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Abstract
Are  the  lockdown  measures  limiting  the  propagation  of  COVID-19? Recent  analyses  on  the
effectiveness of non-pharmaceutical interventions in reducing COVID-19 growth rates delivered
conflicting conclusions. While Haug et al. (2020) did find strong empirical support for reductions in
COVID-19 growth rates, Bendavid et al. (2021) did not. Here, I present the results of a reanalysis of
the data by Bendavid et al. (2021). Instead of relying on pairwise comparisons between 10 countries
with fixed-effects regression models to isolate the effect of lockdown measures, I modelled the
development of the pandemic with and without lockdown measures for the entire period and all
countries included in the data with one mixed-effects regression model. My results reconciled the
conflicting conclusions of Haug et al. (2020) and Bendavid et al. (2021): while mandatory business
closure orders did not affect COVID-19 growth rates, a general decrease in COVID-19 growth rates
was attributable to the implementation of mandatory stay-at-home orders. However, the effect of
mandatory stay-at-home orders varied, being weaker, even zero, in some countries and sub-national
units  and  stronger  in  others,  where  COVID-19  growth  rates  only  decreased  due  to  the
implementation of mandatory stay-at-home orders. The heterogeneity in the effect of mandatory
stay-at-home orders on the spread of COVID-19 is challenging from a scientific and political point
of view.
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Introduction
Are non-pharmaceutical interventions (NPIs) helping to limit the spread of COVID-19 infections?
Most importantly, are lockdown measures, the more restrictive NPIs (mrNPIs) based on mandatory
stay-at-home  and  business  closure  orders,  efficient  in  reducing  COVID-19  growth  rates?  Two
recently published analysis resulted in contradicting evidence. On the one hand, Haug et al. (2020)
concluded  that  mrNPIs  were  the  most  effective  NPIs  but  showed  a  considerable  variation  in
effectiveness across countries. On the other hand, Bendavid et al. (2021) denied the possibility of
large declines in COVID-19 growth rates due to mrNPIs: "While modest decrease in daily growth
(under 30%) cannot be excluded, the possibility of large decreases in daily growth due to mrNPIs is
incompatible with the accumulated data." (2021, p. 8).
In this paper, I present a reanalysis of the data used by Bendavid et al. (2021). I run one mixed-
effects regression that compared the daily changes in COVID-19 growth rates across all countries
and sub-national units included in the data to model the development of the pandemic with and
without  the  implementation  of  mrNPIs.  I  believe  that  this  approach  provides  a  more  accurate
assessment of the effectiveness of mrNPIs in decreasing COVID-19 growth rates than the one taken
in Bendavid et al. (2021), which relied on the unrealistic assumption that Sweden and South Korea
are counterfactuals of England, France, Germany, Iran, Italy, the Netherlands, Spain, and the United
States.

Methods
Bendavid  et  al.  (2021)  used  an  analytical  framework  that  was  based  on  the  assumption  that
countries  that  did not  implement  mrNPIs  were counterfactuals  to  countries  that  did  implement
mrNPIs: „Here, we use Sweden and South Korea as the counterfactuals to isolate the effects of
mrNPIs  in  countries  that  implemented  mrNPIs“  (Bendavid  et  al.  2021,  p.  5).  Based  on  this
assumption,  the  authors  run  pairwise  fixed-effects  regression  models  to  compare  the  combined
effect size of all NPIs on the daily COVID-19 growth rates of countries that did implement mrNPIs
(the treatment  countries  England,  France,  Germany,  Iran,  Italy,  the Netherlands,  Spain,  and the
United States) with the combined effect size on the daily COVID-19 growth rate of all NPIs of
countries that did not implement mrNPIs (the control countries South Korea and Sweden).  The
analysis  was  based  on  a  time-series  of  COVID-19  case  counts  at  the  sub-national  unit  level,
matched with data  on the implementation of  a  variety of  NPIs during winter/spring 2020. The
dependent variable was the daily difference in the natural log of the number of cumulated COVID-
19 cases. Only cumulated daily differences equal or larger ten were considered.
The authors claimed that their approach allowed to isolate the effect of mrNPIs. A closer look,
however, revealed that this was a misleading view. First, the classification of countries and their
sub-national units either as control or treatment ignored the huge differences in the implementation
of the two mrNPIs. For example, only three treatment countries implemented mandatory business
closure, and this with varying intensity. Furthermore, while seven sub-national units in the USA did
not implement mandatory home isolation at all, only the minority of French and Italian sub-national
units did so with maximal intensity. On the other hand, all German and Dutch regions implemented
mandatory home isolation with full intensity (appendices 1 and 2). Second, this approach did not
tease apart the effects of business closure and home isolation, with the risk of drawing the wrong
conclusion: for example,  if  one is  positive and the other negative,  the combined effect is  zero.
Finally, the treatment and control countries are not counterfactuals. Even if the additional benefit of
implementing mrNPIs was neglectable in a direct comparison of countries, we still not know how
daily  COVID-19  growth  rates  would  have  evolved  if  the  countries  had/had  not  implemented
mrNPIs.
I solved these issues by modelling the counterfactual outcomes.  Based on the data provided by
Bendavid et al. 2021, I built one dataset that included all observations of all sub-national units of all
ten countries of interest for the entire period available. In order to model a dynamic effect of the
mrNPIs on the daily growth rate in COVID-19 cases, I generated the variable home, which was the
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cumulated sum of days after a sub-national unit implemented home isolation, weighted with the
intensity of implementation, and the variable busi, which was the cumulated sum of days after a
sub-national unit implemented business closure, weighted with the intensity of implementation. To
control for the unobserved heterogeneity and model the time trend, I computed the variable days,
which simply was a  count  of  the  epidemic age,  in  days,  after  a  sub-national  unit  had reached
cumulative confirmed cases of 10. Then, I narrowed down the extent of the time series such as to
include the same cases as in Bendavid et al. (2021). Finally, I log transformed all three variables
(home and busi after the addition of one) and generated the cluster means for epidemic age (mdaysc
and mdayss), for weighted days with home isolation (mhomec and mhomes) and for weighted days
with business closures (mbusic and mbusis). In total, the data set used for the reanalysis included
5324 observations, clustered within 10 countries and 209 sub-national units. The dates of the time
series spanned from 18.02.2020 to 06.04.2020. The number of observations at the sub-national units
level ranged from three to 49 (mean=25.47; sd=8.33). Epidemic age ranged from one to 67 days
(mean=15.71; sd=10.38) Weighted home isolation days from zero to 29 (mean=4.84; sd=6.83) and
weighted  business  closure  days  from zero  to  32.75 (mean=2.87;  sd=5.56)  (see  appendix  3  for
detailed summary statistics).
I modelled the daily growth rate of COVID-19 cases, gcs,  as a function of a deviation from an
overall mean B0. The overall mean varied across countries (country random intercept RI0c) and sub-
national units (units random intercept RI0s). Furthermore, gcs was also determined by an overall time
trend, B0days,  which also varied across countries (country random slope RScdays) and sub-national
units  (units  random slope RSsdays).  These 6 terms captured the entire variation in gcs  due to the
countries,  the sub-national  units  and their  specific  time trends that  also included the combined
effects  of all  implemented NPIs (excluding home isolation and business closure).  This was the
baseline model. By adding a fixed effect for business closure (B0busi) and a fixed effect as well as
random slopes for home isolation (B0home; RSchome; RSshome), the effect of home isolation and business
closure on the change in daily COVID-19 growth rates was estimated, while controlling the country
and sub-national unit  specific time trend. I did not include random slopes for B0busi as only the
minority of countries and sub-national units implemented business closure. Finally, I also included
the cluster specific means of the predictor variables into the model to account for the correlation
between the random intercepts and the regressors and avoid violating the exogeneity assumption, as
proposed in Antonakis et al. (2019). This was the full model (equation 1).
I used the estimates of the full model to predict the evolution of daily COVID-19 growth rates for
the combined sample data, for each country and for a set of sub-national units seperately in both
counterfactual conditions (no implementation of mrNPIs vs. maximal implementation of mrNPIs).

gci=B0+RI 0c+RI 0s+B0days+B0mdaysc+B0mdayss+RS cdays+RS sdays+

B0home+B0mhomec+B0mhomes+RS chome+RS shome+

B0busi+B0mbusic+B0mbusis+ecs

equation 1. The mixed-effects regression model used to estimate the effect of mrNPIs.

The model in equation 1 was estimated with the glmer function of the lme4 package (Bates et al.
2015) in R (R Core Team 2019). I used a gamma error distribution with a log link to keep estimated
values  in  the  range  of  defined  values  (exclusion  of  negative  values)  and  to  avoid  violating
distributional assumptions made for a model with Gaussian error distribution. Prior to estimation,
growth rates equal to zero were replaced with the smallest growth rate observed, divided by ten
(6.78196e-05). All  predictor variables were  standardized to a a standard deviation of one and a
mean of zero prior to  estimation to achieve easier interpretable estimates (Schielzeth 2010).  P-
values for the fixed effects were obtained by comparing the fit of the full model with the fit of
reduced models excluding single fixed effects.  P-values for the random slopes were computed by
comparing the fit  of the full  model with the fit  of models excluding single random slopes and
dividing the resulting p-values by two, as proposed in Bolker et al. (2009).  The multicollinearity
among regressors was assessed by applying the vif function of the car package (Fox & Weisberg
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2019) to a multiple linear regression model that only included the fixed effects from the full model
(appendices 4 and 5). I ran a model sensitivity analysis, excluding single countries, to check for
robustness of estimates (appendix 6). I checked for violations of distributional assumptions of the
random terms with histograms (appendix 7) and checked for overdispersion with an overdispersion
test (appendix 8). Inferences on the difference in trajectories of the counterfactual outcomes were
based on bootstrapped model estimates.

Results
While both estimates for home isolation and business closure were negative, only the estimate for
home isolation was significant as well  as robust  to the exclusion of countries (appendix 6 and
appendix  9).  All  random slopes,  as  well  as  the  fixed  effect  for  epidemic age,  were significant
(appendix 9). Overall, COVID-19 growth rates decreased with increasing epidemic age. However,
the model estimates also showed that the decrease in COVID-19 growth rates was stronger when
mandatory home isolation was implemented. The implementation of mandatory business closure,
on the other hand, was not associated with an additional decrease in COVID-19 growth rates (figure
1). Interestingly, the effect of home isolation was not the same across all countries. While the model
predictions  for  the  counterfactual  control  outcome  (wihout  home  isolation)  did  not  differ
substantially  from the  model  predictions  for  the  counterfactual  treatment  outcome (with  home
isolation) in four countries (above South Korea and Sweden this was also the case for Iran and
Italy), the model predictions suggested that home isolation had a clear negative effect on COVID-
19 growth rates in five countries. For England, the effect of home isolation was uncertain (figure 2).
Finally, the effect of home isolation did also vary among sub-national units. In Spain, for example,
the negative effect of home isolation on the daily COVID-19 growth rates was not generalizable to
all regions. In Navarra, Extremadura and Murcia, the predicted effect of home-isolation was null. In
Catalonia and four other regions, on the other hand, model predictions suggested that COVID-19
growth  rates  would  have  increased,  and  not  decreased,  without  the  implementation  of  home
isolation (figure 3).

Conclusion
In this paper, I presented a reanalysis of the data used by Bendavid et al. (2021). On the one hand, I
replicated  the  main  finding  of  the  authors:  the  data  do  not  support  the  hypothesis  that  the
implementation  of  mrNPIs  leads  to  a  general  strong decline  in  daily  COVID-19 growth rates.
Although home isolation did lead to a general decline in COVID-19 growth rates, business closure
did not affect COVID-19 growth rates. Furthermore, the average decline in COVID-19 growth rate
was strong even without the implementaion of home isolation.
On the other hand, the average effect of home isolation showed a statistically significant variation
across levels of countries and sub-national units. The inclusion of home isolation random slopes at
both levels substantially increased the predictive power of the model. While for some countries and
sub-national  units,  home isolation  was necessary to  decrease  COVID-19 growth rates,  in  most
countries and sub-national units the additional effect of the implementation of home isolation was
moderate or zero. The heterogeneity of the effectiveness of NPIs, their interaction with the countries
of implementation, was a central finding of the study by Haug et al. (2020). Here, I showed that this
heterogeneity was also present in the data by Bendavid et al. (2021) and also applies to the sub-
national unit levels.
To some extent, my findings are recomforting, as they allow to reconcile the opposing conclusions
by Haug et  al.  (2020) and Bendavid et  al.  (2021). However,  this reconciliation results from an
artificial methodological separation between the average treatment effect, on the one side, and the
heterogeneity of the treatment effect, on the other side. From a theoretical point of view, as long as
there is a systematic variation of the average treatment effect, which is based on some population
clusters, the treatment does have an effect on the outcome. Furthermore, as long as the mechanisms
driving  the  interaction  between  population  clusters  and  the  treatment  effect  have  not  been
uncovered, it remains unknown how the treatment truly works.
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This is the position we are in now. We know that there is no strong average effect of home isolation
on the COVID-19 growth rates. However, we also know that home isolation can be highly effective
in  decreasing  daily  COVID-19  growth  rates  in  some  settings.  As  long  as  the  mechanisms
responsible  for  the  interaction  between  home  isolation  and  the  social  context  have  not  been
uncovered, it will not be possible to predict where and when home isolation will lead to decreased
COVID-19 growth rates. Eventually, this understanding will result from the incorporation of factors
not  usually  considerered  in  epistemological  models,  such  as  complex  social  networks  (Manzo
2020). Moreover, our knowledge is based on a deprecated database. Most countries in the world
experience the 2nd or even 3rd wave of the COVID-19 pandemic, with records of implemented
NPIs that span periods of up to one year. The first wave is a selective and unrepresentative sample
of the epidemic. The assessment of the effectiveness of NPIs must be conducted as soon as possible
with an updated database that includes all phases of the pandemic and not only the beginning.

Figure 1. Modelled counterfactual daily COVID-19 growth rates for control (no implementation of
home isolation) and treatment (implementation of home-isolation and business closure from the
beginning and with full intensity) for all countries and for the entire period of the time series. The
prediction for the counterfactual control outcome was calculated by building a sequence of days
covering the entire period of the time-series, multiplying each value of this sequence with the fixed
effect of epidemic age and adding the population intercept. The prediction for the counterfactual
treatment outcome with home isolation was calculated by adding the product between the sequence
of days and the fixed effect of home isolation to the values of the counterfactual control outcome.
The prediction for the counterfactual treatment outcome with home isolation and business closure
was calculated by adding the product between the sequence of days and the fixed effect of business
closure to the values of the counterfactual treatment outcome with home isolation. 95% confidence
intervals were computed based on the predictions of 1000 bootstrapped models (the R-function was
provided by Roger Mundry).
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Figure 2. Modelled counterfactual daily COVID-19 growth rates for control (no implementation of
home isolation) and treatment (implementation of home-isolation from the beginning and with full
intensity), by country and for the entire period of the time series. All model predictions are for
average days with business closure. The predictions for the counterfactual control outcome were
calculated  by building  a  sequence  of  days  covering  the  entire  period  of  the  time-series  of  the
country and multiplying each value of this sequence with the fixed effect of epidemic age and the
country-specific effect of epidemic age. The population intercept, the country-specific intercept as
well as the effects of the different population cluster means were added to the resulting values. The
predictions for the counterfactual treatment outcome were calculated by adding the product between
the sequence of days and the fixed effect of home isolation and the country-specific effect of home
isolation to the control outcome. 95% confidence intervals were computed based on the predictions
of 1000 bootstrapped models (the R-function was provided by Roger Mundry). For South Korea
and Sweden, the model predictions for the counterfactual treatment outcome entirely lacked data
support.  For all other countries, the model predictions for the counterfactual treatment outcome
prior to the implementation of the measure (left of the vertical line) were an extrapolation of the
predicted trend after implementation.
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Figure 3. Modelled counterfactual daily COVID-19 growth rates for control (no implementation of
home isolation) and treatment (implementation of home-isolation from the beginning and with full
intensity), for the entire time series of the ten Spanish regions with the strongest deviations from the
country average. All model predictions are for average days with business closure. The predictions
for the counterfactual control outcome were calculated by building a sequence of days covering the
entire time-series of the region and multiplying each value of this sequence with the fixed effect of
epidemic age, the country-specific effect of epidemic age and the region-specific effect of epidemic
age.  The  overall  intercept,  the  country-specific  intercept,  the  region-specific  intercept  and  the
effects  of  the  cluster  means  were  added  to  the  resulting  values.  The  predictions  for  the
counterfactual treatment outcome were calculated by adding the product between the sequence of
days and the fixed effect of home isolation, the country-specific effect of home isolation and the
region-specific  effect  of  home isolation  to  the  values  of  the  control  outcome.  95% confidence
intervals were computed based on the predictions of 1000 bootstrapped models (the R-function was
provided by Roger Mundry). For all regions, the model predictions for the counterfactual treatment
outcome prior to the implementation of the measure (left of the vertical line) were an extrapolation
of the predicted trend after implementation.
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Appendix

1) The implementation and intensity of home isolation, by country. The total column shows the 
proportion of regions that issue mandatory stay-at-home orders.
Country 0 0.33 0.5 0.67 1 Total

England 74 0 0 0 225 1

France 153 72 0 6 39 1

Germany 144 0 0 0 464 1

Iran 238 0 0 0 310 0

Italy 79 20 0 524 16 1

Netherlands 5 0 0 0 291 1

South Korea 595 0 0 0 0 0

Spain 117 0 0 0 211 1

Sweden 503 0 0 0 0 0

USA 697 0 68 0 473 0.863

2) The implementation and intensity of business closure, by country. The total column shows the 
proportion of regions that did issue mandatory business closure orders.
Country 0 0.16 0.33 0.66 1 Total

England 299 0 0 0 0 0

France 127 0 0 0 143 1

Germany 608 0 0 0 0 0

Iran 548 0 0 0 0 0

Italy 25 0 51 232 331 1

Netherlands 296 0 0 0 0 0

South Korea 595 0 0 0 0 0

Spain 328 0 0 0 0 0

Sweden 503 0 0 0 0 0

USA 273 13 178 138 636 0.98
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3) Summary statistics of variables

Variable Min Max Mean sd

days 1 67 15.698 10.385

log(days) 0 4.205 2.47 0.857

z(log(days)) -2.882 2.024 0 1

home 0 29 4.843 6.831

log(home+1) 0 3.401 1.075 1.18

z(log(home+1)) -0.911 1.972 0 1

busi 0 32.75 2.874 5.557

log(busi+1) 0 3.519 0.657 1.048

z(log(busi+1)) -0.627 2.731 0 1

mdays_s 2 45.5 15.698 5.853

z(mdays_s) -2.34 5.092 0 1

mdays_c 10.588 22.495 15.698 4.116

z(mdays_c) -1.241 1.652 0 1

mhome_s 0 14 4.843 4.391

z(mhome_s) -1.103 2.085 0 1

mhome_c 0 12.601 4.843 4.215

z(mhome_c) -1.149 1.84 0 1

mbusi_s 0 15.527 2.874 4.09

z(mbusi_s) -0.703 3.094 0 1

mbusi_c 0 10.897 2.874 3.872

z(mbusi_c) -0.742 2.072 0 1

4) VIF values among all regressors in the full model.

zlogdays zmdaysc zmdayss zloghome zmhomec zmhomes zlogbusi zmbusic zmbusis

2.551 2.198 2.517 3.803 16.641 19.063 4.7 12.347 14.533

5) VIF values among main regressors in the full model (cluster specific means are combinations of 
these).

zlogdays zloghome zlogbusi

1.361 1.416 1.135
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6) Range of estimates from the full model.

regressor min original max

Intercept -2.032 -1.987 -1.865

zlogdays -0.323 -0.283 -0.166

zmdaysc -0.410 -0.346 -0.264

zmdayss 0.058 0.229 0.272

zloghome -0.267 -0.216 -0.104

zhomec -0.240 -0.057 0.037

zhomes 0.318 0.374 0.460

zlogbusi -0.175 -0.099 -0.041

zmbusic -0.046 0.050 0.248

zmbusis -0.182 0.045 0.104

7) Distributions of random terms from the full model.
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8) Dispersion parameter and oversidpersion test of the full model.

Chisq. Df P Dispersion parameter

2836.682 5300 1 0.535

9) Result of the estimation of the full model from equation 1. Correlations among random effects 
were estimated but are not shown for purpose of clarity

Random effects

Group Name Std. Dev. P-val.

Sub-national unit RI 0.090 Not applicable

RS: days 0.162 <0.001

RS: home 0.102 <0.001

Country RI 0.234 Not applicable

RS: days 0.157 <0.001

RS: home 0.106 0.020

Number obs: 5324, Number countries: 10, Number sub-national units: 209

Fixed effects

Name Estimate Std. Err. P-val.

Intercept -1.987 0.077 Not applicable

days* -0.283 0.055 0.002

home# -0.216 0.048 0.026

busi# -0.100 0.046 0.148

mdaysc|| -0.346 0.037 <0.001

mdayss|| 0.228 0.026 <0.001

mhomec|| -0.057 0.062 0.539

mhomes|| 0.374 0.057 <0.001

mbusic|| 0.050 0.050 0.488

mbusis|| 0.045 0.052 0.453
|| standardized; * log transformed and standardized; # log transformed after addition of one and 
standardized
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