meters for longer than 15 minutes)) with a probability of transmission per 

contact determining the number of contacts becoming infected (11). This transmission 

probability varies to reflect susceptibility by age and the use of PPE (including mask use, 

hand washing, and hygiene measures). We also incorporated differences in transmission risk 

by disease stage (Table 1) as the level of viral shedding changes during the course of 

infection (with infectiousness highest during the pre-clinical and early symptomatic stages) 

(12). Hospitalized patients and healthcare workers are assumed to have access to sufficient 
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PPE in the model (Table 1). In the model the number of contacts is specified by the user for 

each population group with contacts between inmates and staff across the prison being 

completely random (known as homogeneous mixing).  The model can initiate outbreaks via 

inmate or staff or family visitors on a specific date.   

 

Interventions incorporated into the model 

Several interventions to reduce the risk of COVID-19 transmission are incorporated into the 

model (Figure 2). These interventions are specified by changing model inputs/parameters, the 

coverage or number/proportion of people exposed to the intervention, and the time an 

intervention is introduced relative to the start of an outbreak.  

The specific interventions incorporated into the model are described below with an 

explanation of how they are implemented in the model: 

• Intervention 0 - Deferral/early release: where the number of inmates in the prison is 

reduced over time to reduce the population at risk of COVID-19 infection. Such a 

reduction could reflect a policy of deferral of sentencing, or early release of low-risk 

inmates. Within the model, the number of inmates entering and leaving prison each 

day can be specified by the user to reflect the linear change in population size over 

time. For this intervention, a minimum population that can be reached can be 

specified to reflect the existence of inmates who cannot be released.  

• Intervention 1 - Reduction in contacts: where the overall average number of contacts 

inmates have each day is reduced. This intervention groups together the effects of 

measures that promote social distancing (e.g. reductions in time out of cell, prevention 

of congregations, cancelling of work, group counselling or training). Within the 

model, the effects of these interventions are simply captured by changing the value of 

the number of contacts for inmates which reduces the probability of infection.  

• Intervention 2 - Quarantine at reception: the model can reflect the effects of 

quarantine of inmates entering prison from the community to prevent spread from 

those who enter infected. In the model, we assume quarantine lasts for 14 days with 

incoming inmates quarantined by themselves within single cells or in groups (to 

reflect logistical constraints that are likely be present within a prison). The user 

specifies the size of the quarantine groups (1 or above), the day post-outbreak that 

quarantine begins, and a maximum number of people that can be quarantined at any 
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one time, again to enable logistical and structural constraints to be considered.  When 

the maximum number of people in quarantine is reached the model assumes any 

additional new inmates go into the prison without quarantine. While in quarantine, 

inmates can still have contacts and transmit to other people but at a much lower rate. 

The number of contacts a quarantined individual has depends on the size of the 

cohort. Finally, the compartmental structure of the model means that even though 

people are in quarantine for 14 days, which is an average, and infected people can 

leave quarantine early and potentially cause an outbreak. This “leakage” of infection 

is realistic given quarantined inmates will still have to interact with staff and others to 

receive meals, access sanitation, and receive healthcare.  

• Intervention 3 - Isolation of inmates: where inmates already in the general prison 

population who are diagnosed, or those suspected to be infected (due to symptoms or 

being a close contact of an infected person) are isolated from the rest of the inmate 

population. In the model, this intervention is implemented and specified in the same 

way as for quarantine on entry within inmates placed in isolation for 14 days 

individually or within groups up to a maximum number.   

• Intervention 4 – Provision of PPE to staff/inmates: where the effects of providing 

masks, gloves and handwashing materials to inmates and facility staff are modelled. 

Within the model, the effects of these measures are captured by a combined relative 

reduction in the transmission probability using data from published literature (13, 14) 

(Table 1). Available efficacy estimates were generally obtained from studies in health 

care settings, which are likely to have much better infection control standards than 

prisons. We, therefore, assumed the efficacy of these interventions to be half that of a 

healthcare setting. This results in PPE reducing the probability of transmission during 

close contact by a default 56% in the model, but this can be changed by the user. 

Healthcare workers are assumed to always have sufficient disposable PPE when 

seeing patients. The model allows PPE to also be available to other staff only, and to 

all inmates.  

• Intervention 5 – Prevent infected staff attending site: this intervention ensures staff 

who are symptomatic isolate themselves and not attend the site while infectious. We 

assume staff are still attending the prison site if they are in the susceptible or exposed 

stages. When this intervention is in place staff who are symptomatic are counted in a 
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separate model compartment until they recover and cannot transmit the virus to other 

staff or inmates in the prison.  

• Intervention 6 - Thermal screening of non-essential staff and family visitors: this 

intervention captures the effects of visitors to the site being screened for fever upon 

entry. We assume the sensitivity of screening in the model is 70% (15) and this 

reduces the probability of transmission from a visitors to other people at the prison 

setting by a corresponding 70%, but this can be changed by the user.  

• Intervention 7 - Reductions in the number of non-essential staff and family visitors: 

this intervention aims to capture the potential effects of stopping visitors (either 

temporary workers or family visitors) coming to the prison. The user enters the 

percentage reduction in the number of non-essential staff and family visitors attending 

the prison each day. The model assumes the same number of visitors enter the prison 

each day and have a specified number of contacts. We assume the number of contacts 

is small which means that an outbreak is not certain even if an infected visitor enters 

the prison each day—rather outbreaks will occur probabilistically or stochastically. 

Our model is not designed to explicitly capture this type of effect, but it can be 

reflected by estimating the risk and the expected time until an outbreak occurs if 

infected visitors enter the prison each day.   

Within the spreadsheet, the scenario input parameters can be entered by the user and turned 

on or off via the ‘Inputs’ sheet to capture the effects of each intervention individually or in 

combination.   

 

Model parameters 

Key factors or model parameters describing the COVID-19  transmission probability, disease 

progression and recovery rates, the probabilities of developing symptoms, the relative 

effectiveness of interventions on transmission, the relative effects of age on hospitalization, 

need for intensive care, and mortality are included in the model. These parameters are set at 

constant default values based on available literature as described in Table 1. The values are 

stored on the ‘Variables’ sheet in the model spreadsheet with notes and references providing 

justifications for these values, which can be updated by the user if required, to better reflect 

the characteristics of the setting modelled or updated data.   
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Date requirements 

To use the model, a minimal number of inputs are required but more comprehensive input 

data will improve the simulation of an outbreak. To run the model the minimum data required 

include: an estimate for the inmate population size; the average number of contacts per 

inmate per day; and the number of correctional staff, healthcare staff, non-essential staff, and 

family visitors. The inmate population can be split into age groups to better reflect the risks 

of severe COVID-19 if there is sufficient data. In addition, the percentage of inmates that are 

particularly vulnerable to severe COVID-19 can be entered, but this is not essential for the 

model to run. The number of inmates that enter and leave the prison each day also needs to be 

entered to understand the impact of changes in prisoner population size on an outbreak; 

otherwise the model assumes the prison is a closed population. To assess the risk of a visitor 

initiating an outbreak. the average number of visitors to the facility each day needs to be 

entered. 

 

Besides the inmate population size, the number of contacts per day is a key input into the 

model as it affects the size and speed of the outbreak and the relative effect of interventions. 

Information on the number of contacts per person each day is not often available, but can be 

informed by: the average number of inmates in each cell, area and pod in each prison; the size 

of work, training, or exercise groups; the number of patients each healthcare staff see each 

day; the number of correctional staff working each shift and attending change-over meetings; 

and finally by surveys of staff and inmates aimed at estimating the number of contacts. An 

alternative if contact information is not available is to “calibrate” the number of contacts so 

that the model simulation outputs match the expected growth rate and size of an outbreak 

based on case data from similar prisons, or even the modelled prison itself if an outbreak has 

already occurred.  

 

Outputs 

Once all the inputs are entered, the model produces simulated outbreaks and records daily 

numbers of new infections, the number of people living with COVID-19 while in each 

disease stage (asymptomatic, mild illness, moderate-severe illness, in hospital, and recovered) 

for each inmate and staff population group for 120 days. From these daily estimates, the 

model outputs the cumulative number of new cases and deaths at 7, 30, 90, and 120 days for 
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inmates, and for the staff populations. For staff, the model provides daily estimates for the 

number infected and requiring time off work.  

 

While we assumed infected inmates stay in the prison until recovered, inmates who are 

exposed or asymptomatic/pre-clinical can leave the prison if their length of stay finishes, 

which could lead to leakage of COVID-19 outbreaks to the community or upon transfer to a 

different prison. We, therefore, tracked the number of infected inmates (asymptomatic/pre-

clinical) who leave the prison each day in the model.  

 

Model spreadsheet structure and its use 

The model spreadsheet consists of six separate sheets which are used to enter model inputs 

(‘Inputs” sheet), show model outputs (‘Outputs’ sheet), contain the underlying model 

equations and perform the scenario calculations (‘time-dependent_scenario1’ & (‘time-

dependent_scenario2’, and ‘Calculation_scenario1’ & ‘Calculation_scenario2’), store the 

default model parameters (‘Variables’ sheet), and information about the model including the 

software license information (‘Information’ sheet).  The two most important sheets for using 

the model are the ‘Inputs’ and ‘Outputs’ sheets. The ‘Variables’ and ‘Information’ sheets are 

primarily for providing information, although model parameters can be changed on the 

‘Variables’ sheet if required. The scenario calculation sheets are read-only and can be 

essentially ignored by users (although advanced users can find additional results for each 

scenario). More information can be found in the Supplementary manual. 

The ‘Inputs’ sheet is where users enter model inputs. This sheet is split into two sections 

where the top section is used for entering the input data and information for the specific 

prison being analyzed (Figure 2 (a)). The bottom section is for specifying the scenarios that 

are simulated by the model (Figure 2 (b)). The model can run two outbreak scenarios 

simultaneously (‘Scenario 1’ and ‘Scenario 2’).  Intervention inputs can be specified to assess 

the potential impact of various combinations of interventions on COVID-19 transmission. In 

each scenario, specific interventions are turned on and off to enable the impact of a single 

intervention (using toggle cells shaded in blue, ’Input’ spreadsheet, Figure 2 (b)) or a 

combination of interventions to be compared. This includes a “no-response” scenario where 

all interventions are turned off, allowing the model to track the trajectory of an unmitigated 

outbreak where all parameters are set to their values prior to the appearance of the outbreak. 

The ‘Output’ sheet shows the main results and graphs for scenario 1 and scenario 2. The 
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charts and tables on this sheet show the model outcomes of the two scenarios specified on the 

‘Input’ sheet. The results include a number of new infections, asymptomatic, mild illness, 

moderate-severe illness, in hospital, recovered, and deaths for both inmates and staff.   

 

Demonstration model and example analyses 

To demonstrate the use of the model and illustrate the potential impact of interventions to 

prevent and/or mitigate an outbreak of COVID-19 within a prison setting, we developed a 

model for an example prison with 1,200 inmates, 100 correctional staff, 20 healthcare staff, 

and with no visitors. For this model, we assumed inmates and staff had 20 and 15 close 

contacts on average per day - as shown in Figure 2 (a). 

 

In this model we ran two scenarios, a ‘No-response’ scenario (Scenario 1) where no 

interventions are in place compared to a scenario where there is a reduction in population size 

(of net 20 inmates per day down to 67% of the initial population), PPE is being used by all 

staff and inmates, quarantine of new inmates on an entry for 14 days individually up to a total 

of 200, isolation of symptomatic and diagnosed inmates for 14 days individually up to a total 

of 200 are implemented one at a time and simultaneously in combination (see Figure 2 (b)).   

Under these scenarios, we project the potential epidemic of SARS-CoV-2 within inmates and 

staff if one infected inmate entered the prison from the community on day zero.  

 

Results 

 

The model shows that if no response were put in place with an outbreak (Scenario 1) in the 

example prison then almost 100% of inmates would become infected over 120 days while in 

prison (assuming entry and discharge of inmates continues) (Figure 3 (a)). Over this period, 

all staff could also become infected. The peak prevalence of active infection could reach 80% 

within inmates on day 30. At the peak of prevalence, almost 80% of correctional and 70% of 

healthcare staff would also be infected and unable to attend work at the prison (Figure 3 (b)).  

 

Each control intervention, when implemented separately, resulted in a reduced and delayed 

peak in infection (Figure 3 (a)). PPE had the biggest impact in delaying the peak from day 30 

to day 48 with 20% reduction in the cumulative number of infections, followed by quarantine 

of inmates on entry (peak on day 35), isolation of inmates ( peak on day 33), and reducing the 
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prison population size (peak on day 32). In combination, the interventions could prevent an 

outbreak from occurring.  

 

The model also shows that if there is no response to an outbreak in the prison, then an 

estimated maximum number of 350 inmates would require hospital beds, and a peak of 60 

ICU beds on day 40. Each intervention, when implemented separately, would reduce the 

number of hospital and ICU beds required. In combination, the intervention resulted in a 90% 

reduction of hospital and ICU bed needs in the facility, respectively. 

 

 

Conclusions 

 

We developed a simple and widely applicable Excel spreadsheet model of COVID-19 

transmission within correctional facilities. This user-friendly model was designed to be used 

by correctional and prisoner health staff to estimate the potential impact of COVID-19 on 

inmates, and on staff; as well as the effects of prevention and mitigation strategies. In this 

manuscript, we present the results from a demonstration prison to show how the model works 

and to illustrate the potential impact of COVID-19 on inmates and staff and the effect of 

plausible interventions.  

 

Our model shows that almost 100% of inmates and staff would become infected over 120 

days if there is no response to an outbreak in the example prison. The combination of all 

plausible interventions (Figure 3 (a)) including widespread of PPE use, isolation of inmates, 

quarantine of new inmates on entry, and reducing the prisoner population size, can prevent an 

outbreak from occurring.  

 

It is important to note that the Excel spreadsheet model we have developed is a relatively 

simple model and does not capture all the complexities of interactions within a prison, or the 

specific interactions between individuals. This means it may overestimate the magnitude of 

an outbreak in a prison where the internal structure includes multiple wings and yards that 

can be isolated from each other in the event of an outbreak. Our model is a deterministic 

model which means it does not capture probabilistic effects when the infection numbers are 

small, nor the risk of an outbreak initiating due to the presence of an infected individual. 

Rather the model assumes an outbreak will occur once an infected individual enters and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2021. ; https://doi.org/10.1101/2021.02.18.21252032doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.18.21252032
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

shows the resulting trajectory of such an outbreak. The model describes the movement 

between quarantine and isolation and the general inmate population as an average rate equal 

to the inverse of the quarantine/isolation period. This means there can be a slow release of 

infected individuals from quarantine/isolation in the model sparking off an outbreak earlier 

than what might be expected. Depending on the intervention parameters this is shown as a 

delayed trajectory with a slightly lower peak. However, inmates in quarantine/isolation can 

still have some interaction with staff and exposed individuals may be released at the end of 

the quarantine/isolation period meaning this slow spread of infection from 

quarantine/isolation is not unrealistic. Finally, this simple model does not describe the impact 

of varied testing strategies for COVID-19.  

 

Many of these limitations can be addressed by developing a more detailed and sophisticated 

model. Nevertheless, this user-friendly model was specifically developed to provide an 

accessible tool to guide prevention strategies to quickly assess the impact of interventions to 

mitigate outbreaks in the prison setting. This model can be used by non-modelers and can be 

readily applied to other closed population settings. 
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Figure 1: Schematic diagram of the COVID-19 incarceration model showing disease progression.  
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Figure 2. Snapshot of the main ‘input’ sheet: (a) storing information on potential relevance to the prison setting being analyzed; (b) specific interventions 

turned on and off (using toggle cells shaded in blue) or a combination of interventions to be compared. Numbers are for example only.  
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Figure 3. Change in the number of inmates infected, hospitalized, recovered and the number who 

have died during an outbreak in the reception prison (receiving new inmates from the community) 

under the no-response and intervention scenarios for: (a) inmates; and (b) all staff (correctional and 

healthcare staff). Each intervention is applied separately and in combination. 

(a) 

 

 

(b)  
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Table 1: Model inputs and parameter estimates  

Parameters Value  Reference 
Disease progression rates    
Time to symptoms 5.1 days  (16) 
Non-contagious incubation period 3.1 days  (12) 
Mild case recovery time 16 days  (17) 
Severe case recovery time 31 days  (17) 
Fatality from hospitalization 8.3 days  (18) 

The relative increase in mortality for vulnerable 1.6 

Based on all-cause 
mortality for Indigenous 
vs non-Indigenous from 
Australian Bureau of 
Statistics (19). 

Transmission probability per contact 0.05  (11) 
Relative transmission probability by risk group    
Exposure 0 Assumption  
Infectious 1.0 Base  
Moderate/severe 0.2 Assumption  
Hospitalized 0.2 Assumption  
Quarantined/Isolated 1.0 Assumption  
Healthcare staff 0.8 Assumption  
Effectiveness of interventions    
Reduction in transmission due to handwashing 14%  (13) 
Reduction in transmission due to wearing masks 85%  (14) 
The sensitivity of infrared thermal scanner for fever 70%  (15) 
Duration of quarantine 14 days Assumption  
Duration of isolation 14 days Assumption  
Age-dependent parameters    

Age groups 0-19 20-44 45-54 55-64 65-74 75-84 85+  
Proportion symptomatic 18% 41.5% 59% 73% 78% 78% 78%  
Proportion of symptomatic hospitalized 0.3% 2.8% 7.6% 13.4% 20.5% 25.8% 27.3%  
Proportion of hospitalized admitted to 
critical care (ICU) 5.0% 5.2% 9.3% 19.8% 35.3% 57% 70.8%  

Infection fatality rate (IFR) 0.01% 0.08% 0.38% 1.4% 3.65% 7.2% 9.3%  
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