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Abstract

Across the world, countries are fighting to reduce the spread of COVID-19. The backbone of

the response is a test-trace-isolate strategy, where suspected infected get tested and isolated and

possible secondary cases get traced, tested and isolated. Because more accurate tests often take

longer to analyze, and the benefits of contact tracing are strengthened by rapid diagnosis, there

exists a trade-off in test sensitivity and test waiting time in test-trace-isolate strategies. Here we

ask: How many false negatives can be tolerated in a rapid test so that it reduces transmission

better than a slower, more accurate test? How does this change with contact tracing efficiency and

test waiting time? We find that a rapid, less sensitive test performs best for many test-parameter

choices and that this is true even for modest contact tracing efficiency. For COVID-19-like viral

parameters, a test with 40% false negatives and immediate result might reduce transmission as

well as a test with no false negatives and a 3-day waiting time. Our analysis suggests employing

rapid tests to reduce test waiting times as a viable strategy to reduce transmission when testing

infrastructure is under stress.
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I. INTRODUCTION

Rapid diagnosis and isolation of COVID-19 cases is critical in reducing further trans-

mission of the virus. Since a large fraction of infections take place before the infected

develops symptoms,1–3 isolation following the onset of symptoms is not sufficient to control

the pandemic.4,5 To ensure rapid diagnosis and reduce transmission before symptom onset,

the World Health Organization therefore recommends tracing, testing and isolating close

contacts of COVID-19 positives.6

The success of the test-trace-isolate strategy depends on many factors. In addition to

social factors such as the population being informed and complying with guidelines, success-

ful rapid diagnosis and isolation depends heavily on the following 3 factors. i. Test waiting

time: How long it takes from a person wants to get tested to the result of the test arrives

and contact tracing begins. ii. Test sensitivity: How often a test returns a false negative.

iii. Tracing efficiency: The fraction of secondary cases that are successfully found through

contact tracing confirmed positives.

These 3 strategy parameters – test waiting time, test sensitivity, and tracing efficiency

– are not necessarily fixed. A surge in cases might cause an increase in test demands.

Higher test demand could in turn cause longer turnaround times as seen in some countries

during the fall and winter of 2020.7,8 Longer turnaround times lead to slower tracing of

secondary infections and thus a vicious cycle begins. The 3 strategy parameters are also

not independent. Faster test results often come at the cost of lower sensitivity. PCR tests

are highly accurate, but take significant time to analyze. Faster results can be achieved by

pooling tests9–11 or using rapid antigen tests,12 lateral flow devices13 or saliva tests.14

Recent analyses concluded that test sensitivity is secondary to frequency and turnaround

times in population-screening strategies15,16 as implemented by Slovakia in November 2020.17

In context of the more-widely applied test-trace-isolate strategies, rapid tests increase the

effect of contact tracing. This raises the natural question: When is it better to get a fast

result than an accurate result? How does this change with the efficiency of contact tracing

efforts, and with turnaround times? Here we confront these questions.
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II. MODEL DESCRIPTION

To quantify the impact of test-trace-isolate strategies on growing epidemics, we simulate

the branching structure of the chains of infections, also referred to as the “epidemic tree”.18,19

Our model lets us keep track of who infected whom, which is essential when simulating

contact tracing and quarantining infectious people. In the model (Figure 1A), infected

individuals give rise to new cases, unless quarantined following testing and tracing efforts.

We initiate a simulation with some number of newly infected people, Nseed ∈ N. The sim-

ulation progresses in discrete timesteps, corresponding to days, and we make the simplifying

assumption that every infected person, goes through the same phases before recovering:

3 days of being presymptomatic and noninfectious followed by 8 infectious days. As for

COVID-19,20 some fraction of cases, pasymp, remain asymptomatic for the entire infectious

period; all other infected cases experience symptoms starting on day 7 after infection.

In the absence of testing, tracing and isolation, an infectious person would give rise to

k secondary cases. For each infected, we assume that k is drawn from the probability

distribution P (k). When each of these k secondary cases is infected, we determine the time

of infection by drawing an integer from the probability distribution Ptime(t). Ptime(t) takes

positive values on the days where the infected is infectious and, mimicking COVID-19,1,15

peaks around symptom onset (Figure 1B). These infections take place unless the infected is

in quarantine at the time the infection would occur.

Infectious people quarantine only when waiting for a test to be taken, receiving a test

result, or after testing positive. In our model, an infectious person orders a test if either of

two things happens: 1) The person is traced; 2) The person develops symptoms. In either

case, the person orders a test immediately and then waits δ = δtest+δresult days for the result.

The test waiting time is divided into δtest days waiting for the test to be taken followed by

δresult days to receive the result. The test correctly identifies the case with probability equal

to its sensitivity, 1 − pfalse, where pfalse is the false negative rate. If the test comes back

positive, each of the person’s secondary cases is traced with independent probability ptrace.

We obtain indistinguishable results when simulating the same δ with varying values of δtest

and δresult. Thus, the key parameters of the model are the test waiting time δ, test sensitivity

1− pfalse, and tracing efficiency ptrace.

Following tmax timesteps, we count the number of nodes that completed their whole
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infectious period, nparents. We also count the number of people these nodes infected, nchildren.

The output of the simulation is the effective reproduction number of simulated disease:

Reff = nchildren/nparents.

III. RESULTS

We use the model to examine the trade-off between test waiting time and test accuracy

depending on the tracing efficiency. In our simulations, we therefore vary the parameters

δ, 1 − pfalse, and ptrace and fix all other parameters (for δ ≥ 1, we set δresult = 1). For P (k)

we choose a Poisson distribution with mean R0 = 2 (slightly lower than estimated in early

stages of the pandemic21,22) and for Ptime(t) we choose the right-skewed distribution depicted

in Fig. 1B. Finally, we choose tmax = 50.

To develop some intuition, let us first introduce the results we obtain when fixing the

tracing efficiency, ptrace = 0.80. This constraint leaves 2 free parameters: The test sensitivity,

1 − pfalse, and the test delay, δ. We now compare the effective reproduction number Rslow
eff

obtained by using a slow, but accurate test (parameters: pslow
false = 0 and some δslow ≥ 1 day) to

the reproduction number, Rrapid
eff , obtained with a less accurate, but rapid test (parameters:

some prapid
false and δrapid = 0 days).

To evaluate whether speed or accuracy is to be preferred, we compute the difference in

obtained effective reproduction numbers of the virus under the different choices of tests,

∆Reff = Rslow
eff − Rrapid

eff . Let us choose some test delay, e.g. δslow = 2 days (perhaps cor-

responding to a PCR test with a 1-day waiting time to get tested and a subsequent 1-day

waiting time to get the result). In this case, how will ∆Reff depend on the risk of getting a

false negative test result? For very high sensitivity (low pfalse), this faster test will be almost

as accurate as the slower test it is being compared to. For this reason, the fast test will be

preferable to the slower one (Fig. 2A top colorbar). If we now imagine slowly decreasing

the test sensitivity, ∆Reff will gradually increase until it reaches a breaking point where

the slow and rapid tests reduce the effective reproduction number equally well: ∆Reff = 0.

Decreasing the sensitivity even further makes ∆Reff positive, meaning that for this high

probabilities of false negatives, the accurate test is to be preferred.

If we now make the same plot but with a higher waiting time to receive the slow test, the

breaking point will move to a lower test sensitivity. The second colorbar in Fig. 2A shows
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the result for δslow = 3 days. The breaking point moved from sensitivity ≈ 0.91 to ≈ 0.63

with this single day increase in waiting time – corresponding to a fourfold increase in pfalse!

Increasing the waiting time once more, setting δslow = 4, moves the breaking point further

to the left. In this latter case, a 54% chance of a false negative is better than a 4 day wait

for accuracy.

Having established some intuition for the simulations, we proceed to varying the third

parameter: the tracing efficiency. By varying the tracing efficiency, for each choice of δslow

we get 2-dimensional heatmaps instead of the one-dimensional colorbars presented in the

previous paragraphs (Fig. 2B-D). In these heatmaps, the breaking points become white

curves. Every point to the right of the breaking-point curve is a parameter combination

where a faster test is preferable. Every point to the left of the breaking-point curve is

a parameter combination that favors an accurate test. Notice how all the breaking-point

curves start in the lower-right corner (where tests are completely accurate but no contact

tracing is done) and how quickly they move to the left with increasing tracing efficiency.

Figure 2E plots the obtained Rrapid
eff . For each simulated choice of parameters, each computed

Reff is averaged over 10 simulations. For clarity, the heatmaps in Fig. 2 have been smoothed

with a Gaussian filter.

IV. DISCUSSION

Testing, tracing and isolating positive cases is central in many countries’ strategy to

fight the current COVID-19 pandemic.23–25 We have demonstrated that there is a sizeable

trade-off between test sensitivity and test waiting times in such strategies, and that it

is often beneficial to prioritize test speed over test sensitivity. Moreover, we find that

this benefit of rapid tests increases quickly with increases in test waiting times, and that

even modest tracing efficiency unlocks the advantages of rapid tests. This indicates that

additional waiting time for test results must be avoided and that it often makes sense to

reduce test sensitivity in order to do so. It is to be expected that testing systems will

occasionally get under stress during a pandemic, and having a way to avoid build-up of

waiting times in this scenario is crucial. Designing such stress-relieve strategies presents an

interesting direction for future research.

Some of the assumptions we have made can be questioned. Three such assumptions are:
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That quarantine hinters any transmission; that symptomatic individuals do not quarantine

after testing (false) negative; and that the probability of getting a false negative result does

not depend on the infected’s infectiousness at the time the test was taken. We note that all

of these assumptions will favor reducing transmission by slower, more accurate tests: That

people do not break isolation benefits the tests with long waiting times; false negative results

leading to completely normal behavior damages only the tests that allow for false negative

results; lastly, making false negatives less likely at high viral load would make the rapid

tests more reliable early in the course of disease, when many new secondary cases could

be avoided following diagnosis. That we have chosen our assumptions as to disfavor rapid

low-sensitivity tests means that our results can be interpreted as conservative estimates of

the benefits of reducing test waiting time with less sensitive tests.

Our choices of the probability distributions P (k) and Ptime(t) can also be questioned.

A better choice for P (k) might be a heavy-tailed distribution that could account for su-

perspreading behavior.26,27 Choosing a geometric distribution for P (k) with the same mean

yields indistinguishable results (not shown). On the other hand, the choice of Ptime(t) in-

fluences results: Higher infectivity early in the course of disease makes the benefit of rapid

tests greater (simulations not shown).

Two other limitations arise not from parameter choices, but the model itself. First, our

model does not take depletion of susceptibles into account. Such effects are unimportant to

what we were interested in: the effect of testing and tracing on the effective reproduction

number at a given stage of the pandemic. Secondly, our implementation of contact tracing

allows only for descendants of the confirmed positive to be traced. Not including two-way

contact tracing or the possibility of identifying individuals through non-parents could cause

us to underestimate the effect of contact tracing.28–31 This, and not taking into account

possible beneficial effects on contact tracing that might be caused by infected being present

at the test site when receiving the diagnosis, again biases our results against the rapid tests

that so rely on tracing efforts.

Overall, our analysis suggests employing rapid tests to reduce test waiting times as a

viable strategy to reduce transmission even at modest waiting times and contact tracing

efficiency.
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FIG. 1. A Illustration of our model. Infectious people transmit the disease unless they are placed

in quarantine following testing and tracing efforts. The success of these efforts are contingent on

the three key parameters of the model: the test waiting time δ, test sensitivity 1 − pfalse, and

tracing efficiency ptrace. B Infectiousness over time, Ptime(t), in our model. Background colors

specify whether the infected experiences symptoms and is infectious at the given time (see legend

in Figure 1A) The value on the vertical axis for day x after infection is the probability that a given

secondary case gets infected on day x. For asymptomatic cases, Ptime(t) is as depicted – the only

difference being that the final, symptomatic, phase is replaced with an asymptomatic phase.
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FIG. 2. A Comparison of effective reproduction number, ∆Reff = Rslow
eff −R

rapid
eff , when using a slow

but accurate test with sensitivity 1 (no false negatives), and a test waiting time of δslow days and

using a rapid but less accurate test with a given sensitivity and test waiting time of δrapid = 0 days.

In this inset, we assume that 80% of secondary cases are successfully traced following a positive

test. The colorbars show results obtained for different choices of δslow (top colorbar: δslow = 2 days,

middle: δslow = 3 days, bottom: δslow = 4 days), and the rapid-test sensitivity (horizontal axis in

each colorbar). In each colorbar a breaking point separates sensitivity values favoring the slower,

accurate test and values favoring the rapid test. B Comparison of effective reproduction numbers

when the result of the slower test arrives after δslow = 2 days, as a function of the sensitivity and

tracing efficiency. C Same as in B but with δslow = 3 days. D Same as in B, C but with the slower

result arriving after δslow = 4 days. E Heatmap of the effective reproduction number obtained

using the rapid, less accurate test, Rrapid
eff . The breaking-point lines of B, C, D are plotted in black.
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