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Abstract

Objectives: To develop a disease stratification model for COVID-19 that updates according to

changes in a patient’s condition while in hospital to facilitate patient management and resource

allocation.

Design: In this retrospective cohort study we adopted a landmarking approach to dynamic

prediction of all cause in-hospital mortality over the next 48 hours. We accounted for informative

predictor missingness, and selected predictors using penalised regression.

Setting: All data used in this study was obtained from a single UK teaching hospital.

Participants: We developed the model using 473 consecutive patients with COVID-19

presenting to a UK hospital between March 1 and September 12, 2020; and temporally

validated using data on 1119 patients presenting between September 13, 2020 and March 17,

2021.

Primary and secondary Outcomes: The primary outcome is all-cause in-hospital mortality

within 48 hours of the prediction time. We accounted for the competing risks of discharge from

hospital alive and transfer to a tertiary Intensive Care Unit for extracorporeal membrane

oxygenation.

Results: Our final model includes age, Clinical Frailty Scale score, heart rate, respiratory rate,

SpO2/FiO2 ratio, white cell count, presence of acidosis (pH < 7.35) and Interleukin-6. Internal

validation achieved an AUROC of 0.90 (95% CI 0.87–0.93) and temporal validation gave an

AUROC of 0.86 (95% CI 0.83-0.88).

Conclusion: Our model incorporates both static risk factors (e.g. age) and evolving clinical and

laboratory data, to provide a dynamic risk prediction model that adapts to both sudden and

gradual changes in an individual patient’s clinical condition. Upon successful external validation,

the model has the potential to be a powerful clinical risk assessment tool.

Trial Registration: The study is registered as "researchregistry5464" on the Research Registry

(www.researchregistry.com).
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Article Summary:
- Our dynamic prediction model is able to incorporate patient data as it accumulates

throughout a hospital visit.

- We use the established statistical landmarking approach to dynamic prediction; account

for competing risks for the primary outcome of in-hospital mortality; and the

potentially-informative availability of clinical and laboratory data.

- The sample size of the first wave of patients admitted with severe COVID-19 was

relatively low, due to the lower incidence in Cambridgeshire, but increased significantly

during the winter months of 2020/21, providing the opportunity to temporally validate the

model.

- As a single centre study, the presented model will require external validation to assess

its performance in other cohorts; and also if there are significant changes in the

characteristics of new variants or the management thereof.

- Our work also highlights the adaptability of the statistical landmarking framework to be

used to model individual patient outcomes using densely-collected hospital data.

Keywords
COVID-19, SARS-CoV-2, Mortality prediction, Dynamic prediction, Landmarking

Introduction
SARS-CoV-2 virus infection, the cause of COVID-19, results in a spectrum of disease ranging

from asymptomatic infection through to life threatening disease requiring critical care, and even

death. For patients admitted to hospital, it is essential to identify who is at risk of deterioration

and death to enable timely targeted interventions (such as immune modulation and mechanical

ventilation), to facilitate appropriate resource allocation and patient flow, and to inform

discussions with patients and families.

Most existing disease severity prediction models for COVID-19 use only data that are available

at the time of admission to hospital. Such point-of-admission models have been proposed for

both mortality and composite escalation/mortality outcomes, including new and re-purposed

severity and early warning scores1-7 and time-to-event models8-13.
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While some markers of severity, such as sex and age can be assumed constant for the duration

of the hospital visit, others, such as clinical observations and blood test results, can change

markedly over the course of admission. COVID-19 is a dynamic disease in which patients can

deteriorate over a short time period or suffer acute complications e.g. thromboembolism14-15.

This may have a significant effect on a patient’s prognosis that cannot be foreseen by a

point-of-admission model.

A model with the ability to adjust predictions at arbitrary time points by including updated patient

information could greatly aid in clinical decision-making. Dynamic models that assimilate clinical

data as it accrues may provide more accurate and clinically useful prediction of a patient’s

clinical course and prognosis over the subsequent days than point-of-admission models.

Predictive models that incorporate post-admission information are limited in number and scope.

Some models for predicting mortality or deterioration have used information after admission, but

do not continue beyond the first few days of admission16-17. More recent time-varying Cox

models (for mortality and escalation)18,19 and machine learning models (for mortality)20 have

used additional post-admission data. However, time-varying Cox models should not be used for

prediction, because they require knowledge of clinical information from the future to calculate

the hazard function, which is impossible in practice21. Furthermore, while indicating promising

discrimination, these models use clinically unjustifiable or unclear methods for handling missing

data and censoring, and do not account for informative missingness or consider the effect of

treatments. Informative missingness describes the fact that in routinely-collected data the

availability (or absence) of a result or observation may be related to the probability of the

outcome. For example, a more extensive panel of investigations may be sent for patients

thought more likely to benefit from escalation in care, such as transfer to an Intensive Care Unit

(ICU). While often ignored, such effects can be strong in Electronic Health Record (EHR)

data22,23.

We propose a prognostic risk stratification score for hospital patients with COVID-19, based on

prediction of mortality in the subsequent 48 hours, using routinely-collected clinical data. Our

model is based upon a principled statistical approach called landmarking21,24,25 that allows

inclusion of any time-varying clinical parameters recorded prior to the time of prediction, whilst

appropriately accounting for censoring and changes in the set of patients at risk. The model

accounts for informative missingness and competing risks, which arise when there are two or

more mutually exclusive outcomes: for example, once a patient is discharged, the risk of
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in-hospital mortality (during that admission) is removed. Therefore discharge is a "competing

risk”26 when viewed from the perspective of in-hospital mortality. We account for competing risks

within the landmarking framework using a recently-proposed approach27 that has not previously

been used to model individual patient outcomes using densely-collected EHR data.

Materials and Methods

Study design
This is a retrospective cohort study of all patients presenting to Cambridge University Hospitals,

a regional, tertiary care, university hospital in the East of England, between March 1, 2020 and

March 17, 2021. This hospital is the sole admission hospital for patients in its immediate

catchment population with COVID-19, and is a regional referral centre for a wide range of

specialist services, which do not include extracorporeal membrane oxygenation (ECMO).

We report our findings according to the TRIPOD reporting guidelines28.

Study Population
All adults (>= 18 years of age) presenting to hospital during the study period and diagnosed with

COVID-19 were included. Diagnosis was based on either a positive diagnostic SARS-CoV-2 test

during or up to 14 days prior to the hospital visit, or a clinical diagnosis of COVID-19 (eAppendix

1). Patients with clinically diagnosed COVID-19 (based on symptoms, and the clinical opinion of

the treating clinician) were included because diagnostic testing was limited during the early

stages of the pandemic29.

We include only the first hospital visit for each patient involving (or subsequent to) their first

positive test; any re-admissions were excluded. Nosocomial infection was defined as a first

positive SARS-CoV-2 test or diagnosis more than 10 days after hospital admission. Since we

first train our model at 6 hours (to allow time for laboratory investigations), patients who died,

were discharged or were classified as end of life within 6 hours of presentation to hospital were

excluded.

All patients were treated as per detailed local guidance in use in the hospital at the time.

Patients were also eligible for inclusion in relevant clinical trials running at the hospital during

the study period (eAppendix 2).
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Outcomes
Throughout each patient’s hospital visit, we aim to predict all-cause in-hospital mortality during

the next 48 hours, a time period that we refer to as the “prediction horizon”. We also considered

two competing risks: transfer to a tertiary ICU for ECMO; and discharge from the hospital due to

clinical improvement. Patients were followed up until March 19, 2021.

Ethics
The study was approved by a UK Health Research Authority ethics committee (20/WM/0125,

eAppendix 3).

Patient and public involvement
No patients were involved in the design of this study.

Model development
We selected a list of 59 candidate clinical parameters (eTable 1) that have been included in

existing point-of-admission prediction models or were clinically judged to be likely predictors.

These are divided into five categories: demographics; comorbidities; observations; laboratory

tests; and treatments, interventions and level of care.

Basic patient demographics were extracted from the hospital EHR: age, sex, ethnicity, and

deviation from standard ranges of Body Mass Index (BMI).

Twelve comorbidities that have previously been associated with COVID-1930 were identified by

the presence of the corresponding ICD-10 codes entered in the EHR prior to the time at which

the prediction is made (either before or during the hospital visit). eTable 2 provides the ICD-10

codes used to define each comorbidity. In addition to specific comorbidities, frailty amongst

patients over 65 years old was assessed by the Clinical Frailty Scale (CFS) score31 (eAppendix

4).

We included the following observations that are regularly recorded in the EHR: heart rate (HR),

mean arterial pressure, temperature and respiratory rate (RR). SpO2/FiO2 ratio was calculated

(where SpO2 and FiO2 were available at the same timepoint) to indicate the severity of

hypoxia32-33. SpO2 itself was not included as a potential predictor as our exploratory work
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suggested that, without accounting for FiO2, this largely reflected a patient’s assigned oxygen

saturation targets, and therefore acted as a proxy for underlying respiratory disease (e.g.

patients with chronic obstructive pulmonary disease being assigned a lower SpO2 target).

Where only oxygen flow rate was available, FiO2 was estimated according to the EPIC II

conversion tables34. PaO2/FiO2 (P/F) ratio was also included. We summarised the

measurements recorded over the previous 24-hour period as follows: mean, minimum and

maximum value. We also calculated the ‘median-trend’ as the difference between the median

value for the last 24 hours, and the median value for the 24 hours prior to this. The Glasgow

Coma Score (GCS) was extracted from the EHR; patients without a recorded GCS were

assumed to have a GCS >= 12.

For each of the 31 laboratory tests we considered, we included results up to 48 hours prior to

the time at which the prediction was made. Where more than one result was available, we used

the most recent result. In addition, for 7 of the most frequently measured blood tests (C-reactive

protein (CRP), white cell count (WCC), platelets, haemoglobin, creatinine, sodium, potassium),

we included the median-trend. The neutrophil/lymphocyte and Interleukin-6/Interleukin-10

(serum IL-6/IL-10) ratios have previously been identified as prognostic, therefore we also

considered these as potential predictors9,17,35. For blood markers where both abnormally low and

abnormally high results could potentially be associated with poor prognosis (sodium and pH),

we included the maximum deviation below and above the normal range in the previous 24

hours. We adjusted venous pH results by adding 0.03 to approximate arterial pH results36.

We included 5 indicators of treatments, interventions and levels of care. The level of care of the

patient was summarised by whether the patient had been in an ICU bed in the previous 24

hours. Mechanical ventilation was defined as patients receiving invasive ventilation during the

previous 24 hours, either via endotracheal tube or tracheostomy. The use of renal replacement

therapy during the last 24 hours was identified from the EHR. Cardiovascular support was

defined as the administration of any vasopressors or inotropes in the last 24 hours. Steroid

administration has been shown to decrease the risk of death in patients with COVID-1937-38. We

therefore include an indicator of whether the patient had received treatment dose steroids

(defined as 6mg dexamethasone daily or an equivalent dose of prednisolone, hydrocortisone or

methylprednisolone) during their hospital admission prior to the landmark time.

Models
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We used the landmarking approach for dynamic prediction21,24-25. At intervals of 24 hours (the

“landmark times''), we trained time-to-event models, using clinical parameters recorded before

(or at) the landmark time as predictors. This makes it possible to include repeatedly measured

clinical parameters into the prediction model, so that predictors reflect any changes in the

trajectory of the patient, whilst appropriately accounting for censoring and changes in the at-risk

population. If the primary outcome was recorded within the prediction horizon of a landmark

time, we recorded the outcome at the relative time from landmark to event; events after the

prediction horizon were censored. Patients who have had any event prior to the landmark time

were excluded, since these patients were no longer at risk. The first landmark is 6 hours after

presentation to allow time for clinical information to accrue, or at the point of COVID-19

diagnosis for nosocomial patients (diagnosed 10 days or more after presentation). We only used

data at each landmark time from patients being actively treated for COVID-19 at that point in

time. Landmark times after transition to end of life care were omitted, meaning that no

predictions were made at these timepoints, although events occurring within the existing

prediction horizon were still included. We used a supermodel approach in which the

time-to-event model is assumed constant across landmark times39.

We use the Fine-Gray competing risk model to predict in-hospital death, and account for the

competing risks of hospital discharge and transfer for ECMO39,40. A Fine-Gray model uses

subdistribution hazards, which are directly related to the cumulative incidence function, by which

the probability of an event of interest occuring can be estimated. While the cause-specific

hazard function used by Cox models is preferable for inferring biological mechanisms,

subdistribution hazard-based models are preferable for prediction41.

Missing Values
We handled missing data using the missingness indicator approach since the recording in the

EHR of a clinical parameter, regardless of the value, is often indicative of the treating health

professional’s contemporaneous view of the patient’s condition42,43. Conceptually our approach,

as well as estimating the “effect” of a unit increase of a particular clinical parameter (as is

standard in all regression approaches), estimates the “effect” of a variable being “missing”. For

each potential predictor in the model we also include a missingness indicator, which indicates

that no data were recorded during the corresponding time period. This approach allows clinical

parameters with an incomplete record to be included in our model and avoids the need to make

the missing at random (MAR) assumption that is unlikely to hold in these data44. For each
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parameter, ultimately one of the two expressions is used for prediction for each patient at each

timepoint: either a coefficient describing the relationship with the clinical parameter when it is

recorded, or a fixed value if the clinical parameter is missing.

Blood tests are considered missing if the most recent measurement was collected more than 48

hours prior to the landmark time. When a blood test is repeated during the previous 48 hours,

the most recent result is used. The vital signs we considered did not have missing values at any

included landmark.

Predictor Selection
To select the most predictive parameters into the model we used standard penalised variable

selection, specifically Smoothly Clipped Absolute Deviations (SCAD), with the tuning parameter

chosen to minimise the Bayesian Information Criterion45. We paired parameters together with

their corresponding missingness indicator to prevent inclusion of an incompletely-recorded

parameter without its missingness indicator, using the group SCAD46; but also allowed for the

missingness indicators to be included by themselves.

The development and validation of the model has been carried out in R version 3.647 .

Model assessment
Quantitative assessment of discrimination was performed using the Area Under the Receiver

Opearting Characteristic (AUROC) curve, in which 0.5 indicates no discrimination and 1.0

indicates perfect discrimination. For validation of the performance of the model on the training

data, in addition to the unadjusted AUROC, we also performed repeated 5-fold (split into 80%

training, 20% validation data) cross-validation to account for uncertainty and over-optimism due

to the complete model building process (including variable selection)48. We also calculated

precision-recall (PR) curve and the Area Under the PR Curve (AUPRC) since it provides a

clearer performance summary than AUROC when the primary outcome has low incidence, as

here49. We assessed clinical benefit visually via the number needed to evaluate (NNE), defined

as 1/positive predictive value (1/PPV), against the sensitivity. We also calculated the net benefit

curve50.
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We assessed calibration visually using a calibration plot of predicted risk against observed

mortality rate. We also quantitatively assessed the calibration slope and

calibration-in-the-large51.

Sensitivity analyses
To assess whether the model is unduly influenced by patients with long hospitalisations we

re-trained the model using only each patient’s first 28 landmark times (spanning 28 days). We

also assessed the sensitivity of our model assessment by stratifying by whether COVID-19 was

confirmed by a positive SARS-CoV-2 diagnostic test, and according to whether patients had

received at least a single COVID-19 vaccination dose (Oxford-AstraZeneca Covishield,

Pfizer-BionTech Comirnaty or Moderna Spikevax).

Results

Development of prediction model
We developed the model using data from Wave 1 (March 1, 2020 to September 12, 2020), with

the end date chosen since only a single patient remained in hospital with COVID-19 on this

date. 519 patients presented to hospital with COVID-19 during Wave 1, of whom 46 were

excluded due to discharge (34), death (2) or transition to end of life care (10) prior to the first

landmark time (i.e. within 6 hours of presentation). The baseline characteristics of the 473

patients included in the development of the model are shown in Table 1.

Table 1: Cohort demographics and clinical features in Wave 1 and Wave 2.

Characteristic Wave 1 (training
data set)

Wave 2
(validation data
set)

Admission dates Mar 1, 2020 –

Sep 12, 2020

Sep 13, 2020 –

Mar 17, 2021

Number of patients 473 1119

Female, n (%) 196 (41.4%) 579 (48.3%)

Age at admission, median [IQR], years 69 [55, 81] 65 [49, 79]
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Admission BMI, median [IQR], kg/m a 25.7 [22.1, 29.9] 27.35 [23.5, 32.1]

Clinical Frailty Score at admission for over 65 year

olds, median [IQR]

5 [3, 6] 5 [4, 6]

Nosocomial infection, n (%) 36 (7.6%) 116 (9.7%)

Length of stay, median [IQR], days 10.8 [3.9, 19.8] 8.0 [2.95, 18.5] b

Ethnicity, number (%)

White 354 (74.8%) 792 (66.1%)

Asian 24 (5.1%) 61 (5.1%)

Black 10 (2.1%) 13 (1.1%)

Other 11 (2.3%) 39 (3.3%)

Prefer not to say/ Not recorded 74 (15.6%) 294 (24.5%))

Outcomes, number (%)

Deceased in-hospital c 99 (20.9%) 145 (12.1%)

Transferred for ECMO 5 (1.1%) 1 (0.1%) (0%)

Discharged alive 369 (78.0%) 967 (80.7%)

Remain in hospital on Mar 19, 2021 0 (0%) 86 (7.2%)

Support / treatments received during hospital stay, number (%)

ICU admission 103 (21.8%) 238 (19.8%)

Invasive mechanical ventilation 82 (17.3%) 172 (14.3%)

Non-invasive ventilation (CPAP or Bi-PAP) 37 (7.8%) 144 (12.9%)

Cardiovascular support 86 (18.2%) 170 (14.2%)
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Renal replacement therapy 32 (6.8%) 39 (3.3%)

Steroid treatment 120 (25.4%) 619 (55.3%)

Admission observations a, median [IQR]

Mean arterial pressure, mmHg 86 [76, 96] 88 [78, 98]

Heart rate, beats/min 83 [72, 93] 81 [72, 91]

Temperature, degrees celsius 37.2 [36.7, 37.8] 36.9 [36.5, 37.4]

Respiratory rate, breaths/min 19 [17, 22] 18 [17, 20]

Oxygen saturation (SpO2), % 96 [94, 97] 95 [94, 97]

SpO2/FiO2 ratio 448 [337, 457] 452 [400, 462]

Admission blood results a, median [IQR]

Urea, mmol/L 7.8 [5.0, 11.8] 7.1 [5.1, 10.5]

Creatinine, 𝜇mol/L 75 [61, 106] 70 [56, 93]

Sodium, mmol/L 137 [134, 140] 137 [135, 140]

CRP, mg/L 87 [39, 178] 55 [26, 109]

WCC, 109/L 6.9 [4.9, 9.3] 6.8 [5.0, 9.8]

Neutrophils, 109/L 5.4 [3.6, 7.8] 5.3 [3.5, 7.9]

Lymphocytes, 109/L 0.8 [0.5, 1.2] 0.8 [0.5, 1.2]

D-dimer, ng/ml 334 [177, 682] 292 [167, 641]

Troponin, ng/L 20.0 [8.3, 63.6] 11.0 [4.0, 39.5]

pH 7.43 [7.37, 7.46] 7.44 [7.39, 7.46]

IL-6, pg/ml 15.1 [5.3, 40.2] 11.6 [4.0, 29.8]
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a First after positive SARS-CoV-2 test result for hospital-acquired COVID-19 cases
b For Wave 2, includes stays completed by March 19, 2021 only. Note that because follow-up continued until March

19 2021, the outcome during the 48-hour prediction horizon was known for all landmark times up to March 17 2021,

and so patients remaining in hospital at the study end-date could be included in the validation.
c Total in-hospital mortality including those patients who were classified as “end of life” prior to death.

In total we included 6846 landmark times for training the model, with a median of 9 (IQR 3–17)

landmark times per patient. In the 48-hour prediction horizon following these landmark times,

there were 119 in-hospital death events (1.7% of landmarks), 658 hospital discharge events

(9.6%) and 10 transfers for ECMO (0.1%). Note that, since landmarks occur every 24 hour and

the prediction horizon is 48 hours, patient events will usually occur within the prediction horizon

of two adjacent landmark times. eTable 1 reports summary statistics, missingness and the

number of measurements available per landmark time for each predictor. No patients were

excluded due to missing data.

Model results
Our proposed model (Table 2 and eTable 3) for 48-hour in-hospital mortality includes age,

Clinical Frailty Scale (CFS) score52, heart rate (HR), respiratory rate (RR), oxygen

saturation/fraction of inspired oxygen (SpO2/FiO2) ratio32,33, white cell count (WCC), acidosis

(pH < 7.35) and Interleukin-6 (IL-6). The mortality probability can be calculated using the

calculator at http://shiny.mrc-bsu.cam.ac.uk/apps/covid19mortalityrisk/; see eAppendix 5 for

details.

Table 2. Final model coefficients

Predictor Coefficients
when recorded

Coefficients if
unrecorded1

Age <75 years, at admission -0.516 –

Age <80 years, at admission -0.245 –

Clinical Frailty Score, at admission 0.0678 0.0513

Heart rate, beats/min, mean during last 24h 0.00282 –
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Respiratory rate, breaths/min, minimum during

last 24h

0.102 –

SpO2/FiO2 ratio, minimum during last 24h -0.0116 –

WCC, 109/L, most recent measurement during

last 48h

0.00651 -0.0015

Acidosis, 7.35 - (lowest pH during last 24h), or 0

if all above 7.35

3.18 0.22

IL-6, pg/ml, most recent measurement during

last 48h

0.000166 -0.0218

1. If the predictor value is not recorded, the fixed value in this column is used, and the coefficient

corresponding to the predictor value is ignored.

The model trained on only data from the first 28 landmarks for each patient closely resembled

the model in Table 2, although the Clinical Frailty Score and IL-6 were not selected (eTable 4).

Internal performance assessment
Figure 1 shows the internal performance metrics for the model in Table 2 (using the training

data). The unadjusted internal area under receiver-operating characteristic curve (AUROC) was

0.90 (95% CI 0.87–0.93) and the median cross-validation AUROC was 0.87, both indicating

good discrimination (Figure 1A). The PR curve (Figure 1B) also showed good discrimination,

with an AUPRC of 0.31, in a population with 48 hour in-hospital mortality of 0.017 (1.7%), and

the NNE <10 for sensitivity less than 0.75 (Figure 1C). Figure 1D shows the calibration plot. The

calibration intercept was -0.02 (95% CI -0.22– 0.17) indicating that the mean predicted

probabilities matched the mean observed mortality, while the calibration slope was 1.16 (95% CI

1.02–1.31) suggesting that the observed mortality in high predicted risk patients slightly

exceeded the predicted mortality risk. The net benefit curve for risk stratification by the

proposed model is clearly higher than for the two non-model alternatives of classifying either

everyone, or no-one as high risk patients, indicating the clinical utility of the dynamic model

(eFigure 3).
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Temporal validation of prediction model
We assessed the performance of the model by applying it to held-out data corresponding to

admissions during Wave 2 (September 13, 2020 and March 171, 2021). 1119 patients presented

to the study hospital during this period. In total we tested the model using 12981 landmark

times, with a median of 6 (2-14) landmark times per patient. In the 48-hour prediction horizon

following these landmark times, there were 253 in-hospital death events (1.9% of landmarks),

1615 hospital discharge events (12.4%) and 2 transfers for ECMO (0.015%). 47 landmark times

were omitted due to missing vital sign data. Characteristics are summarised in Table 1. Of note,

compared to Wave 1, patients presenting in Wave 2 were slightly younger and more likely to be

female, evidenced by a more balanced data set.

Figure 2 shows the temporal validation performance metrics, obtained by applying the trained

model (Table 2) to the Wave 2 patients. The receiver-operating characteristic (ROC) curve

(Figure 2A) shows the model continues to discriminate well, with AUROC 0.86 (95% CI

0.83-0.88). The PR curve (Figure 2B) shows that PPV was consistently well above the 48-hour

in-hospital mortality incidence of 0.019 (1.9%) in the Wave 2 cohort across all sensitivities, with

AUPRC 0.15, and NNE < 10 for sensitivities between 0.02 and 0.63 (Figure 2C). Figure 2D

shows the calibration plot, which shows a tendency of the model to underpredict risk in the

higher risk patients: calibration-in-the-large was 0.35 (95% CI 0.21-0.47)), suggesting the mean

of the predicted probabilities was lower than the mean observed mortality, and calibration slope

was 0.90 (95% CI 0.82-0.99), indicating that the spread of predicted risk corresponds

reasonably well with the spread of observed mortality. The calibration plot shows a good

correspondence between observed mortality rate and predicted mortality risk for the lower risk

patients (<0.4), but due to the low incidence of mortality events among the landmarks

corresponds less well for the higher risk patients. This is evidenced by the considerable

confidence intervals. The net benefit curves for the proposed model surpasses both alternatives

of classifying everyone, and no-one as high risk patients (eFigure 4).

Sensitivity analyses

We did not find evidence that the discrimination of the model was affected by the presence or

absence of positive diagnostic SARS-CoV-2 results (rather than solely a clinical diagnosis). In

patients with a positive SARS-CoV-2 test the AUROC was 0.90 (95% CI 0.87-0.93) in the

training dataset and 0.85 (95% CI 0.83-0.88) in the validation dataset; whereas for patients with
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only a clinical diagnosis the AUROC was 0.94 (95% CI 0.88-1.00) in the training dataset and

0.88 (95% CI 0.79-0.99) in the validation dataset.

A small number of patients (65 patients, for whom 874 landmarks were available) in our

validation dataset had received a COVID-19 vaccine: the AUROC of 0.88 [0.71, 0.99] for these

patients suggested good discrimination and is consistent with the unvaccinated patients

(AUROC 0.85 [0.83, 0.88]).

Discussion

SARS-CoV-2 causes a wide spectrum of disease that can evolve over time, and may

necessitate critical care management and even result in death. In light of the threat of further

waves of coronavirus infections there is still a pressing clinical need to be able to anticipate

disease severity and the trajectory of illness to facilitate patient management and resource

allocation. The model described herein incorporates both static admission risk factors (age and

CFS) and evolving clinical and laboratory data, providing a dynamic 48-hour risk prediction

model that can adapt to both sudden and gradual changes in an individual patient’s clinical

condition. The data used in the model were routinely collected demographic and clinical data

from during the patient’s hospitalisation, automatically extracted from patient EHRs. As such,

this model could be readily incorporated into routine clinical care.

Several methodological aspects of our approach strengthened our model. Firstly, we accounted

for competing risks, whereby the outcome (risk) of interest (in this case in-hospital mortality) can

only happen whilst the patient is in hospital, and therefore the outcome of interest is ‘competing’

against the risk of transfer to another hospital and/or discharge from hospital. Allowance for this

is important in predictive modeling53. Secondly, allowance was made for the potential of the

availability of observations and investigations to in itself be a reflection of disease severity. While

multiple imputation is often used in clinical prediction models because it gives unbiased

estimates under the MAR assumption, it is unlikely that this assumption holds in the

routinely-collected EHR data that we use42. The missing indicator method that we adopted does

not rely on the MAR assumption and can improve predictive performance in EHR data42-44.

Furthermore, we validated our model using data from different waves. As each wave included

COVID-19 variants of different infectiousness that are potentially associated with different

morbidity and mortality risks, the fact that our model holds across waves further attests to the
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fact that our selected parameters are useful for prognostication in different clinical scenarios.

Finally, we did not seek to make prognostic predictions for patients after clinicians have

identified them as entering the last few hours or days of life. Since observations and

investigations are often discontinued at the end of life, including these time periods would distort

the model due to extreme missingness (in our data, no vital sign observations were recorded on

43% of days during end-of-life care, compared to 0% of days during active treatment). In

addition, predicting end-of-life after it is clinically apparent would have little clinical utility.

Several predictors of disease severity included in our model have also been identified by

point-of-admission severity models, and in epidemiological studies of risk factors for severe

disease. Increasing age is widely recognised as being the strongest predictor of poor outcome

from COVID-193,11,30. Frailty has similarly been shown to be a strong independent predictor of

mortality in hospitalised older adults55, including those with COVID-1952,55.

Respiratory compromise is a common reason for hospital admission and markers of respiratory

function, including respiratory rate3,4,12, SpO23, oxygen requirement3 and SpO2/FiO2 ratio have

been included in previous point-of-admission models. The SpO2/FiO2 ratio, as selected by our

model, allows a fully quantitative rather than dichotomous measure of the need for additional

oxygen, as well as allowing for the confounding effect of variation in the target oxygen

saturations in different patient groups.

Acidosis frequently complicates respiratory, renal and advanced circulatory failure and has

previously been noted as a marker of disease severity in COVID-1959. The separate inclusion of

the severity of acidosis and alkalosis in our set of candidate predictors allowed for pH changes

in either direction to be accounted for and avoided, for example, a minor negative effect of

alkalosis from masking a more major effect of acidosis.

Our model selected two markers of infection and inflammation: WCC and IL-6. This is consistent

with other findings11,56-57. IL-6 was included in the routine COVID-19 panel of blood tests at the

study hospital but we recognise that this may be less commonly requested in other hospitals. To

assess whether C-reactive protein (CRP) could serve as a proxy for IL-6 in our model when it is

not available, we refitted the model with CRP in place of IL-6 (eTables 5-6). The AUROC was

slightly lower on both training (0.89, 95% CI 0.85–0.93) and validation (0.84, 95% CI 0.81–0.87)

data, yielding a slightly weaker but potentially more broadly applicable model. The preference of
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the model for IL-6 over CRP may reflect the fact that IL-6 is responsible for the production of

CRP and, as such, is an earlier and more dynamic marker of the inflammatory response58.

To assess whether a simpler model could perform similarly we considered removing the

laboratory tests from our model (eTable 7-8). The resulting model provided slightly less good

discrimination with an AUROC of 0.88 (95% CI 0.85-0.90) in the training data and an AUROC of

0.85 (95% CI 0.82-0.87) in the validation data.

To assess the feasibility of our approach with an extended time horizon and the stability of the

predictors selected, we refitted the model with a 72 hour prediction horizon. The resulting model

matched the previous AUROC in the training data of 0.90 and the AUROC of 0.85 in the

validation data set. The full performance metrics are available in eFigure 1 and eFigure 2, and

the model coefficients in eTable 9.

There are several limitations to our study. We chose to include only laboratory results up to 48

hours and vital signs up to 24 hours before the landmark time; exploiting older data might

improve the predictive ability of our model, at the expense of complexity and real-world utility.

Our data were gathered from a single centre, and therefore the generalisability of our findings to

other centres and populations are pending external validation. Further, our model was

generated from a relatively modest sample size due to the relatively low prevalence of

COVID-19 patients in the catchment population of the hospital, particularly during the early

months of the pandemic. One advantage of using this single dataset from a large, tertiary

hospital was that the hospital never became overwhelmed with patients, and therefore it is

considered that patients received care according to what was considered clinically appropriate

rather than what resources permitted. Finally, while it is encouraging that the model continued to

perform well in the Wave 2 validation data, changes in clinical care of patients (notably use of

steroids and IL-6 inhibitors) and the dominant virus strains (including the Delta variant that

emerged in the UK whilst this manuscript was under review) may influence the clinical picture of

the disease, its severity and the risk factors for disease. The model will therefore likely need to

be updated as the pandemic evolves, but the utilisation of routinely available data in this model

makes this straightforward.
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Figures

Figure 1. Performance metrics for in-hospital mortality in the training dataset. (A) Receiver

operator characteristic plot, with labels indicating the corresponding threshold and the dashed

line indicating the line of no discrimination. (B) Precision-recall plot, with the 2.8% observed

incidence indicated by the dashed line. (C) Number needed to evaluate against sensitivity. (D)

Calibration plot (with 95% CI), by tenths of predicted risk and a LOESS interpolation (grey), with

the dashed line indicating perfect calibration.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 8, 2022. ; https://doi.org/10.1101/2021.02.15.21251150doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.15.21251150
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Performance metrics for in-hospital mortality in the validation dataset. (A) Receiver

operator characteristic plot, with labels indicating the corresponding threshold and the dashed

line indicating the line of no discrimination. (B) Precision-recall plot, with the 3.1% observed

incidence indicated by the dashed line. (C) Number needed to evaluate against sensitivity. (D)

Calibration plot (with 95% CI), by tenths of predicted risk and a LOESS interpolation (grey), with

the dashed line indicating perfect calibration.
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