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Abstract

Vaccine trials are generally designed to assess efficacy on clinical disease. The vaccine effect

on infection, while important both as a proxy for transmission and to describe a vaccine’s total

effects, requires frequent longitudinal sampling to capture all infections. Such sampling may not

always be feasible. A logistically easy approach is to collect a sample to test for infection at a

regularly scheduled visit. Such point or cross-sectional sampling does not permit estimation of

classic vaccine effiacy on infection, as long duration infections are sampled with higher probability.

Building on work by Rinta-Kokko and others (2009) we evaluate proxies of the vaccine effect on

transmission at a point in time; the vaccine efficacy on prevalent infection and on prevalent viral

load, VEPI and VEPV L, respectively. Longer infections with higher viral loads should have more

transmission potential and prevalent vaccine efficacy naturally captures this aspect. We apply

a proportional hazards model for infection risk and show how these metrics can be estimated

using longitudinal or cross-sectional sampling. We also introduce regression models for designs

with multiple cross-sectional sampling. The methods are evaluated by simulation and a phase III

vaccine trial with PCR cross-sectional sampling for subclinical infection is analyzed.

Keywords: COVID-19; Cross-Section; Infectious Disease; Prevalent Study

1. Introduction

Many vaccine trials do not directly assess vaccine efficacy on infection as there is no sampling of

asymptomatic volunteers to detect presence of the pathogen. Yet the vaccine effect on infection is

important to understand, both for its potential impact on transmission and to better characterize
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the vaccine effect on individuals. Regularly sampling trial volunteers is difficult due to the ad-

ditional logistical burden imposed on volunteers and study personnel. Volunteers do periodically

come in for exams and may come in to receive vaccine, blinded or unblinded, once the vaccine

has been shown to be efficacious. At such visits, a sample to detect infection by e.g. a PCR test,

could be collected to assess the proportion of infections in the two arms. The vaccine efficacy on

the reduction in PCR positive tests at this point in time could be calculated. Yet what does it

measure?

A vaccine has myriad effects and vaccine efficacy on disease, infection (susceptibility), trans-

mission, and the population have been defined see Halloran and others (1999). Cross-sectional

sample estimates do not accurately recover the true vaccine efficacy on infection for a person,

i.e. VEI , as longer duration infections are over-represented from a singe cross-sectional sample.

Rinta-Kokko and others (2009) introduced the vaccine efficacy on pneumococcal carriage which

we call the vaccine efficacy on prevalent infection or VEPI . This should be a better proxy for the

effect of vaccine on transmission than VEI , as it reflects that longer infections have more trans-

mission potential. We also introduce the vaccine efficacy on prevalent viral load or VEPV L. This

is the proportion reduction in the amount of virus in a vaccinated person at a point in time. Since

more virus should increase transmissibility, this may be an even better proxy for transmission.

In this work, we motivate and provide simple estimates of these three aspects of vaccine

efficacy. We apply a proportional hazards model for the instantaneous risk of infection over time

and show how VEI , VEPI and VEPV L are expressible as functions of the parameters of this

model which is a form of a mark specific hazard, see Gilbert and others (2004), and has been

previously used to estimate vaccine efficacy on the number of founding viruses of an infection,

see Follmann and Huang (2015). The model allows us to demonstrate how VEPI and VEPV L can

be estimated with longitudinal e.g. biweekly sampling and can be estimated using cross-sectional

data, provided the vaccine to placebo ratio of mean infection duration, or viral load is known.

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.04.21251133doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.04.21251133


3

This generalizes results connecting between incidence, duration, and prevalence to viral loads

see Freeman and Hutchison (1980), Keiding (1991). We show how to combine multiple cross-

sectional samples by formulating regression models for infection and viral load given infection.

These models readily incorporate covariates such as baseline variables and functions of time since

vaccination and provide adjusted estimates of VEPI and VEPV L. We evaluate the estimators

via simulation and analyze the day 28 cross-sectional sample data from the phase III Moderna

COVID-19 vaccine trial Moderna (2020).

2. Motivation

Vaccine efficacy for infection (susceptibility) typically requires frequent evaluation. For example,

for COVID-19 vaccine trials twice weekly PCR testing might be required to ensure nearly all

infection events are captured. For large studies with a rare disease, a good estimate of the vaccine

efficacy on infection is

V̂EI = 1− X1

X0

, (2.1)

whereXZ is the observed proportion of infections recorded in the volunteers from arm Z measured

over a common period of time. In practice this might be all volunteers, baseline seronegative

volunteers, or baseline seronegative volunteers without prior symptomatic disease, depending on

the question.

Frequent sampling for infection can be burdensome and expensive. A logistically easy approach

is to sample subjects at a single point in time such as a crossover or serology visit. Define Y Z as

the proportion of tested individuals in arm Z with an infection at such a visit. We can form a

simple estimate of vaccine efficacy for infection at this point in time as

V̂EPI = 1− Y 1

Y 0

, (2.2)

which we call the vaccine efficacy for prevalent infection or VEPI . This approach was introduced
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by Rinta-Kokko and others (2009) to describe the vaccine effect on pneumococcal carriage, though

their metric was the odds ratio, also see Thompson and others (1998). This differs from V̂EI . If

the vaccine tends to make the duration of infection shorter, then fewer vaccine infections will be

collected when sampled at a single point in time as shown in Figure 1. As suggested by Rinta-

Kokko and others (2009), V̂EPI may be a better measure of transmission risk to the community

as it reflects the reduction in the number of infected individuals in the community on a given

day. Suppose the vaccine had no effect on infection but reduced duration of infection by 90%.

Then on any given day, there would be 90% fewer vaccine volunteers who were PCR positive with

presumably less risk of transmission into the community. In contrast, V̂EI measures the effect of

vaccination on an individual’s risk of infection (regardless of duration).

If the cross-sectional sample includes a measure of viral load we can create an even better

proxy for the vaccine effect on transmission. To motivate this estimate, suppose the vaccine had no

effect on infection, nor duration, but reduced the viral load during infection by 90%, compared

to placebo. Then on any given day, there would be 90% less virus in the vaccine volunteers

compared to placebo volunteers. Presumably this would translate into a substantially reduced

risk of onward transmission. We thus form a simple estimate of the vaccine efficacy on viral load

as the proportion reduction in total viral load at a point in time of vaccine effiacy on prevalent

viral load as

V̂EPV L = 1− V1+/n1

V0+/n0
, (2.3)

where VZ+ is the sum of viral loads over all sampled volunteers on arm Z and nZ the number

sampled. Let YZ+ be the number of infections on arm Z from the cross-sectional sample. Because

VZ+/nZ = (YZ+
/nZ)× (VZ+/YZ+) = Y Z × VZ , (2.3) can be written as

V̂EPV L = 1− Y 1

Y 0

× V 1

V 0

Thus V̂EPV L blends a vaccine effect on the probability a person is infected on a given day times

an effect on the mean viral load among the infecteds.
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Sampling Point

Vaccine

Placebo 

PCR positive

Fig. 1. Two different estimates of vaccine efficacy for infection. The vaccine efficacy for prevalent infection

or V̂EPI = 1-1/2 =0.50. The traditional vaccine efficacy counts all infections and is V̂EI= 1-8/9 =0.11.

In the next section we develop an infection process model and formally define VEPI , VEPV L,

and VEI in terms of the parameters of this single process. This representation demonstrates how

to estimate these metrics from a longitudinal study and also how VEI can be estimated from a

single cross-sectional study—provided we have some auxiliary information.
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Uninfected Infected 

1 2 2 4

VACCINE GROUP                                                                                                       PLACEBO GROUP

Tuesday

Vaccine efficacy on point infection  =  1 – 1/3 = 0.67    
Vaccine efficacy on point viral load  = 1 – 1/(2+2+4)  =  0.875 

Viral load

Fig. 2. Vaccine efficacy estimates at a point in time. The placebo group has more infected and they have
higher viral loads. The placebo group should be more infectious both when we contrast total infecteds
and especially when we contrast total viral load. Two metrics reflect this idea. The vaccine efficacy for
prevalent infection is estimated as V̂EPI = 0.67. The vaccine efficacy for prevalent viral load is estimated
as V̂EPV L = 0.875.

3. Theoretical Development

Let T be the time from vaccination to the start of infection. We assume a proportional hazards

model where the hazard for infection is given by

λ(t) = λ0(t) exp(Zθ), (3.4)

where Z is the vaccine indicator, t the time since vacccination, and λ0(t) an unspecified basleine

hazard. Let S(t) = P (T > t) be the survivor function.

The hazard function representation can be decomposed as λ0(t) = ω(t)P (A = 1|Z = 0), and
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θ = log{P (A = 1|Z = 1)/P (A = 1|Z = 0)} where A is the indicator of acquisition of infection

given exposure, and ω(t) is the exposure process common to both groups, as shown in Follmann

and Huang (2015). Thus 1 − exp(θ) = 1 − P (A = 1|Z = 1)/P (A = 1|Z = 0), and we define

vaccine efficacy against infection as VEI = 1− exp(θ). With frequent longitudinal assessments of

infection, we can estimate VEI by maximizing the partial likelihood as is traditional for the Cox

regression model. A simpler estimate of exp(θ) is to directly use (2.1) which, in a large trial with

a rare disease, approximates the simple hazard ratio estimate described in Machin and Gardner

(1988).

We next use this model to define VEPI and VEPV L parameters. The probability of an infection

starting during a small interval of length ε (say a day) for a randomly selected volunteer is

approximately λ(s)S(s)ε and for a randomly selected uninfected volunteer at day s is λ(s)ε. For

a rare disease S(s) is approximately 1 so whether we condition on infection or not does not

matter.

The probability of an active infection at a given point in time s requires that the infection

occur prior to s and be detectable at time s. To derive this probability, suppose placebo infections

have duration at most 3 days with probabilities p0(1), p0(2), p0(3) respectively, and that λ0(s) =

λ0(s − 1) = λ0(s − 2). To simplify, suppose that infections occur at the start of the day. If a

person infected at day s − 2 has a duration of 3 days, then they will be tallied as an infection

at day s. Persons infected on day s− 1, with durations of 2 or 3 days will be detected on day s,

and everyone infected on day s will be detected. Thus for large studies with a rare disease and

small λ0(s), the probability an infection in the placebo arm is detected on day s is approximately

ελ0(s)[p(3)+{p(3)+p(2)}+{p0(3)+p0(2)+p0(1)}] which equals ελ0(s)
∑3

i=1 p0(i)i = ελ0(s)∆0,

where by definition, ∆0 is the mean placebo duration. This argument generalizes beyond 3 days

and applies to the vaccine group as well. Thus the probability of an active infection at day s in
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arm Z is approximately

ελ0(s) exp(Zθ)∆Z . (3.5)

Given (3.5) we can deduce that the ratio of the probability of an active infection from someone

on vaccine divided by the probability of an active infection from someone on placebo at time s

is approximately

ελ0(s) exp(θ)∆1

ελ0(s)∆0
= exp(θ)

∆1

∆0
.

This well known result relates prevalence to incidence and duration see e.g. Freeman and Hutchi-

son (1980), Keiding (1991). We define the vaccine efficacy for prevalent infection as

V EPI = 1− exp(θ)
∆1

∆0
.

With a longitudinal study with frequent sampling we identify the time of the start of each

infection. With frequent post-infection sampling we can also record the duration of each infection.

This allows estimation of θ using Cox regression, and estimation of ∆0 and ∆1 using the sample

mean durations which thus allows an estimate of VEPI . So a conventional longitudinal study

designed to estimated VEI can also report an estimate of VEPI , the putatitvely better proxy for

transmission.

We can also directly estimate VEPI from the cross-sectional study using (2.2) as Y 1 and Y 0

in (2.2) provide unbiased estimates of ελ0(s) exp(θ)∆1 and ελ0(s)∆0, respectively. Since VEPI is

free of s, the sampling time for different individuals can be chosen to be logistically convenient.

We next define VEPV L. Let V be the viral load at the time of sampling. We can think of V as

being selected via a two stage process. Imagine the set of all infections. First we select an infection

with probability proportional to D, the duration of the infection. Then we randomly pick a day

and record the viral load. As before, suppose the placebo group has durations D = 1, 2, 3 with

probabilities p0(1), p0(2), p0(3) and let E{V0(i)|D} be the mean viral load on day i = 1, . . . , D for

infected placebo volunteers who have D days of detectable viral load. A placebo person infected

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.04.21251133doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.04.21251133


9

on day s−2 has their infection detected on day s if they have D = 3 which occurs with probability

p0(3) and such people have have mean viral load on day s of E{V0(3)|D = 3}. Building on this

reasoning and the arguments used to derive ∆Z , one can show that the expected viral load in

over the entire the placebo group at the time of the cross-sectional sampling is approximately

µ0 = ελ0(s− 2)p0(3)E{V0(3)|D = 3}+

ελ0(s− 1)[p0(3)E{V0(2)|D = 3}+ p0(2)E{V0(2)|D = 2}] +

ελ0(s)[p0(3)E{V0(1)|D = 3}+ p0(2)E{V0(1)|D = 2}+ p0(1)E{V0(1)|D = 1}]

≈ ελ0(s)[p0(3)3ν0(3) + p0(2)2ν0(2) + p0(1)ν0(1)],

where ν0(D) =
∑D

i=1E{V0(i)|D}/D is the mean viral load over the D days for placebo volunteers

with durations of length D. This argument generalizes and we can represent µZ as

µZ = ελ0(s) exp(Zθ)
M∑

D=1

pZ(D)DνZ(D)

where M is the maximum duration. We thus deduce that at time s the expected amount of virus

from a vaccine volunteer (whether infected or not) divided by the expected amount of virus from

a placebo volunteer (whether infected or not) is

ελ0(s) exp(θ)µ1

ελ0(s)µ0
= exp(θ)

µ1

µ0
,

and we define the vaccine efficacy for prevalent viral load as

V EPV L = 1− exp(θ)
µ1

µ0
.

We note that if the average viral load is independent of duration so that νZ(D) = νZ we

obtain the nice expression

µZ = ελ0(s)∆ZνZ ,

which is simple, but may not hold in practice, as e.g. volunteers with longer durations may have

higher peak viral loads and possibly higher νZ(D).
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As for VEPI , with a longitudinal study we can obtain estimates of θ using Cox regression

and with daily post infection sampling of viral loads, obtain estimates of µ0, µ1. A simple cross-

sectional sample estimate of VEPV L is given by (2.3) as V1+/n1 and V0+/n0 provide unbiased

estimates of ελ0(s) exp(θ)µ1 and ελ0(s)µ0, respectively.

With this machinery, other proxies for transmission can be formed. For example, if transmis-

sion were unlikely to occur unless the viral load exceeded a threshold, say 5 logs, then we could

redefine viral load as V ∗ = I(V > 5) where I() is the indicator function. Or if there were a known

function say P (V ) that provided the probability of transmission given a viral load of V , we could

use the function P (V ) instead of V in the above development.

Inference for Cox based longitudinal estimates of VEPI and VEPV L follows from the approach

discussed in Follmann and Huang (2015). That work blended a Cox estimate on the hazard

ratio for infection with the ratio of the mean number of founding viruses given infection, thus

defining a vaccine efficacy on the mean number of founder viruses. The delta-method was proposed

for approximate inference which applies to both VEPL and VEPV L. In addition, a weighted

estimating equations approach for the integer virus counts was proposed which could be directly

used for VEPI as the durations are integers. We assume the longitudinal study also captures all

incident infections with daily sampling.

To form confidence intervals for the simple cross-setional estimates of VEPI and VEPV L given

by (2.2) and (2.3), respectively one could use the delta-method or the bootstrap, or if necessary,

methods crafted for small samples such as a non-informative Bayesian approach.

While a pure cross-sectional study cannot estimate ∆Z , if the ratio ∆1/∆0 were known or

estimated from a different study, one could craft an estimate of the classic metric VEI that ignores

infection duration as

V̂ EI = 1− (1− V̂ EPI)
∆0

∆1
.

If there were no data to directly estimate ∆1/∆0, one might specify different plausible values of
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∆1/∆0 to obtain a range of VEPI estimates.

A concern with COVID-19 vaccines is that they might tend to shift symptomatic infections

to asymptomatic infections which might increase transmission potential as silently infected in-

dividuals might not socially distance Mehrotra and others (2020). To examine this possibility,

assume that a proportional hazards models holds for the risk of acquisition of disease as in (3.4),

but with parameter θD. For clarity, denote the θ of (3.4) as θI Now if the vaccine has the same

effect on asymptomatic and symptomatic infections then θI = θD. To test H0 : θI = θD, we can

estimate exp(θI)∆1

∆0
using the cross-sectional sample and estimate exp(θD) directly from contin-

uous monitoring for disease from the same trial. If the ratio ∆1/∆0 were known or estimable, we

could fashion a test of H0 : θI = θD by forming a Wald statisic

log( ̂exp(θI)∆1

∆0

∆0

∆1
)− θ̂D)√

v̂ar[log( ̂exp(θI)∆1

∆0

∆0

∆1
)− θ̂D)]

.

As before, the delta-method or bootstrap could be used to estimate the variance in the denomi-

nator and the Wald statistic compared to a standard normal null distribution.

4. Regression And Multiple Cross-sectional Samples

The above development was for a single cross-sectional sample without covariates other than

the vaccine indicator. To accommodate multiple samples while allowing for additional covariates

leads naturally to regression modeling for correlated data.

Let YZki be the indicator that person i at visit k in arm Z is positive. A binomial model with

a log-link can be used to model the probability of infection. This model, as opposed to a logit

model, has the advantage that it readily allows an estimate of vaccine efficacy as one minus a

relative risk. As an example, a flexible specification that can allow for waning efficacy is given as

P (YZk = 1) = exp[αk + X′β + Z{φ1 + log(Tk)φ2}], (4.6)

where Tk is the actual time post vaccination of visit k for a given subject, X are baseline covariates,
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αk a visit specific offset, and φ1, φ2 specify a log-linear form of waning efficacy. Since volunteers

are sampled over multiple visits, the outcomes from an individual might be correlated so one can

fit generalized estimating equations (GEE) model with the individual as a cluster, see Zeger and

Liang (1986). The vaccine efficacy on prevalent infection at visit k from (4.6) is given by

1− exp[φ1 + φ2 log{E(Tk)}].

where E(Tk) is the average time since vaccination among those who are sampled at visit k.

One can always perform these analyses within subsets of subjects or define the outcome to be

different from being PCR positive. For example, we might apply (4.6) to seronegative subjects

at each point in time, or to subjects who have had no prior evidence of any infection. Previous

infection could be documented by serology, previous subclinical infection, or previous COVID-19

disease. If it were known that only a single infection were possible, one could eliminate previously

infected individuals from the analysis, rather like eliminating cases from the risk set in the partial

likelihood of Cox regression.

For multiple cross-sectional viral loads the development is slightly more complex. One way is to

develop models conditional on infection, rather like a hurdle model, see Cragg (1971). Analogous

to (4.6), we might specify a log-linear model as

E(Vzk|Yzk = 1) = exp[ω0 + X′η + Z{ω1 + log(Tk)ω2}] (4.7)

If an individual were positive at multiple visits a GEE approach could be used with individual

as the cluster.

The regression based VEPV L at visit k is given by

1− exp[φ1 + φ2 log{E(Tk)}] exp[ω1 + log{E(Tk)}ω2]

Under our model, the parameter estimates from (4.6) and (4.7) are independent. Thus the delta-

method could be used for testing and construction of confidence intervals. A simpler approach
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would be to bootstrap individuals. The use of a log-linear specification for (4.7) was motivated

by the nice cancellation of the ω0 and η parameters in the regression based VEPV L parameter.

In practice, a linear or other type of model may fit the data better resulting in a different form

for VEPV L.

5. Simulations

In this section we evaluate the cross-sectional sample estimates under a few different scenarios

meant to roughly approximate COVID-19 vaccine trials. A large clinical trial was assumed with

15,000 per arm and a total of 500 infection times were generated uniformly over the interval 0 to

200 with VEI set at 0.00, 0.50, or 0.75. We assume that the viral load trajectory of an infected

placebo volunteer follows a two stage model, with mean trajectory rising to 6 logs over the course

of 4 days followed by a linear decline to zero over a mean of 28 days, see To and others (2020).

Vaccine infections were similar but with a peak viral load of 6 or 4 logs and a mean time to zero

of 14 or 28 days. Each infected volunteer drew random deviations from the mean linear rise and

mean time to zero which were Gaussian with standard deviations 0.125, 2.00, respectively with

correlation 0.50. Each day the measured viral load for an infected individual was given by the

mean viral load plus Gaussian error with a standard deviation of 0.10. Infection ended when the

simulated viral load was first less than zero. We approximated the true ∆0,∆1, µ0, and µ1 by

simulation of 100,000 infection episodes per arm which allowed us to approximate the true VEPI

and VEPV L.

A cross-sectional study was conducted on day 100. Any volunteer with a detectable viral load

on day 100 was tallied and their viral load recorded. Table 1 presents the results. The estimates are

close to the true values. The average V̂EPI increases as the vaccine induced duration decreases and

the average V̂EPV L increases as the vaccine induced peak decrease. The placebo mean viral load

V 0 is the same over all scenarios—as the placebo generation model is the same. The vaccine mean
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Table 1. Simulated performance of the simple cross-sectional estimates of VEPI and VEPV L. The mean
number of infections per arm is recorded along with the mean VEs and viral loads. Each row is based on
1,000 simulated trials. The placebo arm has a mean peak viral load of 6 and a mean duration of 28 days
for all scenarios. Each pair of rows reports the Monte Carlo means and (variances).

Inputs Performance
Peak Infection # Positive

VEI VEPI VEPV L VL Duration Vaccine Placebo V̂EPI V̂EPV L V0 V1

0.00 0.00 0.00 6 28 34.30 33.90 -0.047 -0.067 3.04 3.07
(32.1) (35.5) (0.071) (0.101) (0.087) (0.098)

0.50 0.75 0.75 6 14 11.10 45.50 0.750 0.740 3.04 3.13
(11.5) (39.7) (0.007) (0.011) (0.066) (0.298)

0.50 0.50 0.67 4 28 22.70 45.50 0.490 0.654 3.04 2.04
(22.4) (39.7) (0.018) (0.011) (0.066) (0.067)

0.50 0.75 0.83 4 14 11.10 45.50 0.750 0.826 3.04 2.09
(11.5) (39.7) (0.007) (0.005) (0.066) (0.137)

0.75 0.88 0.88 6 14 6.74 54.50 0.874 0.868 3.04 3.15
( 6.5) (50.9) (0.002) (0.003) (0.059) (0.548)

0.75 0.75 0.83 4 28 13.80 54.50 0.742 0.825 3.04 2.05
(12.7) (50.9) (0.006) (0.003) (0.059) (0.111)

0.75 0.88 0.92 4 14 6.70 54.50 0.874 0.912 3.04 2.11
( 6.5) (50.9) (0.002) (0.001) (0.059) (0.255)

viral load V 1 decreases with a lower peak viral load, but stays the same if the peak is unchanged

but the duration is changed. The variances of V̂EPI and V̂EPV L decrease with increasing VE. In

contrast, the variance of V 1 increases with increasing VE as there are fewer events with which

to estimate µZ . For fixed VEI , the variance of V 1 is smallest for the scenarios with a peak viral

load of 4 and duration of 28 days.

We selected the last simulated dataset from the last row of Table 1 to illustrate an analysis.

Figure 3 provides the generated viral load trajectories of the infected volunteers and projects

the day 100 viral load onto the right axis. For this setting, the true VEI=0.75 and the vaccine

reduces peak viral load by 2 logs and cuts the duration in half. There were a total of 6 infections

on vaccine and 43 on placebo for a cross-sectional estimate of V̂EPI = 1 − 6/15000
43/15000 = 0.86.

The mean viral loads on the two arms were 2.06 and 3.07. Thus V̂EPV L = 1 − 6
43

2.06
3.07= 0.91.

The variances of the vaccine and placebo viral loads were 0.33 and 4.47 respectively, though the
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standard errors of the mean were more similar at
√

0.33/6 = 0.23 and
√

4.47/43 = 0.32. We use

the percentile bootstrap to form confidence intervals. With 10,000 bootstrap samples the 95%

confidence intervals are (0.71,0.96) and (0.80,0.95), respectively, for VEPI and VEPV L.

In the supplementary materials, we examine the sensitivity of the simulation results to the

assumption of a constant attack rate before the day of point samp. Given our durations are at

most about 30 days, we varied the attack rate to either increase 3 fold or reduce by a factor of

3 from day 70 to day 100. Based on the pandemic in the United States, a factor of 3 seemed a

plausible worst case scenario. The impact on estimates of VEPI and VEPV L was modest with

less than a 10% bias under the least favorable setting. The mean viral loads increased about 15%

under the increasing attack rate setting and decreased about 10% under the decreasing attack

rate setting.

6. Example

The Cove trial randomized approximately 30,000 volunteers equally to two doses of the vaccine

mRNA-1273 or placebo delivered 28 days apart. The trial was designed to achieve 150 cases of

symptomatic COVID-19 disease which was actively monitored, see Moderna (2020) At the second

vaccination visit, serology and PCR sampling were performed to identify subjects who were both

serologically and PCR negative. The trial reported high efficacy on the primary endpoint of

symptomatic disease at the first interim analysis and quickly applied for an Emergency Use

Authorization from the Food and Drug Administration. Among baseline seronegative volunteers,

the reported PCR positive rates at day 28 for asymptomatic volunteers, were 14/14134 and

38/14073, respectively for the vaccine and placebo arms, see moderna (2020). Using (2.2), we

estimate VEPI as 0.63. A 95% bootstrap confidence interval based on 10,000 bootstrap samples

is (0.35, 0.82). Thus using a cross-sectional design provides useful information about the efficacy

of 1 dose of the mRNA-1273 vaccine on silent infections that do not progress to symptomatic

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for this preprintthis version posted February 6, 2021. ; https://doi.org/10.1101/2021.02.04.21251133doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.04.21251133


16

80 90 100 110 120 130

0

2

4

6

8

10

Days Since Study Start

L
o

g
1

0
 V

L

Fig. 3. Simulated data set for a cross-sectional study with true VEI=0.75, where vaccine reduces the
peak viral load by 2 logs and the duration of infection by 14 days. Samples are drawn at day 100 to
identify infections and viral loads, thus only the tics on the far right are observed. Blue denotes vaccine
and red placebo.
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disease.

While the mean duration of silent infections is not known for unvaccinated nor mRNA-1273

vaccinated volunteers, we can specify some ratios ∆1/∆0 to give a range of plausible estimates

of the traditional VEI metric. We illustrate by postulating that ∆1/∆0 ranges from 0.50 to

1.00. That is, the vaccine cuts the mean duration in half, leaves it unchanged, and everything in

between. This results in associated VEI estimates ranging from 1− (14/14134)/(38/14073)×2 =

0.27 to 0.63.

7. Discussion

Necessity can be the mother of invention. This work was motivated by the necessity of interpreting

infection counts and viral loads from a single cross-sectional sample of asymptomatic trial vol-

unteers. We demonstrate that such samples can be used to estimate two meaningful metrics; the

vaccine efficacy on prevalent infection and the vaccine efficacy on prevalent viral load. Pleasingly,

these metrics should be better proxies for the effect of vaccine on transmission than traditional

metrics which focus on the effect of a vaccine on individual infection and individual mean viral

load irrespective of duration. For transmission, what matters is the transmission potential in-

duced by the vaccine on any given day and the new metrics naturally capture this aspect. We

recommend that future studies, whether cross-sectional or longitudinal sample, use these metrics

to help describe the manifold effects of a vaccine.

In general, longitudinal sampling will be much more efficient than single point sampling as

many more infections will be captured. In some studies, cross-sectional sampling will not be

feasible as too few cases will be accrued. Nonetheless, for large studies where longitudinal sampling

is not feasible and there is a high ‘capture’ rate of infections, cross-sectional sampling can have

adequate power to test for non-null effects of VEPI and VEPV L. For example with 90 infection

cases from point sample(s) we have 90% power to detect a VEPI of 0.50. Thus if longitudinal
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sampling for infection is not logistically feasible, cross-sectional sampling should be considered

as a practical design that allows estimation of the effect of vaccine on proxies for transmission.

Future work could explore how to augment a cross-sectional study with subsequent daily

sampling of infected volunteers, known as a prevalent cohort study Brookmeyer and others (1987),

Degruttola and others (1991). Here serial viral loads and time to infection cessation would be

collected. While our results appear robust to the constant attack rate assumption for COVID-19,

for other diseases with varying attack rates and longer durations, this may be less plausible (e.g.

HIV and AIDS). Work on how to weaken this assumption could also be explored. Finally, while

our work focused on the binary outcome of infection, in some settings one can subdivide infections

into those that result in disease versus those that are purely asymptomatic. Such subdivision could

lead to a multinomial regression model for the two competing events of infection that progresses

to diseases versus infection without disease.
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APPENDIX

Our development has been for the setting where the attack rate is assumed roughly constant for

the period prior to the cross-sectional sample. The incidence of COVID-19 has changed over the

course of the pandemic. To assess the the sensitivity of our simulation results to the constant

attack assumption we did some simulations. Our duration distribution has a maximum duration

of about 30 days. In the US over the course of the pandemic the largest change in incidence

over any 30 day period has been about a tripling. We thus evaluate two scenarios. Under the

increasing scenario, the attack rate at day 100 was 3 times the attack rate at day 70. Under
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the decreasing scenario, the attack rate at day 100 was 1/3 the attack rate at day 70. For each

simulated study, we generate 70 infections over the period from day 70 to day 100 under the

increasing or decreasing scenario and sampled PCR+ infections at day 100.

Table A1 below reports the results. We do see some bias in the sampled mean viral loads.

Under the constant attack rate scenario of Table 1, and with peak VL and duration of 6 and 28,

respectively, the mean mean sampled viral loads were about 3.0. With a peak VL of 4, the mean

viral load was about 2.0 (regardless of duration). With an increasing attack rate these mean viral

loads increase to about 3.4 and 2.3, respectively or an increase of about 15%. With a decreasing

attack rate the mean viral loads decrease to about 2.7 and 1.8 or about at 10% decrease.

Under both scenarios, VEPI appeared unbiased if the vaccine had no effect on duration. Under

the increasing (decreasing) attack rate scenario VEPI was slightly biased downward (upward) if

the vaccine reduced the duration. The bias was less than 10%, often less than 5%. A similar

pattern but with less bias was observed for VEPV L.
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