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Abstract (100 wor ds)

Correctional facilities are at high risk of COVID-19 outbreaks due to the inevitable close
contacts in the environment. Such facilities are a high priority in the public health response to
the epidemic. We developed a user-friendly Excel spreadsheet model (building on the
previously developed Recidiviz model) to analyze COVID-19 outbreaks in correctional
facilities and the potential impact of prevention strategies - the COVID-19 Incarceration
Model. The model requires limited inputs and can be used by non-modelers. The impact of a
COVID-19 outbreak and mitigation strategies is illustrated for an example prison setting.
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| ntroduction

Substantial outbreaks of COVID-19 ilIness have occurred across the world within
correctional facilities including prisons, jails, and detention centers (1-3). Such facilities,
termed here as “prisons’, are at particular risk of COVID-19 outbreaks due to the dynamic
interactions with the wider community and the largely unavoidable close contacts that occur
within these settings. Inmates, correctional and healthcare staff, and visitors are al at risk of
infection if an outbreak becomes established. Inmates may also be particularly vulnerable to
COVID-19 illness, as well as to the accompanying morbidity and mortality, due to their high
prevalence of underlying health conditions. In the United States, between 74-98% of
infection rates among the prisoners in correctional facilities in Ohio, California, and
Louisiana (4). Prisons are therefore a high priority setting in the public health response to the
COVID-19 pandemic, and appropriate prevention and mitigation strategies need to be
developed by correctional departments as part of the wider response (3).

Mathematical models are useful tools for understanding infectious disease outbreaks,
including explaining epidemiological patterns, evaluating the population-level impact of
public health control programs, and forecasting epidemic trajectories (5, 6). Models can also
be used to guide organizational responses by evaluating the potential impact of interventions
to prevent or mitigate an outbreak of COVID-19 in prison settings (7-9). Traditionally, the
development of epidemiological models is done by specialist researchers with the appropriate
software coding skills, epidemiological expertise, and mathematical expertise. The
development of many mathematical models requires significant time and resources followed
by adaptation to local data inputs, hence prison settings are unlikely to be able to develop a
model, acquire timely epidemiological information, and then apply the model to inform
responses relevant to the local setting.

We developed a smple modelling tool within Microsoft Excel (Redmond, WA) for
simulation of outbreaks of COVID-19 within prisons, and the potential impact of control
interventions. Our model was originally designed to model potential outbreaks within the
state prisons service in the New South Wales, Australia and to assess the impact of
intervention programs, including personal protective equipment (PPE), isolation, quarantine,
thermal testing, reducing prisoner population, and reducing visitors. However, the finalized

model can be customized to the unique behavioral and epidemiological context of any prison
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or other closed setting. The model is sufficiently user-friendly to ensure that untrained

correctional staff can perform their own analyses.

The COVID-19 Incarceration Model incorporates virus transmission between inmates,
correctional staff, healthcare staff, and visitors. It allows designation of the prevalence of
vulnerabilities to severe COVID-19 in the population, varied numbers of close contacts, and
the daily intake and release of inmates. We devel oped the model by modifying and expanding
the scope of an existing Excel spreadsheet model developed by the non-profit organization
Recidiviz (10), to capture additional complex features of prisons, a broad range of prison
specific interventions for control of COVID-19 spread, and the mixing patterns between
inmates and staff. It incorporates the latest international evidence on COVID-19 transmission

and disease progression (Table 1).

The Model ensures flexibility by allowing users to define and assess different outbreak
scenarios and combinations of targeted control strategies to illustrate epidemic patterns and
the effect of prevention or mitigation programs. The model is easily adopted for application
to different prison settings. In this manuscript, we will demonstrate how the model works and
its use for assessing the potential outcomes of a COVID-19 outbreak in a generic prison

setting and the impact of associated interventions.

Method

To track an outbreak of COVID-19 in a prison setting and assess the potential impact of
prevention strategies and interventions, we developed a simple compartmental deterministic
model of COVID-19 transmission and disease progression within a Microsoft Excel
spreadsheet (Redmond, WA). The model substantial extends the previously developed
Recidiviz model to include key features of COVID-19 transmission, detailed demographics
characteristics of inmates and prison staff, and more complex intervention strategies. Our
Excel spreadsheet model is publicly available under an open-access license (GNU General
Public License, Version 3) via https.//github.com/The-Kirby-Institute/covid19-closed-pop-

models. The version used to generate the results in this manuscript is provided as

supplementary material along with a user manual.
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Model structure

The model splits the prison population into the following compartments representing the
overall number of inmates and staff who are: susceptible; exposed; infectious, with mild
illness, with severe illness, hospitalized; and recovered (Figure 1). It then tracks the number
of people in each compartment over time and calculates the number of deaths and new
infections separately. Inmates are grouped by age in the model along with the proportion in
each age group ‘vulnerable’ to severe COVID-19. The inmate population can be treated as a
whole or split into seven-year age cohorts (0-19, 20-44, 45-54, 55-64, 65-74, 75-84, 85+).
The model is implemented in a framework that updates the number of people in each
compartment each day over a 120-day period. This is done using what is known as difference
equations which are incorporated into the model and calculate the number of people who
enter and leave each compartment each day to update the number for the next day. These
calculations are done ‘internally’ using formulas within the model spreadsheet. For the
infected population groups, COVID-19 disease progression is given by daily rates with
assumptions based on up-to-date data from international settings of COVID-19 infection.
This includes age-specific values for the development of symptoms, severe disease,
hospitalization, and death (Table 1).

The model is specifically designed for each prison setting with the daily number of inmates
coming into the prison (either from the community or via transfer from another prison
setting), the daily number of visitors, and staff working at the site described. As inmates enter
the prison, they are allocated to age groups based on the age distribution of current inmates.
The discharge of inmates is aso described (but the model does not track where they go), with
the number of inmates who are infected when they are discharged recorded. However, within
the model, inmates are not released while they are symptomatic. Staff are assumed to attend

the prison site every day, while family visitors only attend the site once.

The COVID-19 transmission from infected to susceptible people is via close contact (defined
to be less than 1.5 meters for longer than 15 minutes)) with a probability of transmission per
contact determining the number of contacts becoming infected (11). This transmission
probability varies to reflect susceptibility by age and the use of PPE (including mask use,
hand washing, and hygiene measures). We also incorporated differences in transmission risk
by disease stage (Table 1) as the level of viral shedding changes during the course of
infection (with infectiousness highest during the pre-clinical and early symptomatic stages)

(12). Hospitalized patients and healthcare workers are assumed to have access to sufficient
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PPE in the model (Table 1). In the model the number of contacts is specified by the user for
each population group with contacts between inmates and staff across the prison being
completely random (known as homogeneous mixing). The model can initiate outbreaks via

inmate or staff or family visitors on a specific date.

| nterventions incorporated into the model

Several interventions to reduce the risk of COVID-19 transmission are incorporated into the
model (Figure 2). These interventions are specified by changing model inputs/parameters, the
coverage or number/proportion of people exposed to the intervention, and the time an

intervention isintroduced relative to the start of an outbreak.

The specific interventions incorporated into the model are described below with an

explanation of how they are implemented in the model:

e Intervention O - Deferral/early release: where the number of inmates in the prison is
reduced over time to reduce the population at risk of COVID-19 infection. Such a
reduction could reflect a policy of deferral of sentencing, or early release of low-risk
inmates. Within the model, the number of inmates entering and leaving prison each
day can be specified by the user to reflect the linear change in population size over
time. For this intervention, a minimum population that can be reached can be
specified to reflect the existence of inmates who cannot be released.

e Intervention 1 - Reduction in contacts. where the overall average number of contacts
inmates have each day is reduced. This intervention groups together the effects of
measures that promote social distancing (e.g. reductionsin time out of cell, prevention
of congregations, cancelling of work, group counselling or training). Within the
model, the effects of these interventions are simply captured by changing the value of
the number of contacts for inmates which reduces the probability of infection.

e Intervention 2 - Quarantine at reception: the model can reflect the effects of
quarantine of inmates entering prison from the community to prevent spread from
those who enter infected. In the model, we assume quarantine lasts for 14 days with
incoming inmates quarantined by themselves within single cells or in groups (to
reflect logistical constraints that are likely be present within a prison). The user
specifies the size of the quarantine groups (1 or above), the day post-outbreak that

guarantine begins, and a maximum number of people that can be quarantined at any
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one time, again to enable logistical and structural constraints to be considered. When
the maximum number of people in quarantine is reached the model assumes any
additional new inmates go into the prison without quarantine. While in quarantine,
inmates can still have contacts and transmit to other people but at a much lower rate.
The number of contacts a quarantined individual has depends on the size of the
cohort. Finaly, the compartmental structure of the model means that even though
people are in quarantine for 14 days, which is an average, and infected people can
leave quarantine early and potentially cause an outbreak. This “leakage” of infection
isrealistic given quarantined inmates will still have to interact with staff and others to
receive meals, access sanitation, and receive healthcare.

e Intervention 3 - Isolation of inmates: where inmates already in the general prison
population who are diagnosed, or those suspected to be infected (due to symptoms or
being a close contact of an infected person) are isolated from the rest of the inmate
population. In the model, this intervention is implemented and specified in the same
way as for quarantine on entry within inmates placed in isolation for 14 days
individually or within groups up to a maximum number.

e Intervention 4 — Provision of PPE to gstaff/inmates. where the effects of providing
masks, gloves and handwashing materials to inmates and facility staff are modelled.
Within the model, the effects of these measures are captured by a combined relative
reduction in the transmission probability using data from published literature (13, 14)
(Table 1). Available efficacy estimates were generally obtained from studies in health
care settings, which are likely to have much better infection control standards than
prisons. We, therefore, assumed the efficacy of these interventions to be half that of a
healthcare setting. This results in PPE reducing the probability of transmission during
close contact by a default 56% in the model, but this can be changed by the user.
Healthcare workers are assumed to always have sufficient disposable PPE when
seeing patients. The model allows PPE to also be available to other staff only, and to
al inmates.

e Intervention 5 — Prevent infected staff attending site: this intervention ensures staff
who are symptomatic isolate themselves and not attend the site while infectious. We
assume staff are still attending the prison site if they are in the susceptible or exposed

stages. When this intervention is in place staff who are symptomatic are counted in a
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separate model compartment until they recover and cannot transmit the virus to other
staff or inmates in the prison.

e Intervention 6 - Thermal screening of non-essential staff and family visitors: this
intervention captures the effects of visitors to the site being screened for fever upon
entry. We assume the sensitivity of screening in the model is 70% (15) and this
reduces the probability of transmission from a visitors to other people at the prison
setting by a corresponding 70%, but this can be changed by the user.

e Intervention 7 - Reductions in the number of non-essential staff and family visitors:
this intervention ams to capture the potential effects of stopping visitors (either
temporary workers or family visitors) coming to the prison. The user enters the
percentage reduction in the number of non-essentia staff and family visitors attending
the prison each day. The model assumes the same number of visitors enter the prison
each day and have a specified number of contacts. We assume the number of contacts
is small which means that an outbreak is not certain even if an infected visitor enters
the prison each day—rather outbreaks will occur probabilistically or stochastically.
Our model is not designed to explicitly capture this type of effect, but it can be
reflected by estimating the risk and the expected time until an outbreak occurs if

infected visitors enter the prison each day.

Within the spreadsheet, the scenario input parameters can be entered by the user and turned
on or off via the ‘Inputs’ sheet to capture the effects of each intervention individually or in

combination.

Model parameters

Key factors or model parameters describing the COVID-19 transmission probability, disease
progression and recovery rates, the probabilities of developing symptoms, the relative
effectiveness of interventions on transmission, the relative effects of age on hospitalization,
need for intensive care, and mortality are included in the model. These parameters are set at
constant default values based on available literature as described in Table 1. The values are
stored on the ‘Variables' sheet in the model spreadsheet with notes and references providing
justifications for these values, which can be updated by the user if required, to better reflect
the characteristics of the setting modelled or updated data.
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Date requirements

To use the model, a minimal number of inputs are required but more comprehensive input
data will improve the simulation of an outbreak. To run the model the minimum data required
include: an estimate for the inmate population size; the average number of contacts per
inmate per day; and the number of correctiona staff, healthcare staff, non-essential staff, and
family visitors. The inmate population can be split into age groups to better reflect the risks
of severe COVID-19 if there is sufficient data. In addition, the percentage of inmates that are
particularly vulnerable to severe COVID-19 can be entered, but this is not essential for the
model to run. The number of inmates that enter and leave the prison each day also needs to be
entered to understand the impact of changes in prisoner population size on an outbreak;
otherwise the model assumes the prison is a closed population. To assess the risk of a visitor
initiating an outbreak. the average number of visitors to the facility each day needs to be

entered.

Besides the inmate population size, the number of contacts per day is a key input into the
model as it affects the size and speed of the outbreak and the relative effect of interventions.
Information on the number of contacts per person each day is not often available, but can be
informed by: the average number of inmates in each cell, area and pod in each prison; the size
of work, training, or exercise groups, the number of patients each healthcare staff see each
day; the number of correctional staff working each shift and attending change-over meetings;
and finally by surveys of staff and inmates aimed at estimating the number of contacts. An
alternative if contact information is not available is to “calibrate’ the number of contacts so
that the model simulation outputs match the expected growth rate and size of an outbreak
based on case data from similar prisons, or even the modelled prison itself if an outbreak has
aready occurred.

Outputs
Once al the inputs are entered, the model produces simulated outbreaks and records daily

numbers of new infections, the number of people living with COVID-19 while in each
disease stage (asymptomatic, mild illness, moderate-severe iliness, in hospital, and recovered)
for each inmate and staff population group for 120 days. From these daily estimates, the
model outputs the cumulative number of new cases and deaths at 7, 30, 90, and 120 days for
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inmates, and for the staff populations. For staff, the model provides daily estimates for the

number infected and requiring time off work.

While we assumed infected inmates stay in the prison until recovered, inmates who are
exposed or asymptomatic/pre-clinical can leave the prison if their length of stay finishes,
which could lead to leakage of COVID-19 outbreaks to the community or upon transfer to a
different prison. We, therefore, tracked the number of infected inmates (asymptomatic/pre-

clinical) who leave the prison each day in the model.

Model spreadsheset structure and its use

The model spreadsheet consists of six separate sheets which are used to enter model inputs
(‘Inputs’ sheet), show model outputs (‘Outputs sheet), contain the underlying model
equations and perform the scenario calculations (‘time-dependent_scenariol’ & (‘time-
dependent_scenario2’, and ‘Calculation_scenariol’ & ‘Calculation_scenario?’), store the
default model parameters (‘Variables' sheet), and information about the model including the
software license information (‘Information’ sheet). The two most important sheets for using
the model are the ‘Inputs’ and ‘Outputs’ sheets. The ‘Variables’ and ‘Information’ sheets are
primarily for providing information, athough model parameters can be changed on the
‘Variables' sheet if required. The scenario calculation sheets are read-only and can be
essentialy ignored by users (although advanced users can find additiona results for each

scenario). More information can be found in the Supplementary manual.

The ‘Inputs’ sheet is where users enter model inputs. This sheet is split into two sections
where the top section is used for entering the input data and information for the specific
prison being analyzed (Figure 2 (a)). The bottom section is for specifying the scenarios that
are simulated by the model (Figure 2 (b)). The model can run two outbreak scenarios
simultaneously (‘ Scenario 1' and ‘ Scenario 2’). Intervention inputs can be specified to assess
the potential impact of various combinations of interventions on COVID-19 transmission. In
each scenario, specific interventions are turned on and off to enable the impact of a single
intervention (using toggle cells shaded in blue, 'Input’ spreadsheet, Figure 2 (b)) or a
combination of interventions to be compared. This includes a “no-response” scenario where
all interventions are turned off, allowing the model to track the trajectory of an unmitigated
outbreak where all parameters are set to their values prior to the appearance of the outbreak.

The ‘Output’ sheet shows the main results and graphs for scenario 1 and scenario 2. The
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charts and tables on this sheet show the model outcomes of the two scenarios specified on the
‘Input’ sheet. The results include a number of new infections, asymptomatic, mild illness,

moderate-severe illness, in hospital, recovered, and deaths for both inmates and staff.

Demonstration model and example analyses

To demonstrate the use of the model and illustrate the potential impact of interventions to
prevent and/or mitigate an outbreak of COVID-19 within a prison setting, we developed a
model for an example prison with 1,200 inmates, 100 correctional staff, 20 healthcare staff,
and with no visitors. For this model, we assumed inmates and staff had 20 and 15 close

contacts on average per day - as shown in Figure 2 (a).

In this model we ran two scenarios, a‘No-response’ scenario (Scenario 1) where no
interventions are in place compared to a scenario where there is areduction in population size
(of net 20 inmates per day down to 67% of the initial population), PPE is being used by all
staff and inmates, quarantine of new inmates on an entry for 14 days individually up to atotal
of 200, isolation of symptomatic and diagnosed inmates for 14 days individually up to atotal
of 200 are implemented one at atime and simultaneously in combination (see Figure 2 (b)).
Under these scenarios, we project the potential epidemic of SARS-CoV -2 within inmates and

staff if one infected inmate entered the prison from the community on day zero.

Results

The model shows that if no response were put in place with an outbreak (Scenario 1) in the
example prison then almost 100% of inmates would become infected over 120 days whilein
prison (assuming entry and discharge of inmates continues) (Figure 3 (a)). Over this period,
all staff could also become infected. The peak prevalence of active infection could reach 80%
within inmates on day 30. At the peak of prevalence, almost 80% of correctional and 70% of
healthcare staff would also be infected and unable to attend work at the prison (Figure 3 (b)).

Each control intervention, when implemented separately, resulted in areduced and delayed
peak in infection (Figure 3 (a)). PPE had the biggest impact in delaying the peak from day 30
to day 48 with 20% reduction in the cumulative number of infections, followed by quarantine

of inmates on entry (peak on day 35), isolation of inmates ( peak on day 33), and reducing the
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prison population size (peak on day 32). In combination, the interventions could prevent an

outbreak from occurring.

The model also showsthat if thereis no response to an outbreak in the prison, then an
estimated maximum number of 350 inmates would require hospital beds, and a peak of 60
ICU beds on day 40. Each intervention, when implemented separately, would reduce the
number of hospital and ICU beds required. In combination, the intervention resulted in a 90%
reduction of hospital and ICU bed needsin the facility, respectively.

Conclusions

We developed a simple and widely applicable Excel spreadsheet model of COVID-19
transmission within correctional facilities. This user-friendly model was designed to be used
by correctional and prisoner health staff to estimate the potential impact of COVID-19 on
inmates, and on staff; as well as the effects of prevention and mitigation strategies. In this
manuscript, we present the results from a demonstration prison to show how the model works
and to illustrate the potential impact of COVID-19 on inmates and staff and the effect of

plausible interventions.

Our model shows that almost 100% of inmates and staff would become infected over 120
days if there is no response to an outbreak in the example prison. The combination of all
plausible interventions (Figure 3 (@) including widespread of PPE use, isolation of inmates,
guarantine of new inmates on entry, and reducing the prisoner population size, can prevent an

outbreak from occurring.

It is important to note that the Excel spreadsheet model we have developed is a relatively
simple model and does not capture all the complexities of interactions within a prison, or the
specific interactions between individuals. This means it may overestimate the magnitude of
an outbreak in a prison where the internal structure includes multiple wings and yards that
can be isolated from each other in the event of an outbreak. Our model is a deterministic
model which means it does not capture probahilistic effects when the infection numbers are
small, nor the risk of an outbreak initiating due to the presence of an infected individual.

Rather the model assumes an outbreak will occur once an infected individual enters and
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shows the resulting trajectory of such an outbreak. The model describes the movement
between quarantine and isolation and the general inmate population as an average rate equal
to the inverse of the quarantine/isolation period. This means there can be a slow release of
infected individuals from quarantine/isolation in the model sparking off an outbreak earlier
than what might be expected. Depending on the intervention parameters this is shown as a
delayed trgjectory with a slightly lower peak. However, inmates in quaranting/isolation can
still have some interaction with staff and exposed individuals may be released at the end of
the quarantine/isolation period meaning this slow spread of infection from
quarantine/isolation is not unrealistic. Finally, this simple model does not describe the impact
of varied testing strategies for COVID-19.

Many of these limitations can be addressed by developing a more detailed and sophisticated
model. Nevertheless, this user-friendly model was specifically developed to provide an
accessible tool to guide prevention strategies to quickly assess the impact of interventions to
mitigate outbreaks in the prison setting. This model can be used by non-modelers and can be
readily applied to other closed population settings.
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Figure 1: Schematic diagram of the COVID-19 incarceration model showing disease progression.
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Figure 2. Snapshot of the main ‘input’ sheet: (a) storing information on potential relevance to the prison setting being analyzed; (b) specific interventions
16

turned on and off (using toggle cells shaded in blue) or a combination of interventions to be compared. Numbers are for example only.
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Figure 3. Change in the number of inmates infected, hospitalized, recovered and the number who
have died during an outbreak in the reception prison (receiving new inmates from the community)
under the no-response and intervention scenarios for: (a) inmates; and (b) all staff (correctional and

healthcare staff). Each intervention is applied separately and in combination.
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Table 1: Mode inputsand parameter estimates

Parameters Value Reference
Disease progression rates

Timeto symptoms 5.1 days (16)
Non-contagious incubation period 3.1 days (12)

Mild caserecovery time 16 days a7
Severe case recovery time 31 days a7
Fatality from hospitalization 8.3 days (18)

Based on all-cause
mortality for Indigenous

Therelativeincreasein mortality for vulnerable 16 vs non-Indigenous from
Australian Bureau of
Statigtics (19).
Transmission probability per contact 0.05 (11
Relative transmission probability by risk group
Exposure 0 Assumption
Infectious 1.0 Base
M oder ate/severe 0.2 Assumption
Hospitalized 0.2 Assumption
Quarantined/I solated 1.0 Assumption
Healthcare staff 0.8 Assumption
Effectiveness of interventions
Reduction in transmission due to handwashing 14% (13)
Reduction in transmission due to wearing masks 85% (19
The sensitivity of infrared thermal scanner for fever 70% (15)
Duration of quarantine 14 days Assumption
Duration of isolation 14 days Assumption

Age-dependent parameters

Agegroups 0-19 20-44 45-54 55-64 65-74 75-84 85+
Proportion symptomatic 18% 415%  59% 73% 78% 78% 78%
Proportion of symptomatic hospitalized 0.3% 2.8% 7.6% 134% 20.5% 25.8% 27.3%

Proportion of hospitalized admitted to 50%  52%  93% 198% 353% 57%  70.8%
critical care (ICU)

Infection fatality rate (IFR) 0.01% 008%  038% 1.4% 3.65% 7.2% 9.3%
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