Molecular Mechanism of Parosmia

Jane K. Parker, Christine E. Kelly, Simon B. Gane

1Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, UK
2AbScent, 14 London Road, Andover, Hampshire, UK
3Royal National Ear, Nose and Throat and Eastman Dental Hospitals, University College London Hospital, UK.

Corresponding author: S. Gane, Royal National Ear, Nose and Throat and Eastman Dental Hospitals, University College London Hospital, UK. E-mail: simongane@nhs.net

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

The molecular stimuli that trigger a parosmic response have been identified. Parosmia is a debilitating disease in which familiar smells become distorted and unpleasant. Often a result of post infectious smell loss, incidences are increasing as the number of COVID-19 cases escalates worldwide. Little is understood of its pathophysiology, but the prevailing hypothesis for the underlying mechanism is a mis-wiring of olfactory sensory neurons. We identified 15 different molecular triggers in coffee using GC-Olfactometry as a relatively rapid screening tool for assessment of both quantitative olfactory loss and parosmia. This provides evidence for peripheral causation, but places constraints on the mis-wiring theory.

Keywords: coffee, Covid-19, GC-olfactometry, mis-wiring, olfactory disorder, parosmia,
Introduction

Prior to the COVID-19 pandemic, olfactory dysfunction was largely unrecognised, and often underestimated by health care professionals. Since the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the realisation that 50-65% of cases result in the loss of sense of smell (anosmia), there is a greater awareness of the debilitating effect of olfactory disorders.

Typically, in cases of COVID-19, normal olfactory function returns within a few weeks, but one study estimates 12% of all cases results in long term smell dysfunction. With >100 million cases reported worldwide, this is a significant problem facing the global population today.

Parosmia often occurs in the early stages of recovery from anosmia, typically 2-3 months after onset, particularly in those whose anosmia was either acquired post-infection or post-traumatic brain injury. Parosmia is a qualitative olfactory disorder in which familiar everyday smells become unpleasant and altered, to the extent that they become almost unrecognisable. These olfactory distortions are perceived in the presence of a stimulus, distinguishing it from phantosmia, where similar distortions are perceived in the absence of a stimulus. Those severely affected by parosmia find their quality of life deteriorates as everyday activities such as showering, oral care, eating and social interactions become a challenge. They report being distressed, scared and anxious about their future and, with many food aromas being intolerable, they start to reject food, leading to altered diets, significant changes in weight, a decline in mental health and, in the most severe cases, to clinical depression.

The aim of this work was to gain insight into the mechanisms involved in parosmia. In 2013, coffee and chocolate were found to elicit distorted olfactory experiences in parosmia and more recently, coffee, meat, onion, garlic, egg, mint/toothpaste were identified in a thematic analysis of group posts on social media. These foods contain aroma compounds with some of the lowest odour-thresholds known, and we suggest that these compounds may be involved in triggering olfactory distortions. Our original hypothesis was based on the mechanisms underlying parosmia being at least partly related to widespread loss of olfactory neurons (OSN). We proposed that as OSNs regenerate from basal stem cells, selective detection of just the pungent highly odour-active compounds might result in a distorted
perception of certain foods and beverages. Whether this would be sufficient to cause the strong sense
of disgust often reported with parosmia, was not clear. For those with a normal sense of smell, the
perception of these potent molecules is moderated by tens of other less odour-active aroma
compounds, acting synergistically to produce the desirable balanced characteristic aroma of coffee as
we know it.

Our approach is novel in that we use GC-Olfactometry (GC-O) to determine which of the aroma
compounds present in the headspace of coffee are responsible for the distortions and the sense of
disgust experienced by parosmic participants. Gas chromatography separates the hundreds of volatile
components present in the headspace which, when coupled to an odour-port, allows subjects to sniff
and assess each component as it elutes from the column, thereby allowing us to screen multiple aroma
compounds in a short time.

Results and Observations

Participants. Table 1 shows demographic data for all participants (N = 45) with full details provided
in Supplementary Table S1. All participants were non-smokers and self-reported that they could taste
the difference between salt and sugar. Aetiology of parosmia was post infection for 29/30 those with
parosmia, with one case of traumatic brain injury. Pre-COVID-19 parosmic and non-parosmic
individuals were age matched with mean ages of 56 and 49 y respectively and no significant
difference between the two groups (p=0.12), whereas post-COVID-19 participants were significantly
younger (mean age 37 y) than their pre-COVID-19 counterparts or the non-parosmic group (p<0.000,
p=0.008 respectively).

Olfactory Function. Bilateral olfactory function was assessed using the complete validated
orthonasal psychophysical Sniffin’ Sticks test (Burghart, Wedel, Germany)11 based on the threshold of
phenylethyl alcohol (T), discrimination (D) and identification (I) tests which gives a TDI score (0-48).

TDI scores were significantly lower in pre- and post-COVID-19 participants (mean 27 and 28
respectively) compared to the non-parosmics group (mean 37) (ANOVA, p<0.0001 for both groups)
but there was no significant difference between pre- and post-COVID-19 parosmic individuals.
The TDI scores of the combined parosmic groups ranged from anosmic to normosmic (10-38). Ten of this group were classified as normosmic on raw TDI score, increasing to 17 (more than half of the group) when age adjustment was applied. On the contrary, three parosmic participants scoring <16 were classified as functionally anosmic. We demonstrate here that although on average most parosmic participants had a low olfactory function, parosmia also occurs in those with a normal olfactory function.

Gas Chromatography-Olfactometry. The number of aromas detected by GC-O by non-parosmic participants was significantly higher than for pre- or post-COVID-19 parosmic participants (p<0.0001) (means 37, 19 and 19 respectively). This parameter correlated well with the TDI score (R²=0.65, Fig. 1A). However, the mean number of molecular triggers detected by parosmic participants was only 6.4 (range 0-13) indicating that on average parosmic participants detected twice as many “normal” aroma molecules compared to trigger molecules. This has never been demonstrated before and shows that, in those presenting with parosmia, some OSNs are functioning normally and it is only specific OSNs (or combinations of them) which trigger the altered perception of food and the sense of disgust. There was no strong correlation between the number of molecular triggers reported and TDI score (R²=0.16, Fig. 1B) suggesting that although quantitative and qualitative olfactory disorders may occur together, their mechanism may be quite different.

Molecular triggers. Molecular triggers identified in coffee headspace by >2 parosmic participants are shown in Table 2. The most frequently reported trigger (21/30) is 2-furanmethanethiol. It imparts a roasted coffee-like odour and has a particularly low odour threshold in water of 0.004 ug/kg. Whereas the non-parosmic participants used a range of food related terms to describe it (including “coffee”, “roasty”, “popcorn”, “smoky”), it was commonly described by parosmic participants as “new coffee” (relating to the altered smell of coffee since onset of parosmia), or with words describing its hedonic quality (“disgusting”, “repulsive” and “dirty”). All non-parosmic participants except one non-coffee drinker detected this compound. Five parosmic participants with low TDI scores did not detect this compound but, when assessing a 100-fold more concentrated coffee extract by GC-O, described it as a trigger. Four parosmic participants described it in the same way as non-
parosmic participants (“biscuit”, “toasty” or “roasty”) indicating that it is not universally parosmic,
but certainly an important and frequent molecular trigger of parosmia. The isomeric, and equally
potent 2-methyl-3-furanthiol (threshold 0.0004 ug/kg in water14) and its corresponding methyl
disulfide were also detected, but reported less frequently as triggers. They are character impact
compounds in meat, and we confirmed in four parosmic participants who assessed grilled chicken by
GC-O that these compounds also triggered parosmia in meat.

2-Ethyl-3,6-dimethylpyrazine was the second most frequent trigger in coffee (14/30 times), described
with a variety of food terms by non-parosmic participants, but by “new coffee”, “unpleasant” and
“distorted” by parosmic participants. Other trisubstituted pyrazines (2,3-diethyl-5-methylpyrazine, 2-
ethyl-3,5-dimethylpyrazine and trimethylpyrazine) were common triggers. These pyrazines are highly
odour-active compounds in roasted, fried and baked goods, and we confirmed by GC-O that these
compounds also triggered parosmia in cocoa (N=4), grilled chicken (N=4) and peanut butter [N=3]. 2-
Ethyl-3-methoxypyrazine, 2-isobutyl-3-methoxypyrazine and 2-isopropyl-3-methoxyprazine were
common triggers in coffee, and we confirmed that these also contributed to the parosmic character of
bell peppers (N=5), where they are character impact compounds.

The furanthiols, disulfides and the pyrazines which represent 9 of the 10 most frequently reported
trigger molecules, are interesting as they are all potent heterocyclic molecules containing an exposed
heteroatom with relatively good Lewis base properties.

Another important trigger, 3-methyl-2-butene-1-thiol, with a pungent weedy character and low
threshold (0.0002 ug/L), was reported as a trigger 9/30 times. Although not heterocyclic, it contains
the same α,β-unsaturated thiol moiety as 2-furanmethanethiol. The thiol ester, 3-mercapto-3-
methylbutyl formate, is one of the most potent aroma compounds in coffee15 and was the most
frequently detected by parosmic participants (15/30), but only reported 6 times as a trigger.

Although thiols and disulfides seem to be effective triggers for parosmia, there are two notable
exceptions. Methanethiol (odour threshold 0.02 ug/L16), which was detected by some non-parosmic
participants, was not detected by any of the parosmic participants, even in 100-fold concentrated
coffee. Likewise, dimethyl trisulfide (0.01 ug/L) is an exceptionally potent compound detected by 12/15 non-parsomic participants but only by 4 parosmic participants, and only once reported as a trigger.

Furthermore, a handful of compounds were occasionally detected by but never reported as triggers. (E)-β-Damascenone, a key odour-active compounds in coffee with a low odour threshold (0.01 ug/kg), was detected by 6 parosmic participants and always described as jammy and fruity.

Likewise, 4-ethylguaiaicol was detected by 7 parosmic participants and always described as spicy, sweet and smoky, but never parosmic.

Cluster analysis. Agglomerative hierarchical cluster analysis was carried out on the combined intensity data from all parosmic participants of all potential triggers reported >3 times. It showed four significant clusters of compounds (Fig. 2). A structure activity pattern starts to emerge, suggesting, for example, that some participants might perceive thiols more intensely and others may perceive pyrazines more intensely. When the same analysis was carried out using the data from the non-parosmics, the same clusters did not emerge, but N was small, and we cannot draw any conclusions from this. It is likely that in the general population, there are significant differences in the relative perception of these compounds.

Correlation between ligand structure and odour receptor (OR)? Identifying a small number of common molecular triggers for parosmia raised the obvious question of an olfactory receptor similarity. To determine whether the clusters are associated with any of the known ligand odour receptor pairs, we searched the ODORactor database. We found no obvious segregation of triggers by olfactory receptor (Fig. 3). Most of the triggers activated (with > 50% probability) either OR1G1 or OR52D1. We then compared molecules never reported as triggers such as disubstituted pyrazines, indole, skatole, cresol and found these to activate the same ORs, making it unlikely that these olfactory receptors are the source of the parosmic signal. OR1G1 is known to be very broadly tuned and bind odorants of different chemical classes. However, only a fraction of the known olfactory receptors have been deorphaned, and further identification of ligand-OR pairs is required.
Faecal odours. Parosmic participants often comment that the smell of faeces is never as unpleasant as before, often smelling like other parosmic food, or even more pleasant and biscuity, presenting the interesting corollary that foods smell of faeces yet faeces smell of food. One normosmic and two parosmic researchers carried out GC-O on a 50% faecal slurry in water. Whilst the normosmic scored the intensity of the volatiles normally associated with faeces (indole, skatole and p-cresol) as close to strongest imaginable, the parosmic researchers were unaware of these foul smells, rather reporting many of the potent triggers already mentioned in coffee. This provides a neat explanation as to why the changes in valence for faecal samples is reversed. In the absence of signals from the usual faecal compounds, parosmic participants detect other potent volatiles in the sample, normally masked by the faecal compounds for normosmics, which may elicit any number of odour percepts depending on the sensitivity of the parosmic to the other compounds present.

Participant observations.

i. A case of parosmia not preceded by anosmia: One participant identified 45 aromas, of which just 2 were triggers. The more intense one was 2-ethyl-3,5-dimethylpyrazine and the second a mild and unidentified compound. They had a TDI score of 37, had tested positive for COVID-19 antibodies but reported no loss of sense of smell. This is an unusual case where parosmia was not preceded by anosmia.

ii. A case of parosmia improving with no concomitant increase in olfactory function: After 4 months one participant showed no improvement in threshold score, a decrease in the number of GC-O aromas detected (22 to 16), and a 5-fold decrease in intensity scores (750 to 147) yet reported an improvement in parosmia. Further work on the temporal aspect of parosmia is in progress.

iii. A case of excellent recovery from parosmia with significant improvement of olfactory function: After several years, one participant reported a “new normal” olfactory function, scoring 35 on the TDI test. This indicates regrowth of a broad range of healthy OSNs, yet two of the 52 aromas detected were still identified as triggers of parosmia: 2-methyl-3-furanthiol and one unidentified compound.
iv. A case of a functional anosmia with parosmia: At the other extreme one participant was within 3 months of onset and had a low TDI score (15) indicating functional anosmia. Only five aromas were detected, all scored as barely detectable, and only one, 2-furanmethanethiol, had parosmic character. Further investigations showed their parosmia was triggered more by different compounds present in onion and garlic.

v. A case of two distinct parosmic characters: one participant reported several distinct parosmic smells. One, which was described as plastic, chemical and burning rubber, was associated with sulfur compounds from Cluster A, and a second, described as sickly sweet, smoky and woody, was associated with pyrazines. Further investigation showed that onion and garlic gave a third parosmic character. These groupings are consistent with HCA clusters and a sub-theme emerging from the “AbScent Parosmia and Phantosmia Support” group on Facebook.

vi. A case of sulfur triggers only: one participant attended just 4 weeks after onset of parosmia and was our most “fresh” parosmic. Their reactions at the GC-O were quite extreme when a trigger was encountered, with three thiols scoring 90-100 on the intensity scale. With a TDI score of 27, 20 GC-aromas were detected but only five of these were triggers, either thiols or disulfides. Pyrazines were detected but not reported as triggers. This is counter to any hypothesis which suggests that in the early days of parosmia, all (or many) compounds are triggers.

vii. A case of parosmia resulting from post-traumatic brain injury who reported the same molecular triggers as the post infectious participants. This participant found meat a far worse trigger than coffee, and this is reflected in detection of the meaty thiol rather than the coffee thiol.

viii. 3.5 Concentration of stimulus

One participant assessed three different concentrations of coffee, spanning a factor of 10000. At the regular concentration, 11 aromas were detected, of which 5 were triggers. When the stimuli were diluted by 100, only 2 compounds were detected (barely detectable) but they still had the same character as in the regular coffee extract— one was still parosmic and the other
was not. Dilution of the stimulus did not reverse the distortion, and this is backed up by many
who still report parosmia character for weak and barely detectable aromas. When the stimuli
were concentrated, those that were undistorted remained undistorted and there was no
evidence that concentration of the stimuli could create more distortions. This is backed up by
other participants reporting strong but undistorted aromas. On concentration, new aromas
both distorted (4) and non-distorted (5) were detected as their concentrations became
suprathreshold. Thus, for this parosmic, the concentration of the stimulus did not seem to
change its character or determine its valence, which is often the case for perception of highly
potent odorants, particularly sulfur compounds which on dilution can change from pungent to
a pleasant fruity character.

Summary. In summary, we have identified for the first time specific molecules which trigger
parosmia. These experiments demonstrate that there is a common set of molecular triggers responsible
for distortions and sense of disgust in coffee, and they also trigger parosmia in other chemically
related foods. However, not all molecules in this set are triggers in all parosmic participants. These
molecules tend to be potent, have very low detection thresholds and in isolation are neither distorted
nor unpleasant for non-parosmic participants. However, odour activity is not the defining factor since
(E)-β-damascenone has an exceptionally low odour threshold, is one of the more potent compounds in
coffee\(^{20}\), and was always perceived as jammy and fruity by those parosmic participants who detected
it. Most of the trigger molecules found in coffee belong to one of four distinct groups: thiols,
pyrazines, disulfides, methoxypyrazines but there are no known odour receptors which are specific for
the described trigger molecules. In addition, individual case studies suggest that parosmia symptoms
are independent of olfactory function and parosmia may occur in patients with objectively normal
olfactory function. Parosmic odour quality is not necessarily related to odour concentration. Recovery
from parosmia can be associated with either improvement or stasis of olfactory function. As we stated
in our hypothesis, in those with poor olfactory function, parosmia may be enhanced by a lack of
contribution from other more desirable and less potent aroma compounds, but we found that the
molecular triggers alone are the key drivers of parosmia and individually responsible for the
perception of disgust. This explains why those with normal olfactory function, who also perceive the
more desirable less potent aroma compounds, still experience parosmia.

Discussion

Little is known about the pathophysiology of parosmia. Like the aetiologies of smell loss, both central
and peripheral mechanisms have been proposed and can broadly be thought of as the central theory,
the ephaptic theory and the mis-wiring theory. Although there is now some doubt about the role of the
bulb in olfactory identification, these theories take the standard model of glomerular activation
pattern within the olfactory bulb as the motif of recognition within the CNS.

The central theory is based on the changes occurring in the integrative centres in the brain. A decrease
in olfactory bulb volume and a significant loss of grey matter volume has been demonstrated in
parosmic participants. Further evidence of central mechanisms has been published recently showing
different fMRI activation patterns in parosmic participants compared to hyposmics. Increased
activation in the thalamus and the putamen was observed in the parosmic participants, the latter being
of relevance since it is connected to the olfactory cortical networks and has been associated with the
perception of disgust. Also, stronger activation was observed in the ventral striatum which is
associated with odour valence. Whilst there is good evidence in humans for the central theory of
parosmia, a purely central causation seems unlikely based on our evidence that parosmia is triggered
by a group of highly specific molecules at the periphery.

The “mis-wiring” theory posits aberrant targeting of OSN to the glomerulus during regeneration from
insult. This has been observed in mice with impaired olfactory function induced by ciliopathies, physical lesioning, and induced chemical degeneration but not yet in humans. However, it has
been adopted as the likely mechanism for the perception of distorted olfactory percepts in parosmia. It
is further suggested that the change in hedonic valence is due to broad activation of the olfactory bulb
sending a disordered and unmoderated array of signals to the central neural processing system which
invokes a strong sense of disgust. Our data neither support nor refute the mis-wiring hypothesis, but
certainly place constraints on it. We have demonstrated the requirement to account for the non-
stochastic nature of the OSNs involved in any proposed mis-wiring theory. Whilst mis-wiring is attributed to a loss of axonal pathfinding mechanisms27, in light of our results, this theory needs to explain why some OSNs are relaying the “correct” undistorted signal, whereas others are not, even early in the patient’s recovery.

The ephaptic theory summarised by Hawkes32 suggests that demyelination of the OSNs allow the activation of other, non-stimulated OSNs adjacent to the activated OSN by current flow in the extracellular fluid: “a form of short circuiting”. This too would result in a broader activation of the olfactory bulb and must be able to account for the non-random nature of the OSNs involved.

Of course, these theories are not mutually exclusive. Alterations in innervation of the glomeruli, or ephaptic activation of afferent nerves, and therefore the whole bulb, would result in the alteration of downstream central processing. The plasticity of this part of the pathway is much more limited. The “wiring” of the brain in recognising and acting on certain patterns of activation within the bulb remains after the peripheral insult. Therefore, a broader activation of the glomeruli would activate more odour object patterns within the cortex.

These hypotheses have to explain four characteristics: that parosmia arises almost uniquely in settings of widespread synchronous neuronal destruction either post infection or post traumatic brain injury, is triggered by one of a number of common odorants, is of novel odour character, and that this character is almost always unpleasant. Whereas the mis-wiring theory is consistent with the first, and the central theory may explain the novel odour character and the change in valence, it remains for us to determine why only a few potent molecules elicit such a strong parosmic response.

These trigger molecules share the trait of having an extremely low threshold in human olfaction, so they are detectable in very low concentrations. Such low olfactory thresholds may be attributed to a higher binding affinity for their respective olfactory receptors (ORs), but there are other possible explanations: higher rate of expression of specific ORs on the OSN cell surface, stronger activation of OSN depolarisation by the OR due to reduced habituation at the receptor or cellular levels, overrepresentation of that OSN within the mucosal OSN population, zonal expression (not
demonstrated in humans) resulting in improved access to the nasal airstream, glomerular level or higher configurations resulting in greater salience of the glomerular activation, or the odorant could activate more than one olfactory receptor and the combined activation is summed as a lower detectable threshold within the bulb.

The common molecular structures, low odour thresholds and physiochemical grouping of the molecular triggers of parosmia strongly suggest that this is an olfactory receptor-level phenomenon, although we are unable to identify any specific olfactory receptors responsible from publicly available databases. The fact that some parosmic participants only report distortion with some of the groups suggests that there may be up to four separate olfactory receptors involved, or more when we consider other food and household items that elicit distortions. So why then these groups of OSNs? Several mechanisms could account for the role of specific receptors and their neurons.

1. These OSNs are regenerating because they are selectively damaged by the insult and others are preserved. This may account for the presence of parosmia in objectively normosmic volunteers, but it is unlikely that the insult from brain injury and viral infection would lead to the same preferential damage to particular OSNs.

2. The specific OR is predominant within the regenerating OSN population for one of two reasons. In one scenario, instead of a purely stochastic OR selection process in the olfactory mucosa, these “parosmic ORs” are preferentially selected for expression in OSNs either normally or just in the post-insult olfactory mucosa, thus increasing the number of these neurons in the olfactory mucosa as a whole. Alternatively, there is evidence in mice that activated OSNs have a longer lifespan\(^3\). Because of their ease of activation, these OSNs tend to survive longer and therefore make up a greater proportion of the overall OSN population.

3. The specific OR are not over-represented but merely more easily activated, so although many OSNs regenerate and aberrantly innervate the glomeruli, since only a few afferent neurons pass to each individual glomerulus, these few molecules are powerful enough to activate many glomeruli simultaneously at physiological odorant concentrations.
4. Since axon guidance is at least partially OR-dependant34 these specific OR-expressing OSNs could be more likely to demonstrate aberrant targeting of glomeruli in an as-yet unknown way.

5. It is possible that parosmia does not arise from the activation of the glomeruli per se, but the disruption of the network of interneurons, mitral, glial and tufted cells which is thought to act as a habituation and modulatory network in the bulb. Disruption of input innervation and sporadic re-innervation could cause feedback loops to interfere with the previous web of inhibition and promotion of signal at this level and this disordered activation is experienced as unpleasant.

Parosmia is a tetrapartite symptom: it is a triggered, short lived, altered smell sensation which almost universally elicits the basic emotion of disgust. Our finding that this is reliably triggered by a common group of low threshold odorants advances our understanding of this debilitating condition and constrains the pathophysiological hypothesis space.

That there are reliable molecular triggers of parosmia point to an olfactory receptor level pathology which agrees with the fact that the sensation is triggered by smells and follows the usual pattern of habituation and attenuation expected in an otherwise intact olfactory system. The selective regeneration of only a few OSNs also explains how the odour percept is altered (if the central dogma of glomerular activation patterns within the olfactory bulb is accepted). If only some of these glomeruli are activated out of the previous broader activation pattern recognised as coffee, this will be perceived as a novel smell.

What this does not explain is the presumably hypothalamic disgust response to this particular altered odour. The miswiring hypothesis posits that broader, unregulated patterns of glomerular activation are de novo perceived as unpleasant and disgusting, but this has not been demonstrated. Certainly, in the normal nose, novel smell percepts are not usually automatically disgusting, so the mere novelty of the percept is unlikely to be enough to explain this.

In this paper we identify the first common molecular triggers of human parosmia, characterised by their physiochemical properties and sharing a low odour threshold for humans. We demonstrate that parosmia is an olfactory dysfunction only partially correlated with olfactory loss, and provide
evidence to support its arising in the periphery of the olfactory system. This information is vital to the understanding of the pathophysiology of this increasingly widespread condition and will be important in guiding further research and future therapies.

Acknowledgements

The authors would like to acknowledge all those who participated in this study, Aidan Kirkwood for assistance with the participants, Peter Jackson for his assistance in sourcing and handling the faecal sample, and Professor Barry Smith for useful discussion and review of the manuscript.

Authorship contribution

JP contributed to conception, acquisition, analysis and interpretation of data, manuscript draft and review; CK contributed to conception, participant management, data acquisition and review; SG contributed to conception, interpretation of data, manuscript draft and review (SG).

Conflict of interest

The authors declare no conflict of interest.
Methods

Participants. This study (No 22/19) was approved by the University of Reading Research Ethics Committee. All parosmic participants were recruited via Facebook support groups or local ENT consultants, and non-parosmic participants from within the Department of Food and Nutritional Sciences or through private Facebook pages. The initial study was carried out with pre-COVID-19 parosmic participants (N=15) and non-parosmic participants (N=15) between October 2019 and March 2020. This was supplemented with post-COVID-19 parosmic participants (N=15) between July and September 2020. All volunteers completed a screening questionnaire (Supplementary Table S2) before attending a study day in the Olfaction Laboratory at the University of Reading. Selection was based on the participants listing coffee as a key trigger, and answering “often” at least once to two key questions which discriminate most efficiently between parosmic participants and those with quantitative olfactory disorders:

1) Are odours that are pleasant to others, unpleasant to you? Never/rarely/often/always
2) Is the taste of food different to what you expect? Never/rarely/often/always

Olfactory function. The bilateral olfactory function of all participants was assessed at the beginning of the day using the well-established and validated orthonasal psychophysical Sniffin’ Sticks test (Burghart, Wedel, Germany). Involving threshold (T), discrimination (D) and identification (I) tests, the resulting TDI score ranges from 0 to 48 with those scoring >30.3 classified as normosmic.

Materials. Nescafé Original instant coffee sachets (Nestlé UK Ltd., York, UK) were used in this study. One box of instant Nescafé sachets (use by date August 2021) was purchased in September 2019 for use with the subjects between October 2019 and March 2020. A second box (use by date October 2022) was purchased in October 2020 to cross check the stability of the sachets over one year. Cocoa powder (Bournville, Cadbury, Bourneville, UK), skinless chicken breast fillet, smooth peanut butter (Tesco, Cheshunt, UK) and red bell peppers were purchased from a local supermarket. Faecal samples were kindly prepared under Class 2 conditions by members of the food and microbial science group at the University of Reading. The suppliers of all aroma standards are given in Table 2. Food safe high-
grade mineral oil was purchased from Brandon Bespoke (Rochdale, UK), propylene glycol from Sigma (Poole, UK) and absorbent 3M PowerSorb P-110 paper from Merck (Gillingham, UK).

A faecal sample was collected from a healthy donor who had not consumed antibiotics within the previous six months. For transportation to the laboratory the sample was held under anaerobic conditions, using an Oxoid Anaerogen sachet (Oxoid, Hampshire, UK), for up to two hours before being frozen at -20 °C.

Extraction of coffee aroma. Fresh deionised water from a MilliQ system at 18.2 MΩ/cm resistivity was boiled in a kettle and 300 mL was added to the contents of the sachet (2.15 ± 0.05 g) in a 500 mL Duran bottle. The bottle was sealed, stirred for 2 min and an aliquot (3.0 ± 0.05 g) was transferred into vial. More concentrated extracts (contents of 1 sachet in 3 g boiling water) were also prepared for expert GC-O analysis and a detailed GC-MS analysis to aid identification of compounds. The vial was equilibrated at 55 °C for 20 min and a preconditioned triple phase solid phase microextraction (SPME) fibre (50/30 μm divinylbenzene/carboxen on polydimethylsiloxane (Supelco, Poole, UK)) was exposed to the headspace at 55 °C for 20 min prior to analysis by GC-O.

Gas Chromatography-Olfactometry (GC-O). After extraction, the SPME device was inserted into the injection port of an HP7890 GC from Agilent Technologies (Santa Clara, CA, USA) coupled to a Series II ODO 2 GC-O system (SGE, Ringwood, Victoria, Australia). The SPME fibre was desorbed in a split/splitless injection port held at 280 °C. The columns employed were either an Agilent HP-5 MSU i capillary (30 m, 0.25 mm i.d., 1.0 μm df) non-polar column or a Stabilwax®-DA (30 m, 0.25 mm i.d., 0.25 μm df) polar column (Restek, Bellefonte, PA, USA). The temperature gradients were set as follows: 40 °C for 2 min, then a rise of 5 °C/min up to 200 °C and 15 °C/min from 200 °C to 300 °C (or 250 °C for the polar column), and the final temperature held for a further 19 min. Helium was used as carrier gas (2 mL/min). At the end of the column, the flow was split 1:1 between a flame ionisation detector (kept at 250 °C) and a sniffing port using 2 untreated silica-fused capillaries of the same dimensions (1 m, 0.32 mm i.d.). The flow to the odour-port was diluted with a moist make up gas.
Procedure at the odour-port. Subjects were familiarised with the instrument, instructed to breathe normally during the run, and advised that they could stop at any time, particularly if they felt dizzy or light-headed. As the aromas eluted from the column, 3 bits of information were requested from the subjects: an odour description, an odour intensity and an indication of whether the odour elicited a parosmic response. Since the description and identification of aromas in the absence of any other cues is difficult, all participants were presented with a flavour wheel (Supplementary Figure S1) before they started which they could use as a reference during the GC-O run. It had been developed by 2 experts who sniffed samples of the same coffee (both at regular strength and concentrated) by GC-O. The words were categorised into food and non-food, and colour coded for quick reference. This was of more use to non-parosmic participants, as parosmic participants found it hard to describe many of the aromas, even with the help of the flavour wheel. Many resorted to using the terms “new coffee”, “that parosmia smell”, “trigger number 1” or “trigger number 2”. As each aroma eluted, parosmic participants were prompted to highlight anything that had a parosmic character or trigger. Intensity was scored on a 158 mm horizontal general labelled magnitude scale (gLMS) with anchors at “barely detectable”, “weak”, “medium”, “strong”, “very strong” and “strongest imaginable” corresponding to intensity scores of 1.4, 6, 17, 35, 51 and 100 respectively (et al. 2004). This was chosen over the more common visual analogue scale to allow for instances where parosmic participants, in particular, wanted to extend upwards the range of scores. It is a logarithmic scale which better relates the psychophysics of perception to the concentration of the stimulus (Stevens’s Law). Time of elution was recorded manually by the researcher. All subjects carried out the GC-O of coffee twice, once before lunch and once after a 45 min lunch break. During the second run, the focus was on refining the descriptors as well as obtaining a duplicate intensity rating. During the first run, the subjects recorded the descriptors in their own words, prompted only by the flavour wheel, whereas during the second run, there was more discussion between the researcher and the subject, to verify the odour character and identity of the compound eluting.

Gas chromatography-mass spectrometry (GC-MS). An extract from a coffee prepared with one sachet in 3 mL of boiling water was extracted as above and analysed by GC-MS to aid identification
of aroma compounds detected by GC-O and confirm their presence in the coffee extract. A7890A Gas Chromatograph coupled to a 5975C series GC/MSD from Agilent was used, equipped with either of the columns described above. The oven was held at 40 °C for 2 min, increased from 40 °C to 250 °C at a rate of 4 °C/min and then kept constant at 250 °C for 5 min. Helium was the carrier gas at a flow rate of 1.2 mL/min. Mass spectra were recorded in electron impact mode at an ionisation voltage of 70 eV and source temperature of 220 °C. A scan range of m/z 20-300 with a scan time of 0.69 s was employed and the data were controlled and stored by the ChemStation software (Agilent, Santa Clara, CA).

Identification of odour-active compounds. Linear retention indices were calculated by comparison with the retention times of C₆-C₂₅ n-alkane series analysed on the same day using the same conditions as for sample analyses (Supplementary Table S3). Aromas eluting from the GC-O were identified by comparing their LRIs, mass spectra and the odour as described by the experts with those of authentic compounds on two columns of different polarity. Mass spectral libraries, such as NIST 2011 and Inramass (INRA, France), were used for primary identification of compounds in the coffee extract using ChemStation software (Agilent, Santa Clara, CA). In most cases, authentic compounds were analysed using the same chromatographic method to confirm their identity by comparison of their mass spectra, LRI, and odour quality. Identification was confirmed by GC-MS on a Stabilwax column. For compounds at concentrations below the detection limit of the GC-MS, odour character and LRI were used.

Confirmation of molecules as trigger or non-trigger. Three parosmic participants returned to assess coffee on a polar column to confirm the identity of trigger compounds. Once identified, selected trigger compounds were also presented to 2 parosmic participants in dilute form to verify their parosmic character, using the sample preparation protocol described for the European test of olfactory capabilities. Aroma chemicals were diluted in mineral oil or propylene glycol and applied to small discs (5 mm diameter) of absorbent paper in vials which were presented to the participants. They were asked to sniff the vial and indicate whether each compound released “that parosmia smell” which they had described previously.
Additional samples. All additional samples were prepared as for coffee with the following modifications. Cocoa: 3g of cocoa powder was dissolved in 10 g boiling water, stirred and a 3 g aliquot was used for extraction. Meat: a lean breast fillet, thickness 1 cm was grilled for 3 min on either side using a Cuisinart grill (Stamford, CT) set on high. Finely chopped meat (3 g) was used for extraction. A 50:50 slurry of peanut butter (3 g) was used for extraction. Finely diced red pepper (3 g) was extracted at 40 °C prior to desorption. The faecal sample was thawed, mixed with an equal weight of water, and 3 g transferred to an SPME vial. Chromatography conditions for all samples remained the same as for coffee.

Statistics. Analysis of variance was carried out on age and TDI scores to determine whether there were significant differences between pre-COVID-19 parosmic participants, post-COVID-19 parosmic participants and non-parosmic participants. Post hoc pairwise comparisons were performed using Fishers LSD at p=0.05. Agglomerative hierarchical clustering (AHC) using Ward’s Euclidean distance was carried out on intensity data for the 17 compounds most frequently identified in coffee as molecular triggers of parosmia. All statistical analyses were carried out using XLSTAT statistical and data analysis solution (Addinsoft 2020).
References

Figure Captions

Fig. 1 Correlations between olfactory function and GC-O. A: Correlation between TDI score and number of GC-O aromas detected at the GC-O. B: Relationship between number of triggers detected in the coffee extract and TDI score. In both figures, non-parosmic participants = blue, pre-COVID-19 parosmic participants = orange, post-COVID-19 parosmic participants = green.

Fig. 2 Agglomerative Hierarchical Clustering of intensity scores for 17 most frequently reported triggers

Fig. 3 Venn diagram showing molecular triggers and their known odour receptors. ORs are blue, compounds in red are known triggers, whereas compounds in black have not been identified as triggers. 2-Ethyl-5-methylpyrazine and 2,5-dimethylpyrazine may be triggers at much higher concentrations but are rarely odour-active (high odour thresholds), other research (unreported) suggests indole and skatole are unlikely to be triggers. For OR1J4 and OR2G3, pyrazines have been abbreviated with a P: triggers within OR1J4 and OR2G3 from top to bottom are 3-ethyl-2-methoxypyrazine, 2,3-diethyl-3-methylpyrazine, 2-ethyl-3,5-dimethylpyrazine, and non-triggers 2-ethyl-5-methylpyrazine and indole. In addition, the following ligand OR pairs were retrieved: butanedione: OR6Y1; guaiacol: OR5L2, OR1L8, OR5AS1, OR8G2, OR4K15, OR5D18, OR10R2, OR5V1, OR8J1, OR6C75, OR1F1, OR8H2, OR1J2, OR7G1, OR1E3; 3-methyl-2-buten-1-thiol: OR1L3; methanethiol: OR5B12, OR5AR1, OR4S2, OR2W5, OR5M3.
623 **Table 1** Summary of Participant Demographics

<table>
<thead>
<tr>
<th>Participant demographic data</th>
<th>No</th>
<th>Male</th>
<th>Female</th>
<th>White</th>
<th>Mean age</th>
<th>Age range</th>
<th>CRS</th>
<th>PI</th>
<th>TBI</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Participants</td>
<td>45</td>
<td>12</td>
<td>33</td>
<td>43</td>
<td>53</td>
<td>23-73</td>
<td>3</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>Pre-COVID-19 parosmics</td>
<td>15</td>
<td>3</td>
<td>12</td>
<td>15</td>
<td>56</td>
<td>33-73</td>
<td>1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Post-COVID-19 parosmics</td>
<td>15</td>
<td>3</td>
<td>12</td>
<td>14</td>
<td>37</td>
<td>19-60</td>
<td>1</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Non-parosmics</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>14</td>
<td>49</td>
<td>33-71</td>
<td>2</td>
<td>na</td>
<td>na</td>
</tr>
</tbody>
</table>

624 CRS = chronic rhinosinusitis, PI = post infection, TBI = post traumatic brain injury, na = not applicable
Table 2 Molecular triggers reported in coffee by at least 3 pre- and post-COVID-19 parosmic participants

<table>
<thead>
<tr>
<th>Molecular triggers</th>
<th>Code</th>
<th>Class</th>
<th>Odour threshold ug/L</th>
<th>Number times detected by parosmic</th>
<th>Number times reported as trigger</th>
<th>Source[^a]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-furanmethanethiol</td>
<td>fft</td>
<td>furanthiol</td>
<td>0.005[^13]</td>
<td>24</td>
<td>20</td>
<td>TCI</td>
</tr>
<tr>
<td>2-ethyl-3,6-dimethylpyrazine</td>
<td>edmp1</td>
<td>pyrazine</td>
<td>0.01</td>
<td>19</td>
<td>14</td>
<td>Oxford</td>
</tr>
<tr>
<td>2,3-diethyl-5-methylpyrazine</td>
<td>demp</td>
<td>pyrazine</td>
<td>0.05[^13]</td>
<td>21</td>
<td>12</td>
<td>Oxford</td>
</tr>
<tr>
<td>2-furanmethyl methyl disulfide</td>
<td>fssm</td>
<td>disulfide</td>
<td>0.04[^16]</td>
<td>18</td>
<td>11</td>
<td>Sigma</td>
</tr>
<tr>
<td>2-methyl-3-furanthiol</td>
<td>mft</td>
<td>furanthiol</td>
<td>0.0004[^14]</td>
<td>20</td>
<td>10</td>
<td>TCI</td>
</tr>
<tr>
<td>2-ethyl-3,5-dimethylpyrazine</td>
<td>edmp2</td>
<td>pyrazine</td>
<td>1[^37]</td>
<td>19</td>
<td>10</td>
<td>Oxford</td>
</tr>
<tr>
<td>2-methyl-3-furyl methyl disulfide</td>
<td>mft</td>
<td>disulfide</td>
<td>0.004[^14]</td>
<td>19</td>
<td>10</td>
<td>Sigma</td>
</tr>
<tr>
<td>3-methyl-2-butene-1-thiol</td>
<td>mbt</td>
<td>thiol</td>
<td>0.005[^Aroxa]</td>
<td>21</td>
<td>9</td>
<td>Aroxa</td>
</tr>
<tr>
<td>2-ethyl-3-methoxy pyrazine</td>
<td>emp</td>
<td>methoxypyrazine</td>
<td>0.4[^16]</td>
<td>12</td>
<td>9</td>
<td>Sigma</td>
</tr>
<tr>
<td>2-isobutyl-3-methoxy pyrazine</td>
<td>ibmp</td>
<td>methoxypyrazine</td>
<td>0.002[^13]</td>
<td>18</td>
<td>7</td>
<td>Sigma</td>
</tr>
<tr>
<td>3-mercapto-3-methylbutanol</td>
<td>3mmbo</td>
<td>thiol</td>
<td>14</td>
<td>14</td>
<td>6</td>
<td>Sigma</td>
</tr>
<tr>
<td>sotolone</td>
<td>sot</td>
<td>furanone</td>
<td>0.5[^13]</td>
<td>10</td>
<td>6</td>
<td>Sigma</td>
</tr>
<tr>
<td>trimethylpyrazine</td>
<td>tmp</td>
<td>pyrazine</td>
<td>9.6[^16]</td>
<td>11</td>
<td>5</td>
<td>Sigma</td>
</tr>
<tr>
<td>guaiacol</td>
<td>gc</td>
<td>phenol</td>
<td>12[^13]</td>
<td>15</td>
<td>5</td>
<td>Sigma</td>
</tr>
<tr>
<td>3-mercapto-3-methylbutyl formate</td>
<td>3mmbf</td>
<td>thiol ester</td>
<td>15</td>
<td>15</td>
<td>5</td>
<td>Fluorochem</td>
</tr>
<tr>
<td>unknown LRI 981</td>
<td>unk</td>
<td>-</td>
<td>12</td>
<td>12</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>2-isopropyl-3-methoxy pyrazine</td>
<td>ipmp</td>
<td>methoxypyrazine</td>
<td>0.001[^13]</td>
<td>15</td>
<td>3</td>
<td>TCI</td>
</tr>
</tbody>
</table>

[^a] Source of authentic standard: Aroxa (Leatherhead, UK), Fluorochem (Hadfield, UK), Oxford Chemicals (Hartlepool, UK), Sigma (Poole, UK), TCI (Oxford, UK).
Fig. 1 Correlations between olfactory function and GC-O. A: Correlation between TDI score and number of GC-O aromas detected at the GC-O. B: Relationship between number of triggers detected in the coffee extract and TDI score. In both figures non-parosmic participants = blue, pre-COVID-19 parosmic participants = orange, post-COVID-19 parosmic participants = green.
Fig. 2 Agglomerative Hierarchical Clustering of intensity scores for 17 most frequently reported triggers
Fig. 3 Venn diagram showing molecular triggers and their known odour receptors. ORs are blue, compounds in red are known triggers, whereas compounds in black have not been identified as triggers. 2-Ethyl-5-methylpyrazine and 2,5-dimethylpyrazine may be triggers at much higher concentrations but are rarely odour-active (high odour thresholds), other research (unreported) suggests indole and skatole are unlikely to be triggers. For OR1J4 anOR2G3, pyrazines have been abbreviated with a P: triggers within OR1J4 and OR2G3 from top to bottom are 3-ethyl-2-methoxypyrazine, 2,3-diethyl-3-methylpyrazine, 2-ethyl-3,5-dimethylpyrazine, and non triggers 2-ethyl-5-methylpyrazine and indole. In addition, the following ligand OR pairs were retrieved: butanedione: OR6Y1; guaiacol: OR5L2, OR1L8, OR5AS1, OR8G2, OR4K15, OR5D18, OR10R2, OR5V1, OR8J1, OR6C75, OR1F1, OR8H2, OR1J2, OR7G1, OR1E3; 3-methyl-2-butene-1-thiol: OR1L3; methanethiol: OR5B12, OR5AR1, OR4S2, OR2W5, OR5M3.
Table S1 Participant Data: Demographics, answers to pre-screening questionnaire, TDI Scores and GC-O scores

<table>
<thead>
<tr>
<th>Status</th>
<th>Onset of parosmia</th>
<th>Nasal patency</th>
<th>Taste of food different</th>
<th>Odours unpleasant</th>
<th>TDI score</th>
<th>#GCO aromas</th>
<th>#Triggers detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-COVID-19</td>
<td>3-12 months</td>
<td>always</td>
<td>always</td>
<td>often</td>
<td>36</td>
<td>32</td>
<td>9</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>>2 years</td>
<td>always</td>
<td>always</td>
<td>rarely</td>
<td>35</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>1-2 years</td>
<td>sometimes</td>
<td>often</td>
<td>often</td>
<td>35</td>
<td>22</td>
<td>9</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>3-12 months</td>
<td>always</td>
<td>always</td>
<td>always</td>
<td>32</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>3-12 months</td>
<td>always</td>
<td>rarely</td>
<td>often</td>
<td>31</td>
<td>18</td>
<td>13</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>>2 years</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>31</td>
<td>25</td>
<td>13</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>1-2 years</td>
<td>always</td>
<td>always</td>
<td>often</td>
<td>29</td>
<td>25</td>
<td>4</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>>2 years</td>
<td>always</td>
<td>always</td>
<td>often</td>
<td>26</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>1-2 years</td>
<td>always</td>
<td>always</td>
<td>often</td>
<td>26</td>
<td>22</td>
<td>7</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>3-12 months</td>
<td>always</td>
<td>always</td>
<td>always</td>
<td>26</td>
<td>22</td>
<td>8</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>3-12 months</td>
<td>sometimes</td>
<td>often</td>
<td>often</td>
<td>22</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>3-12 months</td>
<td>always</td>
<td>always</td>
<td>never</td>
<td>22</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>1-2 years</td>
<td>always</td>
<td>often</td>
<td>always</td>
<td>12</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Pre-COVID-19</td>
<td>>2 years</td>
<td>always</td>
<td>often</td>
<td>never</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>sometimes</td>
<td>often</td>
<td>often</td>
<td>38</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>< 3 months</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>37</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>< 3 months</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>36</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>32</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>29</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>< 3 months</td>
<td>always</td>
<td>always</td>
<td>always</td>
<td>29</td>
<td>28</td>
<td>8</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>always</td>
<td>always</td>
<td>28</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>< 3 months</td>
<td>sometimes</td>
<td>often</td>
<td>often</td>
<td>27</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>always</td>
<td>rarely</td>
<td>27</td>
<td>24</td>
<td>8</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>< 3 months</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>25</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>always</td>
<td>always</td>
<td>24</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>always</td>
<td>often</td>
<td>24</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>23</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>3-6 months</td>
<td>always</td>
<td>always</td>
<td>often</td>
<td>19</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Post-COVID-19</td>
<td>< 3 months</td>
<td>always</td>
<td>often</td>
<td>often</td>
<td>15</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Participants without parosmia

Without parosmia	44	53
Without parosmia	44	33
Without parosmia	43	54
Without parosmia	42	44
Without parosmia	38	54
Without parosmia	40	53
Without parosmia	40	47
Without parosmia	40	27
Without parosmia	38	52
Without parosmia	37	28
Without parosmia	35	34
Without parosmia	34	35
Without parosmia	30	11
Without parosmia	29	21
Without parosmia	25	14

Answer to the question “Are odours that are pleasant to others, unpleasant to you? Never/rarely/often/always”; bAnswer to the question “Is the taste of food different to what you expect? Never/rarely/often/always”; cTDI score from Sniffin Sticks, range 0-48; dNumber of GC-O aromas detected in coffee extract; eNumber of triggers reported in GC-O of coffee extract
Table S2 Pre-screening Questionnaire Part 1

What is your title?
What is your full name?
What is your full address (including postcode)?
What is your date of birth?
Please indicate your ethnicity
What is your height (please indicate units)?
What is your weight (please indicate units)?
How would you describe your gender?
What is your daytime telephone number?
What is your evening telephone number?
What is the best time to call?
Are you a current smoker?
What is your email address?
Do you use emails on a regular basis?
How did you hear about the study?
As far as you know, do you have chronic sinusitis?
As far as you know, do you have olfactory dysfunction?
Have you had surgery to your nose or head?
Please list any current medication you're taking. If no medication is taken, please write 'none'.
Are you prepared to spend a day at the Flavour lab at University of Reading?
Do you experience a problem with your sense of smell or taste?

Pre-screening Questionnaire Part 2 for those reporting smell disorders

Does your problem with your sense of smell or taste relate to your (select one answer)
- Sense of Smell
- Sense of Taste
- Both smell and taste

Can you tell the difference between salt and sugar? Yes/No

When did your problem start? (select one answer)
- Less than 3 months ago
- 3-12 months ago
- 1-2 years ago
- More than 2 years ago

How did the problem start? (select one answer)
- Slowly
- Suddenly
- I don’t know

How has your problem changed since it started? (select one answer)
- There’s been an improvement
- No change
- It’s got worse
- Not sure

What do you think might have caused it? (select one or more answers)
- Accident
- Nasal polyps
- Cold or infection
- Surgery
- I was born without a sense of smell
- Other
- I don’t know

Do you have any of these signs/symptoms? (select one or more answers)
- Stuffy nose
Allergies
Sneezing
None of these

Does the smell problem come and go or is it always present? (select one answer)
 It’s always present
 It comes and goes
 I don’t know

Can you breathe clearly through your nose? (select one answer)
 Always
 Sometimes
 Never

Have you seen a specialist such as an ENT doctor or neurologist for your condition? Y/N

How long does your parosmia linger? (select one answer)
 Briefly
 Minutes
 Hours
 Days
 Not applicable

How do you experience your parosmia? (select one answer)
 Right nostril only
 Left nostril only
 Both nostrils
 Not sure

Is the taste of food different to what you expect? (select one answer)
 Rarely
 Often
 Always
 Never

Are odours that are pleasant to others, unpleasant to you? (select one answer)
 Rarely
 Often
 Always
 Never

Which odours (or foods or drinks) do you find particularly unpleasant and distorted? Please list, starting with the most unpleasant.

Do you experience smell that are not present (phantosmia)? Y/N/not sure

Do you sometimes get a smell in your nose that persists, sometimes for extended periods of time (smell locks)? Y/N/not sure

Are you smell training? (select one answer)
 Yes
 No – I never tried
 No – I tried in the past and stopped.
<table>
<thead>
<tr>
<th>Descriptors from GC-O<sup>a</sup></th>
<th>Compound</th>
<th>DB5 Column confirmation of identity<sup>b</sup></th>
<th>Wax Column confirmation of identity<sup>b</sup></th>
<th>Found in coffee by GC-O<sup>c</sup></th>
<th>Parosmic<sup>d</sup></th>
<th>Parosmic<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>weed</td>
<td>marijuana</td>
<td>3-methyl-2-buten-1-thiol</td>
<td>820</td>
<td>LRI,O</td>
<td>1110</td>
<td>lri,O</td>
</tr>
<tr>
<td>meat</td>
<td>gravy</td>
<td>2-methyl-3-furanthiol</td>
<td>865</td>
<td>LRI,O,MS</td>
<td>1334</td>
<td>lri,O,MS</td>
</tr>
<tr>
<td>coffee, toast</td>
<td>chicken crisps</td>
<td>2-furanmethanethiol</td>
<td>910</td>
<td>LRI,O,MS</td>
<td>1450</td>
<td>lri,O</td>
</tr>
<tr>
<td>cats pee</td>
<td>fruity</td>
<td>unknown</td>
<td>3-mercapto-3-methylbutanol</td>
<td>943</td>
<td>LRI,O,MS</td>
<td>1539</td>
</tr>
<tr>
<td>cats pee</td>
<td>cats pee</td>
<td><i>ethyl 2-(methylthio) acetate (unk 981)</i></td>
<td></td>
<td></td>
<td></td>
<td>fg</td>
</tr>
<tr>
<td>biscuit (with veg)</td>
<td></td>
<td>crisps</td>
<td>trimethylpyrazine</td>
<td>1007</td>
<td>LRI,O,MS</td>
<td></td>
</tr>
<tr>
<td>cats pee</td>
<td>blackcurrant</td>
<td></td>
<td>3-mercapto-3-methylbutyl formate</td>
<td>1024</td>
<td>lri,O,ms</td>
<td>1539</td>
</tr>
<tr>
<td>bell pepper</td>
<td>coffee remains</td>
<td>2-ethyl-3-methoxypyrazine</td>
<td>1055</td>
<td>LRI,O,MS</td>
<td>1444</td>
<td>lri,O</td>
</tr>
<tr>
<td>earthy</td>
<td>green, cereal, burnt</td>
<td>2-ethyl-3,6-dimethylpyrazine</td>
<td>1081</td>
<td>LRI,O,MS</td>
<td>1476</td>
<td>lri,O, MS</td>
</tr>
<tr>
<td>dogfood, earthy</td>
<td>mouldy mop</td>
<td>2-ethyl-3,5-dimethylpyrazine</td>
<td>1088</td>
<td>LRI,O,MS</td>
<td>1487</td>
<td>lri,O,MS</td>
</tr>
<tr>
<td>smoke clove</td>
<td>smoky bacon crisps</td>
<td>guaiacol</td>
<td>1091</td>
<td>LRI,O,MS</td>
<td>1893</td>
<td>lri,O,ms</td>
</tr>
<tr>
<td>veg, green</td>
<td>peeled potato</td>
<td>2-isopropyl-3-methoxypyrazine</td>
<td>1097</td>
<td>LRI,O</td>
<td>1444</td>
<td>lri,O</td>
</tr>
<tr>
<td>celery, spicy, curry, maple</td>
<td></td>
<td>sotolone</td>
<td>1111</td>
<td>LRI,O,MS</td>
<td>2257</td>
<td>lri,O,ms</td>
</tr>
<tr>
<td>earthy</td>
<td>woody</td>
<td>2,3-diethyl-5-methylpyrazine</td>
<td>1159</td>
<td>LRI,O,MS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compounds</td>
<td>Triggers</td>
<td>LRI</td>
<td>LRI.O</td>
<td>lri,O,ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>-----</td>
<td>-------</td>
<td>----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>faecal, meat, gravy</td>
<td>cooking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>bell pepper</td>
<td>stem</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>bad coffee</td>
<td>chicken crisps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>

Compounds identified as triggers, those in italics have only been tentatively identified, sorted according LRI.

- **Descriptors from two expert assessors**, each separated by a |:
 - LRI=LRI of compound matches LRI of authentic standard, lri=matches that found in literature, MS=mass spectrum of compound matches that of authentic compound, ms matches that of library spectrum, O=odour matches reference or published descriptor,
 - parosmic volunteer confirmed parosmic character of authentic sample,
 - parosmic volunteer confirmed parosmic character on Wax column.
Figure S1 Flavour wheel provided to all participants during GC-O session