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Abstract: 

 

The Bronx was an early epicenter of the COVID-19 pandemic in the USA. We conducted 

temporal genomic surveillance of SARS-CoV-2 genomes across the Bronx from March-October 

2020.  Although the local structure of SARS-CoV-2 lineages mirrored those of New York City 

and New York State, temporal sampling revealed a dynamic and changing landscape of SARS-

CoV-2 genomic diversity. Mapping the trajectories of variants, we found that while some have 

become ‘endemic’ to the Bronx, other, novel variants rose in prevalence in the late 

summer/early fall. Geographically resolved genomes enabled us to distinguish between a case 

of reinfection and a case of persistent infection. We propose that limited, targeted, temporal 

genomic surveillance has clinical and epidemiological utility in managing the ongoing COVID 

pandemic. 

 

Significance:  

 

The ongoing emergence of novel SARS-CoV-2 variants has highlighted the need for continual 

genomic surveillance in order to track their spread and limit introductions into new areas. An 

understanding of circulating viral strains also provides a powerful tool that can be used to make 

clinical inferences. Here, we employ temporally and geographically resolved sequencing of 

SARS-CoV-2 samples in order to describe the local landscape of viral variants in the Bronx and 

to differentiate between cases of re-infection and persistent infection. We propose that local and 

targeted sequencing of viral isolates is an underutilized approach for managing the COVID 

pandemic. 
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Main text: 

 

COVID-19 has had a devastating effect on the health of communities across the globe, with 

over 79 million reported cases and greater than 1.7 million deaths since the start of the 

pandemic (1).  Until vaccines become widely available, understanding and interrupting SARS-

CoV-2 transmission to prevent infection is the mainstay of public health efforts. The Bronx, a 

borough of New York City (NYC) has sustained the second highest rate of COVID-19 in New 

York City with 6,035 cases per 100,000 people as of January 11, 2021 (2). To track the local 

spread of SARS-CoV-2, we conducted a genomic epidemiologic study at Montefiore Health 

Systems (MHS), which offers healthcare services to two million residents throughout the Bronx, 

one of the most diverse and poorest urban communities in the United States. 

The number of COVID-19 cases peaked in the Bronx in March–April 2020 and subsided 

during the late spring into summer 2020. To characterize the genetic diversity of SARS-CoV-2, 

we randomly selected nasopharyngeal samples that were positive for SARS-CoV-2 by RT-PCR 

testing at the MHS clinical laboratory between March and October 2020. Genomic viral RNA 

was extracted from nasopharyngeal swabs, and sequencing libraries were prepared using the 

ARTIC Network protocol and analyzed on an Oxford Nanopore MinION (3, 4). The ARTIC 

Network bioinformatics protocol was used to quality check and annotate SARS-CoV-2 genomes 

with default parameterization (5). We called variants with the NextClade tool and annotated 

lineages using the constructed PANGOLIN guide tree from 05/29/2020 (6, 7). Samples were 

derived from patients who required hospitalization (48%), mild disease managed as outpatients 

(26%) and asymptomatic carriers (8.9%) (Fig. 1A).  

We collected 137 samples, and from these generated 104 high-quality genomes from 

101 patients with >95% coverage (Fig. S1 and S2). Sequence data were derived from residents 

throughout the Bronx and were associated with 22 of 25 zip codes (Fig. 1B). Genomic sampling 
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was greatest at the onset of the COVID-19 pandemic in March and April, but intermittent 

sampling continued as caseloads declined over the summer and fall (Fig. 1C).  

Analysis of the resulting 104 SARS-CoV-2 genome sequences revealed that B.1 and 

B.1.3 lineages were the most prevalent during the early months of the pandemic in the Bronx; 

however, several other lineages were also present at low frequencies (Fig. 2A). Although B.1.3 

plateaued after the first wave, B.1 continued to be sampled, and a new lineage, B.1.1, arose in 

late August. We observed no major differences between Bronx SARS-CoV-2 lineages and other 

SARS-CoV-2 lineages in NYC and New York State (NYS) (Fig. 2B) (8, 9). We note that “A” 

lineage SARS-CoV-2 viruses are less prevalent in the Bronx, NYC, and NYS compared to the 

rest of the USA and the world. To determine how the Bronx sequences compared with those 

sampled across the world, we created a downsampled SARS-CoV-2 tree from 613 high-quality 

SARS-CoV-2 genomes deposited in GISAID with available location and collection dates. We 

found that Bronx SARS-CoV-2 sequences represented subsets of different clades of the global 

tree (Fig. 2C). 

We next examined patterns in variant nucleotide positions observed in our data. We 

found that variation is distributed across the SARS-CoV-2 genome and that some variants are 

present in almost all Bronx genomes sequenced—these can be described as ‘core’ to the Bronx 

at present (Fig. 3A). Core variants include the spike protein variant A23403G (D614G), as well 

as variants C241T, C1059T (T265I), C3037T, C14408T (P314L) in Orf1ab, and G25563T 

(Q57H) in Orf3a. We next examined the dynamics of individual SARS-CoV-2 variants. Although 

the core variants continued to increase in prevalence as we sequenced new genomes, we also 

observed variants novel to the Bronx whose prevalence is beginning to increase, whereas 

others have plateaued or are in the process of plateauing (Fig. 3B). 

In the spike protein, we found amino acid variants D614G (core), N501T in 5 patients, 

and both N501Y and P681R in one patient. We note that P314L in Orf1b is also a core variant in 

our dataset, reflecting observations in other studies that this variant is in linkage disequilibrium 
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with D614G (10). We did not observe the B.1.1.7 variant strain, first identified in the United 

Kingdom in the fall of 2020 which also contains the N501Y variant and similarly the P681H, in 

our samples. The N501 residue of the spike protein is part of the receptor binding domain and 

the receptor binding motif, and variants at this position may influence ACE2 receptor binding 

(11). In comparing Bronx variants to those found in the rest of the world, we find that some 

variants, such as the spike protein D614G variant, are prevalent both in our set and in the world; 

however, some ‘core’ Bronx variants such as C1059T (T265I in Orf1ab) and G25563T (Q57H in 

Orf3a) are not as prevalent in the rest of the world (top bar Fig. 3A, Fig. 3C, Fig S3). The 

geographic specificity of variants creates a fingerprint that can be useful for tracing the spread 

of particular variants; a lineage containing the variant C2416T, linked to the Boston Biogen 

COVID-19 outbreak, could be traced to infections around the world (12). The C2416T variant 

was also observed in three patients in our dataset. We note that rare variants are uniformly 

distributed throughout the sampling period (Fig. S4) and further that the functional impact of 

these variants is not well resolved. 

A phylogenetic tree of SARS-CoV-2 shows that strains collected earlier in the pandemic 

are distinguishable from strains collected later, suggesting that new strains are being 

continuously introduced into the Bronx (Fig. 4, inner ring, red indicates earlier samples, green 

newer samples). In considering the lineages of SARS-CoV-2, there was evidence of ongoing 

presence of some B.1 lineage-associated strains, throughout the study period, starting from the 

onset of pandemic until the end of the study period (Fig. 4, outer ring indicates lineage). We 

found that the B.1.1 lineage had increasing presence in the latter part of the study period and 

that newer B.1 strains, which cluster away from older B.1 sequences, appear at later sampling 

dates. Newer B.1 and B.1.1 lineages form a distinct clade from older B.1 lineages in the Bronx 

SARS-CoV-2 tree. We posit that these two clades reflect two different types of SARS-CoV-2 

isolates: those that are circulating locally and those that were newly introduced. We consider 

SARS-CoV-2 isolates that group on the downsampled global tree and group on the local Bronx 
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tree with our first wave pandemic sampling to be ‘circulating.’ We continue to observe isolates 

that fall into this ‘first wave’ clade during the summer, post-first wave, and therefore consider 

these to have persisted in the Bronx. We consider ‘introduced’ isolates those that are newer 

sequences in the local Bronx tree that are also spread out in different clades across the global 

tree; it remains to be seen if these introduced isolates will form the basis of a second set of 

circulating SARS-CoV-2 strains during a new wave of COVID-19 in the Bronx (Fig. 2C and 4). 

This local phylogenetic framework of SARS-CoV-2 strains in the Bronx enabled us to 

distinguish between a case of reinfection and a case of persistent infection in two pediatric 

patients. The first case is a 10-15-y.o. female who was initially seen in April 2020 in the 

emergency department with 3 days of fever, sore throat, anosmia, and ageusia. SARS-CoV-2 

infection in this patient was confirmed by RT-PCR. She had a total of 6 days of symptoms and 

was in general good health until the second presentation. In August 2020, she presented again 

to the emergency department with two days of fever, severe postprandial abdominal cramps, 

watery diarrhea and generalized body aches. All other reviews of symptoms were negative. The 

patient had no known COVID-19 exposures and limited outside exposure. A respiratory 

pathogen panel was negative but her SARS-CoV-2 RT-PCR was positive, as was her SARS-

COV-2 IgM Immune Status Ratio (ISR) (2.1, with less than 1 considered negative). Her IgG ISR 

was negative, 8.7 (normal range ISR < 9). The patient had a total of three days of fever with 

complete resolution of all other symptoms by day four of illness. 

The two SARS-CoV-2 genomes sequenced from this patient were 142 days apart and 

differed in nucleotide sequence at 17 different positions. The first and second samples from this 

patient fall in different local phylogenetic clades in the Bronx phylogenetic tree, supporting the 

hypothesis that we are observing a new infection and not prolonged shedding from the original 

SARS-CoV-2 infection (Fig. 4, purple arrows). To our knowledge, this is the first case of 

symptomatic reinfection in a child who had prior symptomatic SARS-CoV-2 infection. Given the 

history of limited exposures to high-risk activities for this patient between the two episodes and 
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the overall low incidence of SARS-CoV-2 infection in New York at the time of the second 

presentation in August, genomic and phylogenetic analysis provided key confirmatory evidence 

in support of the clinical inference of a reinfection. 

The second case involved a 15-20-y.o. female with an incompletely characterized 

immunodeficiency who presented in July 2020 with an oral lesion. She had no fever, or 

respiratory or gastrointestinal symptoms, and had neutropenia (absolute neutrophil count 700 

cells/ul). After admission for further evaluation, she was found to be SARS-CoV-2 positive. 

During the admission, she was intermittently febrile and neutropenic and was treated with broad 

spectrum antibiotics. She developed a buttock lesion that was biopsied, revealing a thrombotic 

vasculopathy with infarction. Due to concern that the lesion could represent COVID-19–

associated vasculopathy, and in the setting of persistent fever and intermittent neutropenia, she 

was treated with a 10-day course of remdesivir. The patient continued to have positive 

nasopharyngeal swabs for SARS-CoV-2 from early July to the end of September (Table S1 and 

Fig. S5). Her SARS-CoV-2 IgG (Abbott) was negative in mid-August. 

For this patient, the three sequenced SARS-CoV-2 genomes sampled in July, August 

and October fall in the same clade (Fig. 4, orange arrows). This clade is polytomic by 

TimeTree, meaning that it is not possible to resolve the relationships between sequences within 

this clade, but the clade itself is supported by a bootstrap value of 870/1000 for (SH-aLRT 

replicates) (13, 14). We therefore posit that the three strains sequenced from this patient, 

despite having some variation, are more likely to represent a single SARS-CoV-2 infection 

rather than multiple infections. Together, these genomic, phylogenetic, and clinical observations 

strongly suggest that this patient has been unable to clear a single infection of SARS-CoV-2, as 

opposed to being reinfected with a distinct strain. Other examples of persistent infection with 

SARS-CoV-2 have been reported, but not, to our knowledge, in children (15–17). A woman 

diagnosed with chronic lymphocytic leukemia who was sampled 5 times, had SARS-CoV-2 

sequences displaying intrahost variation despite the SARS-CoV-2 being polytomic, similar to 
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what we observe here (18). The polytomy that encompasses this persistent case also contains 

independent local strains of SARS-CoV-2 that do not separate on the global tree, suggesting 

that some variants seen in this patient are also shared locally in the Bronx (Fig. 2C and 4).  

Our work supports guiding principles for practical and clinical applications of SARS-CoV-

2 sequencing in the COVID-19 pandemic. How many genomes do you need to sequence for a 

local community to resolve clinical questions? In our case, ~100 genomes were sufficient to 

place new patients into the context of the variability of SARS-CoV-2 during the pandemic and to 

be able to answer coarse-grained questions to determine reinfection vs. persistent infection and 

community-level observations of older vs. newly introduced strains. The targeted utilization of 

small numbers of stored swabs for temporally resolved viral genomic surveillance could thus 

resolve clinical questions related to persistent vs. reinfection. With the introduction and spread 

of recently identified United Kingdom and South African SARS-Cov-2 variants with potentially 

different epidemiological features from existing strains, there has been speculation that we may 

observe a selective sweep of existing viral genotypes in the months to follow (19, 20). 

Temporally and geographically resolved sequencing of SARS-CoV-2 genotypes provides a 

background against which introduction of these or other new genotypes into our local 

community can be observed in real time. Given the lack of a national sequencing effort, we 

suggest that decentralized, small-scale sequencing coupled with rapid data sharing to public 

databases provides an alternative and more practical tool to monitor and curtail the introduction 

and spread of SARS-CoV-2. 
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Figures:  

 

 

Figure 1. Surveilling SARS-CoV-2 genomes in the Bronx. A) Table of clinical characteristics 

of sampled patients. B) SARS-CoV-2 genomes sequenced per Zip code in NYC. Darker colors 

indicate heavier sampling; C) SARS-CoV-2 genomes sequenced over time during the COVID-

19 pandemic. Date is indicated on the x axis. Blue bars and the associated right hand y axis 

indicate the number of genomes sequenced. The left-hand y axis represents different features 

of COVID-19 in the Bronx; green lines indicate COVID-19 cases, the red line deaths associated 

with COVID-19 and the orange line hospitalizations associated with COVID-19 in the Bronx. 
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Figure 2. Bronx SARS-CoV-2 genome lineages in the context of local and global 

sampling. A) Cumulative counts of PANGOLIN guide tree-based lineage assignments plotted 

against time; B) Prevalence of lineages seen in the Bronx compared to their prevalence in other 

regions. Inner to outer rings represent the Bronx, New York State, USA, the world, respectively. 

Lineage coloring is the same as A); C) Phylogeny of the Bronx strains in the context of SARS-

CoV-2 strains from around the world. Bronx strains and their associated lineages are indicated 

with colored lines.  
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Figure 3. SARS-CoV-2 variants and their trajectories in the Bronx. A) Individual SARS-

CoV-2 variants plotted across the viral genome (x axis), with genomes sorted by sampling date 

(y axis). Positions that are variable with respect to the reference SARS-CoV-2 strain are shown 

with a white (low-frequency), green (common), yellow (wave 1+2), blue (wave 1) or red (wave 2) 

squares. The histogram across the top plots the prevalence of a given variant across all Bronx 

SARS-CoV-2 genomes in this study relative to the world; B) Rarefaction curve of cumulative 

variant counts over time for variants observed at least four times in the Bronx SARS-CoV-2 

genomes set; C) Table showing details for variants in 3B.  
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Figure 4. Clinical relevance of the changing genomic landscape of SARS-CoV-2 in the 

Bronx. Phylogenetic tree based on whole genome alignments of Bronx isolates. Colored rings 

around the tree indicate SARS-Cov-2 lineage (outer ring) and the date of sampling (inner ring, 

red=earlier, green=later). Samples from the same patient are indicated with symbols; a 

reinfection case is indicated with purple arrows and a putative persistent infection case is 

indicated with orange arrows. Grey circles on the branches indicate bootstrap values of 85 or 

greater. Tree was generated with TimeTree and visualized with iTOL (13, 21). 
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Material and methods 

 

Ethics statement 

Remnant nasopharyngeal swabs were collected and deidentified at Montefiore Medical Center. 

This work was approved by the Institutional Review Board of Albert Einstein College of Medicine 

under IRB number 2016-6137. 

 

Data availability 

All sequences generated in this study have been made publicly available through the GISAID 

hCoV-19 sequence database. The source code used for sequencing, analysis, and figure 

generation, is hosted on Github at https://github.com/kellylab/genomic-surveillance-of-the-bronx.  

 

RNA isolation 

Viral RNA was isolated from nasopharyngeal swabs using the MagMAX Viral RNA isolation kit 

(Applied Biosystems, #AM1939) according to the manufacturer’s specification. 400 μl of viral 

transport medium was used as input for each sample. Isolated RNA was then stored at -80C 

prior to sequencing library generation. 

 

Preparation of sequencing libraries 

Sequencing libraries were prepared according to the protocol established by the ARTIC network 

(3, 4). Briefly, cDNA was generated from viral RNA using SuperScript IV reverse transcriptase 

(Thermo Scientific, #18090010). 400 nt tiled amplicons were generated using the V3 primer 
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pool, divided into 4 sub-pools for increased efficiency. Amplification was performed using Q5 

High-Fidelity polymerase (New England Biolabs, #M0491S) with cycle numbers optimized for 

each sub-pool. Following amplicon cleanup using AMPure XP beads (Beckman Coulter, 

#A63880), 5 ng of input DNA, quantified using Quant-iT PicoGreen dsDNA Assay Kit 

(Invitrogen, #P7589), was natively barcoded using the Native Barcoding Expansion (Nanopore, 

# EXP-NBD104). After another round of amplicon cleanup using AMPure XP beads, sequencing 

adapters were ligated to pooled barcoded amplicons using NEBNext Quick Ligation Module 

(New England Biolabs, #E6056). Following an additional step of cleanup and quantification, the 

final libraries were sequenced.  

 

Nanopore MinION sequencing 

Sequencing libraries were diluted in elution buffer (Qiagen, # 19086) to a concentration 

corresponding to approximately 20 ng of library per sequencing run. MinION flow cells (Oxford 

Nanopore, #FLO-MIN106D were prepared using the Ligation Sequencing Kit (Oxford Nanopore, 

#SQK-LSK109). Libraries were then loaded onto the flow cell and sequencing allowed to 

proceed for 10 to 20 hours depending on library size.  

 

Sequencing analysis 

ONT MinION output files in fast5 format were processed using an implementation of the ARTIC 

sequencing pipeline on Google Cloud Platform. Briefly, this pipeline consists of the following 

steps: 1) Basecall reads using Oxford Nanopore’s Guppy tool; 2) Detect barcodes to sort out 

reads from different samples using Guppy; 3) Remove chimeric reads and small contaminations 

by filtering out all reads not within 400-700nt in length; 4) Align reads to the Wuhan reference 

genome (NCBI identifier MN908947.3) using minimap2, generate a consensus genome, and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.21250641doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.08.21250641
http://creativecommons.org/licenses/by-nc-nd/4.0/


call variants using the nanopolish tool. 

 The pipeline was run using the workflow tool Argo running on a Kubernetes cluster in the 

cloud. Data was stored on a cloud storage bucket between steps (see supplemental code). 

Low-coverage sequences were improved by combining passed reads from multiple sequencing 

runs before generating consensus sequences. 

Quality control 

We included in our analysis only sequences that had 95% or higher coverage, a criterion 104 

out of 132 sequences satisfied (Fig S2). We also looked for signs of biases in the base calling 

pipeline which would result in higher or lower likelihood of gaps in certain regions. We found that 

the probability of a gap being present in the consensus is strongly correlated with the coverage 

level in the BAM file generated by the pipeline. In particular, we found that a coverage of 20x 

was almost always sufficient to result in a basecall being made at a given position but that the 

majority of positions had coverage above 400x. Thus, any biases in the pipeline are more likely 

to arise from biases in the nanopore sequencer itself or its basecaller rather than the consensus 

generation software.  

 

Variant annotation and global analysis of variants 

We used the NextClade command line tool to assign variant calls to each of the samples. This 

tool performs a pairwise alignment between an assembled genome and the Wuhan reference 

genome and reports the differences as variant calls. NextClade was also used to determine the 

amino acid changes implied by each variant. This method of variant calling was chosen over the 

one provided in the ARTIC pipeline in order to maintain consistency with our comparative 

analysis of global variant distributions.  

 We downloaded all of the 139676 genomes available from GISAID as of November 14, 
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2020 and used the NextClade command line tool to annotate each of their variants. This tool 

automatically rejects sequences that it deems of low quality, and this yielded variant calls from 

139590 genomes from around the world. We used this output to compute the frequency of a 

variant as the percentage of samples in the world / AECOM dataset containing a given variant. 

 

Creating the local phylogenetic tree 

Individual FASTA files ≥ 95% coverage were collected after output by the ARTIC pipeline. The 

multi-FASTA was aligned using MAFFT on the Nextstrain command line interface version 1.16.7 

(6, 22). The resulting alignment FASTA generated was constructed into a maximum likelihood 

tree with 1000 SH-aLRT bootstraps using a TIM + F + I substitution model via iqtree-2.1.1-

Windows (14). The tree was rooted on AECOM 90, the oldest outgroup sequence, and the 

entire tree was branch length corrected based on a fixed mutation rate of 0.0008 

nucleotides/site/year with a standard deviation of 0.0004 using treetime 0.7.6 (13). The tree was 

visualized on iTOL and annotated with the iTOL annotation editor (21).    

 

Creating the global phylogenetic tree 

The GISAID database: GISAID - Initiative limited to 95% coverage and higher was used as an 

input for this analysis. The multi-FASTA of 11/14/2020 was filtered using the Nextstrain 

command line interface version 1.16.7 filter command. The specifications entailed and inclusion 

criteria used to construct a globally and temporally representative multi-FASTA was adapted 

from the criteria used to construct the Nextstrain global tree. An inclusion and exclusion text file 

was used to remove and keep strains that Nextstrain deemed important and is located here: 

https://github.com/nextstrain/ncov. The entire GISAID database was purged of any sequence 

with inconsistent metadata and grouped based on the country sequenced, the year, and month 
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collected making 612 distinct groups from which 1 sequence was randomly chosen out of each 

group. The resultant multi-FASTA was aligned using MAFFT on the Nextstrain command line 

interface version 1.16.7 (6, 22). A maximum likelihood tree was constructed with 1000 SH-aLRT 

bootstraps using a GTR substitution model via iqtree-2.1.1-Windows (14). The tree was 

visualized on iTOL and annotated with the iTOL annotation editor (21).    

 

Identifying lineages 

To identify pangolin lineages, the pangolin command line tool 2.0.8 was used in legacy mode, 

relying upon the 05/29/2020 update of the guide tree to assign lineages to local sequences via 

bootstrapping. The browse function of the GISAID database was used to count the lineages 

present in New York State. United States and global data were retrieved from SARS-CoV-2 

lineages (cov-lineages.org) (7). 

 

Commands 

Cat function and set encoding: 

Local: cat *.fasta > MSA_finale.txt 

cat *txt > MSA_finale.fasta 

Get-Content MSA_finale.fasta | Set-Content -Encoding utf8 MSA_finale_last.fasta 

Global: cat *.fasta > Global_utf16.txt 

cat *txt > Global_utf16.fasta 

Get-Content Global_utf16.fasta | Set-Content -Encoding utf8 Global.fasta 

Nextstrain Augur Align: 
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Local: augur align \ 

  --sequences MSA_finale_last.fasta\ 

  --reference-sequence config/ MN908947.3.gb \ 

  --output aligned_MSA_finale_last.fasta \ 

  --fill-gaps 

  --remove-reference 

Global: augur align \ 

  --sequences Global.fasta\ 

  --reference-sequence config/MN908947.3.gb\ 

  --output aligned_Global.fasta \ 

  --fill-gaps 

Output reads/ mafft specifications: using mafft to align via: 

        mafft --reorder --anysymbol --nomemsave --adjustdirection --thread 1 

aligned_MSA_finale_last.fasta.to_align.fasta 1> aligned_MSA_finale_last.fasta 2> 

aligned_MSA_finale_last.fasta.log 

        Katoh et al, Nucleic Acid Research, vol 30, issue 14 

        https://doi.org/10.1093%2Fnar%2Fgkf436 

Iqtree: 

Local: bin\iqtree2 -s aligned_MSA_finale_last.fasta -m MFP -bb 10000 -alrt 1000  

Global: bin\iqtree2 -s aligned_Global.fasta -m MFP -bb 10000 -alrt 1000 
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treetime: 

treetime --tree MSA_finale_last.nwk  --dates Swab_samples_metadata.tsv --aln 

aligned_MSA_finale_last.fasta  --outdir Finale! --reroot AECOM_090 --clock-rate .0008 --clock-

std-dev .0004 --keep-polytomies 

Nextstrain Augur Filter: 

augur filter \ 

  --sequences sequences.fasta \ 

  --metadata metadata.tsv \ 

  --exclude exclude.txt \ 

  --include include.txt\ 

  --output filtered.fasta \ 

  --group-by country year month \ 

  --min-length 27000 \ 

  --subsample-max-sequences 1000 \ 

  --exclude-where "division='USA' date='2020' date='2020-01-XX' date='2020-02-XX' 

date='2020-03-XX' date='2020-04-XX' date='2020-05-XX' date='2020-06-XX' date='2020-07-XX' 

date='2020-08-XX' date='2020-09-XX' date='2020-10-XX' date='2020-11-XX' date='2020-12-XX' 

date='2020-01' date='2020-02' date='2020-03' date='2020-04' date='2020-05' date='2020-06' 

date='2020-07' date='2020-08' date='2020-09' date='2020-10' date='2020-11' date='2020-12'"\ 

  --min-date 2019.74 

 

 Pangolin Command Line Tool:  

pangolin MSA_finale_last.fasta --legacy --outfile Lineages.csv 
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Figures and guide to scripts 

All figures were conjoined and post-processed to adjust colors and layout in Adobe Illustrator. 

Figure 1 

a) The table was generated by manually pulling EMR records for the patients whose 

samples came from the hospital. Not all of the fields were available for every patient. 

b) The choropleth was generated by tabulating the zip codes for each of the patient 

samples which passed the 95% coverage threshold. We used the Python library 

Geopandas to then generate the choropleth using a map of the Bronx which we 

downloaded from NYC Open Data (https://data.beta.nyc/en/dataset/nyc-zip-code-

tabulation-areas/resource/894e9162-871c-4552-a09c-c6915d8783fb).  

c) This chart contains a histogram showing the distribution of samples in our dataset by 

month alongside three line plots showing the number of cases, hospitalizations, and 

deaths compiled by NYC Health (https://github.com/nychealth/coronavirus-data). 

Figure 2 

a) Chart of the cumulative density of lineages in our samples which passed the quality 

threshold as assigned using our Pangolin based method. 

b) Data for this donut plot not derived from this study was acquired from SARS-CoV-2 

lineages (cov-lineages.org). 

c) Phylogenetic tree annotated by lineage using the online tool iTOL. 

Figure 3 

a) The top histogram shows the percentage of samples in the world / our dataset carrying a 

variant at a given position. For this histogram, we did not differentiate between different 
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variants showing up at a position. The heatmap was generated by ordering our samples 

by date of sample collection and coloring in on the x-axis wherever a variant was found 

on a given position. Note that the x-axis is nonlinear in the sense that only positions 

where a variant was found in at least one sample in our cohort are included (this also 

holds true for the top histogram). We labeled on the x-axis all variants which showed up 

at least four times in our dataset and in parentheses indicated what the amino acid 

changes implied by those variants were. Some of the variants were in regions where 

multiple open reading frames overlap, so we indicated amino acid changes for both 

reading frames. 

For all three subfigures, we separated our variants into three categories: 

i) Rare: Positions where a variant is found less than four times. 

ii) Uncommon: Positions where a variant is found at least four times but less than 

26 times (25% of our samples that were used in the analysis). This was further 

broken down into wave 1 and wave 2 categories, where a variant was considered 

to be ‘wave-1-associated’ if it showed up at least four times in the first half of the 

samples and at most once in the latter half (and vice-versa for wave 2). Samples 

that showed up at least once in both halves were labelled as wave 1 + 2. 

iii) Common: Positions where a variant is found at least 26 times. 

 

b) For the variants that showed up at least four times in our sampling, we constructed 

rarefaction curves showing the cumulative count of those variants when samples were 

ordered by collection date. Here, we did not have to consider if two samples might have 

different variants at a given position, as that scenario did not occur after we only 

considered uncommon and common variants. We color coded the rarefaction curves 
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based on if the variant was common, wave-1, wave-2, or wave-1+2. We labeled each 

line by variant position using a Matplotlib extension called matplotlib-label-lines. 

c) This table simply shows the data in the previous figures in text format for the more 

frequent variants. 

 

Figure 4 

This tree was visualized using iTOL. See above for how the local phylogenetic tree was 

constructed. 
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Supplemental figures 

 

Figure S1. Histogram showing the distribution of completeness for all 131 genomes sequenced 

for this study. 
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Figure S2. Visualization of coverage and gaps across all 104 included samples. In blue is the 

average coverage level at a given position. In yellow is the average frequency of gaps present 

at a given position. In green is the average frequency of variants at a given position.  
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Figure S3. Distribution of cumulative counts of common and uncommon variants in the dataset. 

In contrast to Fig. 3B, the x-axis is ordered by date in order to demonstrate the temporal 

dynamics of variants in the Bronx. 
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Figure S4. Rarefaction curve showing the cumulative counts of variants present less than four 

times total in the dataset. Samples are ordered by sample date. These rare variants were 

identified throughout the sampling period and do not seem to have a bias towards any particular 

time. 
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Figure S5. RT-PCR cycle thresholds of samples from Case 2 (see Table S1). Sequenced 

samples are highlighted in green. 
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Table S1. Patient characteristics of the re-infection (Case 1) and persistent infection (Case 2) 

cases. 

 

Case 1 Case 2

Age

Sex

Comorbidities

Symptoms at
first presentation

Duration of
first illness

Number of positive
PCR tests

Symptoms at
second presentation

Admission (Y/N)

10-15 yrs 15-20 yrs

Female Female

No Yes, see text

Fever, sore throat,
anosmia, ageusia Lip ulcer, neutropenia

6 days Undefined, see text

2

Fever, abdominal pain,
diarrhea, myalgia

10

See text

N Y

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 10, 2021. ; https://doi.org/10.1101/2021.02.08.21250641doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.08.21250641
http://creativecommons.org/licenses/by-nc-nd/4.0/

	MainText_COVIDGenomes
	Supplementary_COVIDGenomes

