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Abstract

Drug-Induced Liver Injury (DILI) is one of the major causes of drug development failure or

drug withdrawal from the market after development. Therefore, investigating factors associated

with DILI is of paramount importance. Environmental factors that contribute to DILI have been

investigated and are, by and large, known. However, recent genomic studies have indicated that

genetic diversity can lead to inter-individual differences in drug response. Consequently, it has

become necessary to also investigate how genetic factors contribute to the development of DILI in

the presence of environmental factors. Thus, our aim is to find appropriate statistical methods to

investigate gene-gene and/or gene-environment interactions that are associated with DILI. This

is an initial study that only explores statistical learning methods to find gen-gene interactions

(epistasis). We introduce Multifactor Dimensionality Reduction (MDR), Random Forest (plus

logistic regression), and Multivariate Adaptive Regression Splines (MARS), as the few potential

methodological approaches that we found. Next, we attempt to improve the MARS method by

combining it with a variable selection method.

Keywords: DILI; SNP; Genomic; Interactions; Associated; Epistasis; Splines; bilirubin.
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1 Introduction

Drug Induced Liver Injury (DILI) is the damage to the liver as a result of a taking a drug. The

human liver is vulnerable to drug injury because most drugs are assimilated into the body through

the liver. Thus, if the drug is toxic, it causes damage/injury to the liver. Hence, the result is DILI.

In most drug development clinical trials, DILI is one of the main valid causes for bringing the entire

development process to a halt. Even after the drug has been successfully developed, because of DILI,

it can be recalled. Moreover, even when a drug is deemed safe enough and released to the market,

some relatively small fraction of the population that take the drug can get DILI [3]. Therefore, the

US government funds research to identify the factors that promote DILI in order to find solution for

preventing, reducing and/or curing DILI.

1.1 Drug-Host-Genetic Factor Interplay

Non-genetic factors that contribute to the risk of having DILI has been well researched already: Chen

et al (2015) [3] established that host factors like age, disease, etc., and drug properties like daily dose,

reactive metabolite, etc., and the interactions between these factors influence DILI risk [3]. However,

how genetic factors contribute to DILI is not yet well established: According to Kaplowitz (2004) [13],

there has not been any known methodology for investigating genetic causes of DILI. We therefore,

intend to use statistical learning methods to find how drug-host-genetic factors interplay influence DILI

risk, as depicted in the diagram below (figure 1). Thus, our research goals are to find the following:

1. Appropriate statistical learning methods to analyze data with genetic components in the form of

SNPs.

2. Specific genes and environmental factors as well as their possible interactions that are associated

with DILI.

1.2 Genetics Link

Genetic connection to DILI risk was motivated by the study done by Daly et al (2009) [5]: They

found the gene HLA-B*5701 to be a risk factor: Thus, people who carry this allele have 80 times more

frequency to develop DILI than those who do not. Therefore, the question we seek to answer is: What

genes, in the presence of environmental factors with all possible rational interactions, are associated

with DILI?
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Figure 1: Drug-Host-Genetic Factor Interplay

Genetic data comes in the form of single nucleotide polymorphism (SNP). Per the image in figure 2,

SNP is the difference in single nucleotide positions in the chromosome. This positional difference of

Figure 2: Displaying SNP- Sources: US National Library of Medicine

the nucleotide occur in about one percent of the human genome and is known to be responsible for

about 90 percent of individual human differences [10]. Also, SNP does not change from generation

to generation. Thus, SNP is responsible for the common genetic variations among people [10]. For

example, SNP accounts for inter-individual differences in drug response. Therefore, genetics has become

very important to the study of human health. Consequently, this has led to the recent increase in the

study of personalized medicine [10].

1.3 Role of Statistics

Statistical tools are necessary because statistics makes sense of randomness and variation. The sta-

tistical view is that the variability in the SNP or genes of a random individual accounts for such

genetic factor contribution to the phenotype (DILI). Interactions involving genes (gene-gene and gene-

environment) contribute significantly to complex human diseases and traits. Thus, one of the main

sources of individual trait differences as well as variations in medical and drug responses could be these

genetic interactions (Yi, 2010) [29]. Some statistical learning methods measure the interaction effects
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of certain explanatory variables on the response variable(s). This is further reason why we are using

statistical methods for this study.

1.4 Findings From Literature Review

Statistical/machine learning methodologies for genetic contribution to diseases and other phenotypic

traits through analysis of SNPs is relatively new and few. Literature also documents known challenges

for SNP data analysis. I will outline some of the general and specific challenges to our study, and

suggest ways to address them.

1.4.1 Challenges

Firstly, the curse of dimensionality is a problem with statistical genetic data analysis. The reason being

that sample size in SNPs data is relatively small compared to the number of SNPs. SNPs themselves

come in huge numbers, sometimes hundreds of thousands in numbers. This makes SNP data very

’wide’. Therefore, classical statistical methods like regression (and it’s various forms) are less feasible

to be used for such high dimensional data. Secondly, some SNPs may be correlated with each other and

therefore analysis can be complicated with correlated SNPs. Thirdly, because the SNP data size is huge

in width, it is generally computationally intensive and time consuming. Finally, Statistical/machine

learning methodologies needed for this particular project was relatively scarce. In some instances, the

softwares and/or websites of some of the methodologies that we found were no longer in existence nor

maintained.

1.5 Overall/Immediate Goal

The overall goal for this study is this: Find the statistical/machine learning methodologies that will

identify drug-host-genetic factors and their interplay that influence DILI risk. However, we will im-

mediately consider statistical/machine learning methodologies for only epistasis (statistical SNP inter-

actions). Then, in the second stage of the study (will be a follow up to this paper), those discovered

epistasis statistical/machine learning methodologies will be extended to the entire drug-host-genetic

factors, to achieve the complete goal of the study.
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2 Materials and Methods

The raw materials needed for this study are some general SNP dataset (for trials) plus a type of DILI

SNP dataset (for actual testing). In addition, the statistical learning methods we chose were mainly in-

formed by literature review on epistasis and gene-environment interactions articles. The statistical/ ma-

chine learning softwares used were mainly the MDR software package (http://sourceforge.net/projects/mdr/),

and Salford Systems statistical with machine learning software (https://www.salford-systems.com/).

Both software suits have graphical user interface. Hence, for the most part, coding was not required.

In the next subsections I briefly describe the literature review information, selected statistical learning

methods, and the data used in the study.

2.0.1 Addressing Challenges

Since the SNP data is wide (high dimension), Non-parametric procedures are usually preferable for this

type of study. Sometimes, some machine learning methods combine non-parametric with a classical or

parametric model such as logistic regression. Therefore, both parametric and non-parametric statistical

methods are combined in some form, though most of the methodologies are non-parametric. Below is

the brief outlines of the two main statistical models used in this project:

Parametric procedure outline; the Logistic Regression (Agresti, 2008) [1]:

If Y is the phenotype, DILI (binary; 1 or 0); P (Y = 1) = p, A is a SNP, B is another SNP, and AB is

the interaction factor, then;

Logit(p) = β0 + β1A+ β2B + β3AB (1)

Non- parametric procedure outline:

Y = f(A,B) (2)

where the function f needs to be estimated directly from a particular data, using certain non-parametric

function estimation procedure like Multivariate Adaptive Regression Splines(MARS) [6, 30, 27], Mul-

tifactor Dimensionality Reduction (MDR) [18, 19, 21], Random Forest [8], etc.

2.1 Epistasis Methods Found in Literature Review

Epistasis methods found in the review done by Wei et al. (2014) [25], Shang et al. (2011) [23], Lou et

al. (2007) and other sources revealed the following methods (among many others) that are mentioned

below without detail nor description:

PLINK/ FastEpistasis [25], Multifactor Dimensionality Reduction (MDR) [21], SNPruler [25], Gen-

6

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.02.15.21251747doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251747
http://creativecommons.org/licenses/by-nd/4.0/


eralized Multifactor Dimensionality Reduction (GMDR) [16], SNP Harvester [25], Epistasis Detector

Based on the Clustering of Relatively Frequent items, (EDCF) [25], Bayesian Epistasis Association

Mapping (BEAM) [25], GenomeMatrix [25], Tree-Based Epistasis Association Mapping(TEAM) [25],

Bayesian hierarchical Generalized Linear Model for haplotype interactions (BhGLM) [25], Random

Forest (RF) [2], SNPInterForest [23], EPIMODE [23], and Multivariate Adaptive regression splines

(MARS) [6].

2.2 Overview of the Three Methods Used

After thorough investigations, MDR, MARS and RF were chosen to investigate DILI epistasis. In the

next subsections, brief descriptions of these three methods are given.

2.2.1 Random Forest Plus Logistic Regression (RF)

Statistical context:

• For a p-dimensional random vector X= (X1, . . . , Xp)
T representing the data with predictor vari-

ables (SNPs), and a random binary variable Y , representing the phenotype (response), with an

unknown joint distribution, PXY (X, Y ). We aim to predict Y from f(X).

• f(X) is determined by the loss function, L(Y, f(X)), and defined to minimize the expected value

of the loss [EXY (L(Y, f(X)))].

• The Zero-one loss function is a choice for measuring closeness of f(x) to L for the classification

situation;

L(Y, f(X)) = I(Y 6= f(X)) =

 0 Y = f(X)

1 otherwise
(3)

• Minimizing the EXY (L(Y, f(X))) gives the Bayes Rule;

f(x) = argmax
y

P (Y = y|X = x) (4)

• Random Forest(RF) constructs f with a collection of base learning trees, hj(x), j = 1, . . . , J ; and

the predicted function is formed by majority voting as;

f(x) = argmax
y

J∑
j=1

I(y = hj(x)) (5)
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Brief description of algorithm: RF uses multiple decision trees as learning ensemble to give a

single resultant output: Each tree acts on random bootstrap subsets of the data, as well as random

subsets of the variables (SNPs) to make prediction. Each SNP (predictor) represents the node of each

tree and a route links a sequence of predictor SNPs from the root to the leaves. The predictions

from each of these trees are then aggregated in some way to give the overall output prediction- In

classification, majority voting is employed. For further details on RF see Breiman (2001), Goldstein

(2011), and Niel (2015) [2, 8, 20]. It must be pointed out that there is no actual model output from

RF. Rather, RF gives a table of the ranking order of the important SNPs (variables) that contribute

to the phenotype (DILI). Logistic regression is then used on the first few variables (say, first 10) to

determine the interacting SNPs that are linked to DILI. The logistic regression part is subjective and

not perfect. However, under the RF output structure, this is one of the best ways to proceed to the

final result.

2.2.2 Multifactor Dimensionality Reduction (MDR)

MDR was created primarily to detect gene-gene and/or gene-environment interactions in genetic data

analysis. it is a non-parametric dimension reducing method. Here is a summary of the core algo-

rithms [7]:

• Choose d factors (SNPs) with li, i = 1, . . . , d, levels from p total factors.

• Selected factors (SNPs) are represented in d-dimensional space (contingency table) and in each

cell, cj, j = 1, . . . ,
∏d

i=1 li, the case (n1) to control (n0) ratio

rj =
n1j

n0j

(6)

is calculated.

• cj is labeled as high risk (H) if rj > T (some threshold; e.g. T is equal to 1 for balanced datasets),

as low risk (L) otherwise. Therefore, multi-locus genotypes are reduced into a one-dimensional

variable.

• The core algorithm k models are evaluated by cross validation consistency (CVC), classification

error (CE), and prediction error (PE) scores to choose the best model.

• CVC is the number of training sets in which a specific model has the lowest CE: The higher the

CVC value, the better.

8

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.02.15.21251747doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251747
http://creativecommons.org/licenses/by-nd/4.0/


The following steps describes how it works:

Step one: To avoid over-fitting, the data is automatically divided into 10 equal parts, nine-tenths

of which is used to train the data, and the last part is used for cross-validation to test the method’s

accuracy. Step two: A selected subset of d genetic and/or environmental factors with their multi

levels are represented in an d-dimensional space. Thus, for two loci, each with three genotypes (levels)

interaction model, there will be nine two-locus-genotype possible combinations in a contingency table

form. Step three: The ratio of the number of cases to the number of controls in each contingency

table box is calculated. If this ratio is higher than pre-specified value (normally 1.0 for balanced data

set), that particular interaction box is deemed as high risk for the phenotype (DILI). The model is

then formed by combining all high risk interactions on one side and low risk ones on the other side.

Therefore, the process with n dimensional space reduces to one dimension with two levels (high and

low risk). Step four: The previous processes are repeated for all d-way interaction models, and the

model with the least classification error is selected. Step five: Cross validation consistency (CVC),

classification error (CE), and prediction error (PE) are used to assess the prediction prowess of the

chosen model. The only difference between classification and prediction errors is that, the former is

calculated using the training set while the latter uses the testing set. For further details on MDR, see

Ritchie (2005), and Moore (2010, 2015) [21, 18, 19].

2.2.3 MARS

The MARS Algorithm, through an automatic data set determined knots, divides the entire data set into

many smaller regression subsets. Each of these subsets comes with a basis function, and all significant

basis functions are aggregated to get the overall regression model. One clear advantage of MARS is

that it gives a regression-like output model in the form Y = BX + ε; with the X’s being basis functions

of the predictors here.

2.2.4 MARS Overview

The MARS algorithm is such that the regression model is derived directly by the data, through a

data driven automatic set of basis (hinge) functions with their corresponding coefficients. These basis

functions are derived based on automatic data driven hinge values in the data, also referred to as knots

and represented by the letter, t. As a particular linear relationship between the response and predictor

variables in a data subset is being modeled, the knot automatically identifies the point of direction

change from that relationship. This point of change now becomes a starting point for a new subset of
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another relationship; and the process continues with new knots and relationships to the end. Therefore,

both linear and non-linear relationships with corresponding interactions are captured in the model.

2.2.5 The MARS Model

MARS builds models of the following equation form;

f̂ =
k∑

i=1

CiBi(x) (7)

where each C is a constant coefficient multiplying a basis function B.

2.2.6 How the MARS Model is Built

The MARS model is built using some form of forward and backward selection process in the follow-

ing way: Forward selection combines all significant basis regression functions and their interactions.

Backward selection prunes the result from the forward selection to avoid over fitting. This gives the

optimized final model. During pruning, basis functions are eliminated from the over-fitted model one

at a time based on some form of residual-sums-of-squares criterion called GCV (Generalized- Cross-

Validation) score. This score ranges from zero to one. A score approaching one contributes optimally

and a score approaching zero contributes almost none to the response. The following is the GCV equa-

tion:

For N observations, d independent number of bases functions (effective degrees of freedom), p as the

penalty for adding a base function; the pruning formula is given by:

GCV =

∑N
i=1(yi − f̂)2

(1− C
N

)2
(8)

where C = 1 + pd

For more details on MARS, check out these references: Friedman (1991), Kane (2015), York (2001),

and Yang (2004) [6, 12, 26, 30, 28]. Also, for a special reference with the Salford System software [22],

check out https://www.salford-systems.com/products/mars.
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Table 1: Datasets for Genetic DILI
Data Observation SNP variables

Data Set 1 (Known SNPs) 250 25
Data Set 2 (Known SNPs) 250 50

DILI Chronicity Data 271 872

3 Materials and Methods

3.1 Data Description

All datasets for this project are found here: https://ani.stat.fsu.edu/ vic/DILIdata/. As shown in the

table 1, data sets one and two are readily available simulated ones, retrieved from the MDR software

package used for this project.

The chronicity DILI data was generated by a genotyping method using microarray bead chip. It

was acquired from International DILI Consortium, part of the International Serious Adverse Event

Consortium (ISAEC);

website; https://dataportal.saeconsortium.org/) [9]. There are 271 obervations (238 acute vs 33 chronic),

and 872 SNPs (related to bile acid pathways). As further information, chronic DILI is relatively rare

among DILI risk patients and doesn’t have a uniform definition. All the same, according to (Medina,

2016) [17], it can be thought of as occurring when abnormal serum chemistry values are measured (or

have evidence of continued liver injury) for at least 6 months.

For this data set, DILI chronicity is dichotomized into the following: Chronic DILI is liver injury per-

sisting for six months or more, coded as chronic (1); acute is liver injury occurring for less than 6

months, coded as acute (0).

4 Results

In these section and subsections, we outline the results of applying the selected statistical learning

methods to the our SNP datasets.

4.1 Learning Methods Comparison

The three methods were compared using two available simulated data each with two known SNP

Interactions. The recovery rate results for these interactions are displayed in the table 2. Recovery rate

is the fraction of the known SNP interactions that are recovered by the method.

• Known SNPs are SNPs that were predetermined to be associated with the response variable
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Table 2: Recovery rates for all the methods

Recovery rate MDRRF + regressionMARS

Data set 1 (Known SNPs)100% 100% 100%

Data set 2(Known SNPs) 100% 50% 50%

(phenotype).

• Recovery Rate is the number of known SNPs that were recovered by the method.

For data set one, the recovery rates for all the three methods were perfect. However, for data set

two, while the recovery rate for MDR was perfect for the known interacting SNPs, that of RF and

MARS was only 50 percent. These two methods recovered only one of the known interacting SNPs.

4.2 A Previous Relevant Study on The DILI chronicity data

Figure 3: Chronic DILI-serum bilirubin connection

A previous study on the DILI chronicity data found increased total serum bilirubin were

associated with the drugs causing chronic liver injury. See the figure 3. This information is

important because it has a connection to our study’s findings that follow next.

4.3 Epistasis from Chronicity DILI Data set

Table 3: DILI Gene-gene interaction for all the methods

Data MDR RF + Regression MARS

DILI rs7658048*rs5417 rs5417*rs3785157 rs6487213*rs3785157

Per the results of epistasis in the table 3, each method’s SNP interactions have entirely different

SNPs. It could be that though the SNPs are different, they may still share the same genetic biological
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information. However, we have not looked into that possibility of shared genetic biological information

yet. We were however, able to identify the biological information on re6487213, an interacting gene,

under the MARS model (further details in the next section).

5 Discussion and Follow up Study

In the section, we will expatiate on the detected SNP biological information as well as introduce a

follow up study we are working.

5.1 Detected SNP (rs6487213) Biological Info

The SNP, rs6487213, is a variant of the gene SLCO1B1, which is a solute carrier organic anion trans-

porter family member 1B1: See https://ghr.nlm.nih.gov/gene/SLCO1B1. This gene is responsible for

the instructions for synthesizing a type of protein called organic anion transporting polypeptide 1B1,

or OATP1B1. This protein, found in liver cells, transports compounds from the blood into the liver to

be eventually excreted from the body. Example of such a compound is bilirubin which is found in the

bile within the liver. Other compounds transported are hormones, toxins and drugs.

Already, in a study of 9500 Caucasians, the allelic variation in SLCO1B1 was reported as a major

genetic predictor of increased serum bilirubin levels [11]. Note that liver creates bile which contains

bilirubin for food digestion. A healthy liver gets rid of the bilirubin while an unhealthy liver is unable

to eliminate the bilirubin. So a higher amount of bilirubin presence in the blood indicate a liver disease,

and hence a DILI occurrence.

5.2 Follow Up Study Preliminary Results

According to our findings, MARS was faster in revealing candidate SNPs. Moreover, from literature

review, Lin et. al. (2012) [15] and Lasheras et. al. (2017) [14] both combined Random Forest

and Deep Learning- Convolution Neural Network (CNN) respectively, with MARS. They showed that

by combining another method with MARS, the resulting MARS model greatly improved than when

MARS was used alone. Therefore, I am likewise investigating how to improve the MARS model by

combining it with another method. Thus, I am currently working on combining the Random Forest

(RF), embeded in Recursive Feature Elimination (rfe/ RFE) method with MARS, for the next

phase of this study. RFE is a variable selection machine learning method that works to select variables

by recursively considering smaller and smaller sets of variables. Here is a little detail of how RFE
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works: Initially, the estimator is trained on the first set of variables (features) and the importance of

each variable is achieved through a feature-importance attribute. Next, the least important variables

are removed from the current set of variables. This process is recursively repeated on the pruned set

until the desired number of variables required to be selected is eventually obtained.

In the Python Programming Language, the package Scikit Learn is able to easily implement RFE

by passing any classifier through it. For this study, the classifier used is RF. Originally, the planned was

to use PCA (Did a mini project on it already. Ultimately, rfe(RF) was settled on due to its relatively

effectiveness and ease of interpretation.

The table below (figure 4 display some preliminary results of rfe(RF) plus MARS. The recovery rate

of the known SNPs is 100 percent for datasets one and two. My next plan of action along this line will

be:

• To Simulate two more datasets of width 100 and 1000 SNPS respectively with known SNPs:

• Then, apply rfe(RF) plus MARS to them:

• Finally, I will apply rfe(RF) plus MARS to the main data or any real SNP data.

Table 4: Preliminary Results For [rfe(RF)+ MARS] Method

Recovery rate MDR RF + regression MARS rfe(RF)+MARS

Data set 1 [25](Known SNPs) 100% 100% 100% 100%

Data set 2 [50] (Known SNPs) 100% 50% 50% 100%

6 Conclusions

The three methods for the study of gene-gene interactions we identified are MDR, RF + logistic regres-

sion, and MARS. Comparing the three methods, MDR was the most accurate in the test set (though

was extremely slow in case of large data size) since unlike the others, it’s recovery rate was 100%. How-

ever, MARS was faster in revealing candidate SNPs in the chronicity DILI data set. On the chronicity

DILI dataset, MARS retrieved the SNP, rs6487213, as part of its interacting SNPs. We identified this

SNP as a suspected allelic variation of the gene SLCO1B1. This gene is a known predictor of elevated

serum bilirubin, which is a risk factor related to chronic DILI [11].

Though I just started applying the rfe(RF) plus MARS method to some of the data, so far it seems

promising and the recovery rate has been 100 percent for datasets one and two.
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6.1 Ongoing Work

• I will continue the work on the rfe(RF) plus MARS method and complete it. I may also later

combine MARS with a Deep Learning method e.g. Convolutional Neural Network.

6.2 Future Work

In addition to developing MARS with other methods for DILI, we plan to later apply/extend found

methods to genetic DILI data with covariates/ environmental factors.
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[17] Medina-Caliz, I., Robles-Diaz, M., Garcia-Muñoz, B., Stephens, C., Ortega-Alonso, A., Garcia-

Cortes, M., . . . Andrade, R. J. (2016). Definition and risk factors for chronicity fol-

lowing acute idiosyncratic drug-induced liver injury. Journal of Hepatology, 65(3), 532-542.

doi:10.1016/j.jhep.2016.05.003

[18] Moore, J. H. (2010). Detecting, Characterizing, and Interpreting Nonlinear Gene–Gene Interactions

Using Multifactor Dimensionality Reduction. Computational Methods for Genetics of Complex

Traits Advances in Genetics, 101–116. doi:10.1016/b978-0-12-380862-2.00005-9

[19] Moore, J. H. and Andrews, P. C. (2015). Epistasis Analysis Using Multifactor Dimensionality

Reduction. Methods in Molecular Biology Epistasis, 301-314. doi : 10.1007/978−1−4939−2155−

316

[20] Niel, C., Sinoquet, C., Dina, C., & Rocheleau, G. (2015). A survey about methods dedicated to

epistasis detection. Frontiers in Genetics, 6. doi: 10.3389/fgene.2015.00285

[21] Ritchie, M. D. and Motsinger, A. A. (2005). Multifactor dimensionality reduction for detecting

gene–gene and gene–environment interactions in pharmacogenomics studies. Pharmacogenomics,

6(8), 823–834. doi:10.2217/14622416.6.8.823

[22] Salford Systems. ”Multivariate Adaptive Regression Splines (MARS)” Random Forests OOB vs.

Test Partition Performance - Dan Steinberg’s Blog, www.salford-systems.com/products/mars

17

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.02.15.21251747doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251747
http://creativecommons.org/licenses/by-nd/4.0/


[23] Shang, J., Zhang, J., Sun, Y., Liu, D., Ye, D., & Yin, Y. (2011). Performance analysis of novel

methods for detecting epistasis. BMC Bioinformatics, 12(1). doi: 10.1186/1471-2105-12-475

[24] Urban, T. J.; Goldstein, D. B.; Watkins, P. B. (2012). Genetic basis of susceptibility to drug-

induced liver injury: What have we learned and where do we go from here? Pharmacogenomics,

13(7), 735–738. doi:10.2217/pgs.12.45

[25] Wei, W.-H., Hemani, G., & Haley, C. S. (2014). Detecting epistasis in human complex traits.

Nature Reviews Genetics, 15(11), 722–733. doi: 10.1038/nrg3747

[26] www.statsoft.com. (n.d.). Retrieved from http://www.statsoft.com/Textbook/Multivariate-

Adaptive-Regression-Splines

[27] Xu, H., Sun, X., Qi, T., Lin, W., Liu, N., & Lou, X. (2014). Multivariate Dimensionality Reduc-

tion Approaches to Identify Gene-Gene and Gene-Environment Interactions Underlying Multiple

Complex Traits. PLoS ONE, 9(9). doi:10.1371/journal.pone.0108103

[28] Yang, C.-C., Prasher, S. O., Lacroix, R., & Kim, S. H. (2004). Application Of Multivariate Adap-

tive Regression Splines (Mars) To Simulate Soil Temperature. Transactions of the ASAE, 47(3),

881–887. doi: 10.13031/2013.16085

[29] Yi, N. (2010). Statistical analysis of genetic interactions. Genetics Research, 92(5-6), 443–459. doi:

10.1017/s0016672310000595

[30] York, Timothy P., and Lindon J. Eaves. (2001). Common Disease Analysis Using Multivariate

Adaptive Regression Splines (MARS): Genetic Analysis Workshop 12 Simulated Sequence Data.

Genetic Epidemiology, vol. 21, no. S1, 2001, doi:10.1002/gepi.2001.21.s1.s649.

18

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 20, 2021. ; https://doi.org/10.1101/2021.02.15.21251747doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251747
http://creativecommons.org/licenses/by-nd/4.0/

