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Abstract
Are  the  lockdown  measures  limiting  the  propagation  of  COVID-19? Recent  analyses  on  the
effectiveness of non-pharmaceutical interventions in reducing COVID-19 growth rates delivered
conflicting conclusions. While Haug et al. (2020) did find strong empirical support for reductions in
COVID-19 growth rates, Bendavid et al. (2021) did not. Here, I present the results of a reanalysis of
the data by Bendavid et al. (2021). Instead of relying on pairwise comparisons between 10 countries
with fixed-effects regression models to isolate the effect of lockdown measures, I modelled the
development of the pandemic with and without lockdown measures for the entire period and all
countries included in the data with one mixed-effects regression model. My results reconciled the
conflicting conclusions of Haug et al. (2020) and Bendavid et al. (2021): while no general decrease
in  COVID-19  growth  rates  was  attributable  to  the  implementation  of  lockdown  measures,
mandatory stay-at-home orders did lead to substantial decreases in COVID-19 growth rates in some
countries and sub-national units. The heterogeneity in the effect of mandatory stay-at-home orders
on the spread of COVID-19 is challenging from a scientific and political point of view.
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Introduction
Are non-pharmaceutical interventions (NPIs) helping to limit the spread of COVID-19 infections?
Most importantly, are lockdown measures, the more restrictive NPIs (mrNPIs) based on mandatory
stay-at-home  and  business  closure  orders,  efficient  in  reducing  COVID-19  growth  rates?  Two
recently published analysis resulted in contradicting evidence. On the one hand, Haug et al. (2020)
concluded  that  mrNPIs  were  the  most  effective  NPIs  but  showed  a  considerable  variation  in
effectiveness across countries. On the other hand, Bendavid et al. (2021) denied the possibility of
large declines in COVID-19 growth rates due to mrNPIs: "While modest decrease in daily growth
(under 30%) cannot be excluded, the possibility of large decreases in daily growth due to mrNPIs is
incompatible with the accumulated data." (2021, p. 8).
In this paper, I present a reanalysis of the data used by Bendavid et al. (2021). I run one mixed-
effects regression that compared the daily changes in COVID-19 growth rates across all countries
and sub-national units included in the data to model the development of the pandemic with and
without  the  implementation  of  mrNPIs.  I  believe  that  this  approach  provides  a  more  accurate
assessment of the effectiveness of mrNPIs in decreasing COVID-19 growth rates than the one taken
in Bendavid et al. (2021), which relied on the unrealistic assumption that Sweden and South Korea
are counterfactuals of England, France, Germany, Iran, Italy, the Netherlands, Spain, and the United
States.

Methods
Bendavid  et  al.  (2021)  used  an  analytical  framework  that  was  based  on  the  assumption  that
countries  that  did not  implement  mrNPIs  were counterfactuals  to  countries  that  did  implement
mrNPIs: „Here, we use Sweden and South Korea as the counterfactuals to isolate the effects of
mrNPIs  in  countries  that  implemented  mrNPIs“  (Bendavid  et  al.  2021,  p.  5).  Based  on  this
assumption,  the  authors  run  pairwise  fixed-effects  regression  models  to  compare  the  combined
effect size of all NPIs on the daily COVID-19 growth rates of countries that did implement mrNPIs
(the treatment  countries  England,  France,  Germany,  Iran,  Italy,  the Netherlands,  Spain,  and the
United States) with the combined effect size on the daily COVID-19 growth rate of all NPIs of
countries that did not implement mrNPIs (the control countries South Korea and Sweden).  The
analysis  was  based  on  a  time-series  of  COVID-19  case  counts  at  the  sub-national  unit  level,
matched with data  on the implementation of  a  variety of  NPIs during winter/spring 2020. The
dependent variable was the daily difference in the natural log of the number of cumulated COVID-
19 cases. Only cumulated daily differences equal or larger ten were considered.
The authors claimed that their approach allowed to isolate the effect of mrNPIs. A closer look,
however, revealed that this was a misleading view. First, the classification of countries and their
sub-national units either as control or treatment ignored the huge differences in the implementation
of the two mrNPIs. For example, only three treatment countries implemented mandatory business
closure, and this with varying intensity. Furthermore, while seven sub-national units in the USA did
not implement mandatory home isolation at all, only the minority of French and Italian sub-national
units did so with maximal intensity. Second, this approach did not allow to tease apart the effects of
business  closure  and home isolation,  with the  risk of  drawing the  wrong conclusion:  if  one is
positive and the other  negative,  the combined effect  is  zero.  Finally,  the treatment  and control
countries  are  not  counterfactuals.  Even  if  the  additional  benefit  of  implementing  mrNPIs  was
neglectable in a direct comparison of countries, we still not know how daily COVID-19 growth
rates would have evolved if the countries had/had not implemented mrNPIs.
I solved these issues by modelling the counterfactual outcomes for each country. Based on the data
provided by Bendavid et  al.  2021,  I  built  one dataset that included all  observations of all  sub-
national units of all ten countries of interest for the entire period available. In order to model a
dynamic effect of the mrNPIs on the daily growth rate in COVID-19 cases, I generated the variable
home, which was the cumulated sum of days after a sub-national unit implemented home isolation,
weighted with the intensity of implementation, and the variable busi, which was the cumulated sum
of days  after  a  sub-national  unit  implemented  business  closure,  weighted  with  the  intensity  of
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implementation. To control for the unobserved heterogeneity and model the time trend, I computed
the variable days, which simply was a count of the epidemic age, in days, after a sub-national unit
had reached cumulative confirmed cases of 10. I log transformed all three variables (home and busi
after the addition of one). Finally, I narrowed down the extent of the time series such as to include
the same time period as in Bendavid et al.  (2021). In total,  the data set used for the reanalysis
included 5324 observations, clustered within 10 countries and 109 sub-national units. The dates of
the time series spanned from 18.02.2020 to 06.04.2020. The number of observations at the sub-
national units level ranged from three to 49 (mean=25.47; sd=8.33). Epidemic age ranged from one
to 67 days (mean=15.71; sd=10.38) Weighted home isolation days from zero to 29 (mean=4.84;
sd=6.83) and weighted business closure days from zero to 32.75 (mean=2.87; sd=5.56).
I modelled the daily growth rate of COVID-19 cases, gci,  as a function of a deviation from an
overall mean B0. The overall mean varied across countries (country random intercept RI0c) and sub-
national units (units random intercept RI0i). Furthermore, gci was also determined by an overall time
trend, B0days,  which also varied across countries (country random slope RScdays) and sub-national
units  (units  random slope RSidays).  These 6 terms captured the entire  variation in  gci  due to the
countries, the sub-national units and their specific time trends that included the combined effects of
all  implemented  NPIs  (excluding  home  isolation  and  business  closure).  This  was  the  baseline
model. By adding a fixed effect for business closure (B0busi) and a fixed effect as well as random
slopes for home isolation (B0home; RSchome; RSihome), the effect of home isolation and business closure
on the change in daily COVID-19 growth rates was estimated, while controlling the country and
sub-national unit specific time trend. This was the full model (equation 1). I did not include random
slopes  for  B0busi as  only the minority of  countries  and sub-national  units  implemented business
closure. I then used the model estimates to predict the evolution of daily COVID-19 growth rates
for  each country in  both  counterfactual  conditions  (no implementation of  mrNPIs  vs.  maximal
implementation of mrNPIs).

gci=B0+RI 0c+RI 0i+B0days+RS cdays+RS idays+B0home+RSchome+RS ihome+B0busi+eci

equation 1. The mixed-effects regression model used to estimate the effect of mrNPIs.

The model in equation 1 was estimated with the glmer function of the lme4 package (Bates et al.
2015) in R (R Core Team 2019). I used a gamma error distribution with a log link to keep estimated
values  in  the  range  of  defined  values  (exclusion  of  negative  values)  and  to  avoid  violating
distributional assumptions made for a model with Gaussian error distribution. Prior to estimation,
growth rates equal to zero were replaced with the smallest growth rate observed, divided by ten
(6.78196e-05). P-values for the fixed effects were obtained by comparing the fit of the full model
with  the  fit  of  reduced  models  excluding  single  fixed  effects.  The  multicollinearity  among
predictors was assessed by applying the vif function of the car package (Fox & Weisberg 2019) to a
multiple linear regression model that only included the fixed effects from the full model (appendix
1). I ran a model stability analysis, based on the countries, to check for robustness of estimates
(appendices 2). I checked for violations of distributional assumptions of the random terms with
histograms (appendices 3) and calculated the dispersion parameter of the model (appendix 4). The
significance of the combined contribution of both mrNPIs on the daily change in COVID-19 growth
rate was assessed by comparing the fit of the full model with the fit of a model excluding the fixed
effects  of  the  predictors  for  the  mrNPIs.  P-values  for  the  random  slopes  were  computed  by
comparing the fit of the full model with the fit of models excluding single random slopes.

Results
The estimates for home isolation and business closure were both negative and non-significant. On
the  other  hand,  their  combined inclusion  into  the  model  significantly increased  the  fit  and the
predictive power of the model (Chisq.: 7.742; Df: 2; Pval.: 0.021). All random slopes, as well as the
fixed effect for the epidemic age, were highly significant (table 1). While the model predictions for
the counterfactual control outcome did not differ from the model predictions for the counterfactual
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treatment outcome in eight countries (above South Korea and Sweden this was also the case for
England, France, Iran, the Netherlands, Spain and the USA), the model predictions suggested that
Germany and Italy clearly decreased daily COVID-19 growth rates by implementing mandatory
home isolation. For both countries, predicted COVID-19 growth rates were higher at the start of the
implementation, compared to the same period without implementation of home isolation. In the end,
predicted COVID-19 growth rates  were lower  after  the implementation  of  home isolation  than
otherwise (figure 1).
However, even if the effect of home isolation was zero on average for a specific country, this did
not mean that home isolation did not affect the COVID-19 growth rates within this country, as the
effect for the sub-national units differed significantly from the country average (table 1). Of course,
this also holds for an average negative effect.  For example, in Italy,  the overall effect of home
isolation on COVID-19 growth rates was negative. Nevertheless, not all Italian regions were able to
decrease daily COVID-19 growth rates through the implementation of home isolation to the same
extent. In the regions of Emilia Romagna and Marche, the predicted effect of home isolation on
COVID-19 growth rates  was zero.  In   Sardegna,  Lombardia and Veneto,  it  was slightly below
average. In Toscana, Lazio, Campania and Liguria it was slightly above average and in Piemonte,
the predicted effect of home isolation on the decrease in daily COVID-19 growth rates was much
stronger than on average (figure 2).

Table 1.Result of the estimation of the full model (equation 1)
Random effects

Group Name Std. Dev. P-val.

Sub-national unit RI 0.113 Not applicable

RS: days 0.163 <0.001

RS: home 0.125 <0.001

Country RI 0.393 Not applicable

RS: days 0.150 <0.001

RS: home 0.179 <0.001

Number obs: 5324, Number countries: 10, Number sub-national units: 209

Fixed effects

Name Estimate Std. Err. P-val.

Intercept -1.895 0.002 Not applicable

days* -0.252 0.002 <0.001

home# -0.166 0.002 0.194

busi# -0.118 0.002 0.052
Random effects correlations were estimated but are not shown for purpose of clarity; * log 
transformed; # log transformed after addition of one.
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Figure 1. Modelled counterfactual daily COVID-19 growth rates for control (no implementation of
home isolation) and treatment (implementation of home-isolation from the beginning and with full
intensity), by country and for the entire period of the time series. All model predictions are for
average days with business closure. The predictions for the counterfactual control outcome were
calculated  by building  a  sequence  of  days  covering  the  entire  period  of  the  time-series  of  the
country and multiplying each value of this sequence with the fixed effect of epidemic age and the
country-specific effect of epidemic age. The population intercept and the country-specific intercept
were added to the resulting values. The predictions for the counterfactual treatment outcome were
calculated by adding the  product  between the sequence of  days  with the fixed effect  of  home
isolation and the country-specific effect of home isolation to the control outcome. 95% confidence
intervals were computed based on the predictions of 1000 bootstrapped models. For South Korea
and Sweden, the model predictions for the counterfactual treatment outcome entirely lacked data
support.  For all other countries, the model predictions for the counterfactual treatment outcome
prior to the implementation of the measure (left of the vertical line) were an extrapolation of the
predicted trend after implementation.
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Figure 2. Modelled counterfactual daily COVID-19 growth rates for control (no implementation of
home isolation) and treatment (implementation of home-isolation from the beginning and with full
intensity), for the entire time series of the ten Italian regions with the strongest deviations from the
country average. All model predictions are for average days with business closure. The predictions
for the counterfactual control outcome were calculated by building a sequence of days covering the
entire time-series of the region and multiplying each value in this sequence with the fixed effect of
epidemic age, the country-specific effect of epidemic age and the region-specific effect of epidemic
age.  The  overall  intercept,  the  country-specific  intercept  and the  region-specific  intercept  were
added  to  the  resulting  values.  The  predictions  for  the  counterfactual  treatment  outcome  were
calculated by adding the  product  between the sequence of  days  with the fixed effect  of  home
isolation,  the  country-specific  effect  of  home  isolation  and  the  region-specific  effect  of  home
isolation to the values of the control outcome. 95% confidence intervals were computed based on
the  predictions  of  1000  bootstrapped  models.  For  all  regions,  the  model  predictions  for  the
counterfactual treatment outcome prior to the implementation of the measure (left of the vertical
line) were an extrapolation of the predicted trend after implementation.
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Conclusion
In this paper, I presented a reanalysis of the data used by Bendavid et al. (2021). On the one hand, I
replicated  the  main  finding  of  the  authors:  the  data  do  not  support  the  hypothesis  that  the
implementation of mrNPIs leads to a general and strong decline in daily COVID-19 growth rates.
Although  the  estimates  for  both  mrNPIs  (home isolation  and business  closure)  were  negative,
suggesting that COVID-19 growth rates did decline with the implementation of the measures, the
statistical  ground for  rejecting  the  null-hypothesis  was  too  weak.  Considering  the  fundamental
difference in analytical approaches (16 pairwise fixed-effects regression models on 16 different data
subsets (Bendavid et al. 2021 ) vs. one mixed-effects regression model on one data set), this zero-
finding can be considered as robust.
On the other hand, the average effect of home isolation showed a statistically significant variation
across levels of countries and sub-national units. The inclusion of home isolation random slopes at
both levels substantially increased the predictive power of the model. While for few countries and
sub-national units, the predicted effect of home isolation was strongly negative, in most countries
and sub-national  units  the  predicted  effects  were  moderately negative  or  zero  and in  few sub-
national units, predicted COVID-19 growth rates even increased after the implementation of home
isolation.  The heterogeneity of the effectiveness of NPIs,  their  interaction with the countries of
implementation, was a central finding of the study by Haug et al. (2020). Here, I showed that this
heterogeneity was also present in the data by Bendavid et al. (2021) and also applies to the sub-
national unit levels.
To some extent, my findings are recomforting, as they allow to reconcile the opposing conclusions
by Haug et  al.  (2020) and Bendavid et  al.  (2021). However,  this reconciliation results from an
artificial methodological separation between the average treatment effect, on the one side, and the
heterogeneity of the treatment effect, on the other side. From a theoretical point of view, as long as
there is a systematic variation of the average treatment effect, which is based on some population
clusters,  the  treatment  does  have  an  effect  on  the  outcome,  even  when  zero  on  average.
Furthermore, as long as the mechanisms driving the interaction between population clusters and the
treatment effect have not been uncovered, it remains unknown how the treatment truly works.
This is the position we are in now. We know that there is no substantial average effect of home
isolation  on  the  COVID-19 growth  rates.  However,  we  also  know that  home isolation  can  be
effective in decreasing daily COVID-19 growth rates in some countries and sub-national units. As
long  as  the  mechanisms  responsible  for  the  interaction  between  home isolation  and  the  social
context have not been uncovered, it will not be possible to predict where and when home isolation
will lead to decreased COVID-19 growth rates. Moreover, our knowledge is based on a deprecated
database.  Most  countries  in  the world experience the 2nd or  even 3rd wave of the COVID-19
pandemic, with records of implemented NPIs that span periods of up to one year. The first wave is a
selective and unrepresentative sample of the epidemic. The assessment of the effectiveness of NPIs
must be conducted as soon as possible with an updated database that includes all phases of the
pandemic and not only the beginning.
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Appendix

1) VIF values among predictors in the model from table 1.
days   home busi
1.381                   1.436                   1.134

2) Range of estimates from the model in table 1 when excluding single countries.
Min original max

(Intercept)                -2.100 -1.895 -1.607
days                   -0.339 -0.252 -0.180
home   -0.241 -0.166  0.459
busi -0.315 -0.118 -0.090

3) Distributions of random terms from the model in table 1.

4) Dispersion parameter of the model in table 1.
dispersion parameter: 0.521
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