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ABSTRACT 
Background: Asthma exacerbations accelerate the disease progression, as well as 
increases the incidence of hospitalizations and deaths. There have been studies on 
the effects of outdoor air pollution and asthma exacerbations; however, evidence 
regarding single lag0 and lag1 exposure patterns is inconclusive. 
Objective To synthesize evidence regarding the relationship between outdoor air 
pollution and the asthma exacerbation risk in single lag0 and lag1 exposure patterns. 
Methods We performed a systematic literature search using PubMed, Embase, 
Cochrane Library, Web of Science, ClinicalTrials, China National Knowledge 
Internet, Chinese BioMedical, and Wanfang databases until August 1st, 2020. 
Additionally, we reviewed the reference lists of the relevant articles. Two authors 
independently evaluated the eligible articles and performed structured extraction of 
relevant information. Pooled relative risks (RRs) and 95% confidence intervals (CIs) 
of lag0 and lag1 exposure patterns were estimated using the random-effect models. 
Results: Eighty-four studies met the eligibility criteria and provided sufficient 
information for meta-analysis. Outdoor air pollutants were associated with 
significantly increased risks of asthma exacerbations in both single lag0 and lag1 
exposure patterns [lag0: RR (95%CI) (pollutants), 1.057(1.011, 1.103) (air quality 
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index; AQI), 1.007(1.005, 1.010) (PM2.5), 1.009(1.005, 1.012) (PM10), 1.010(1.006, 
1.014) (NO2), 1.030(1.011, 1.048) (CO), 1.005(1.002, 1.009) (O3); lag1: RR (95%CI) 
(pollutants), 1.064(1.022, 1.106) (AQI), 1.005(1.002, 1.008) (PM2.5), 1.007(1.004, 
1.011) (PM10), 1.008(1.004, 1.012) (NO2), 1.025(1.007, 1.042) (CO), 1.010(1.006, 
1.013) (O3)], except SO2 [lag0: RR (95%CI), 1.004(1.000, 1.007); lag1: RR (95%CI), 
1.003(0.999, 1.006)]. Subgroup analyses revealed stronger effects in children and 
asthma exacerbations associated with other events (including symptoms, lung 
function changes, and medication use as required). 
Conclusion These findings demonstrate that outdoor air pollution significantly 
increases the asthma exacerbation risk in single lag0 and lag1 exposure patterns. 
PROSPERO registration number: CRD42020204097 
(https://www.crd.york.ac.uk/PROSPERO).  
Keywords: Asthma exacerbations, Outdoor air pollution, Air quality index (AQI) 
 

Strengths and limitations of this study 

� We performed a systematic literature search of six databases (with no specified 

start date or language limitation). 

� Secondary references were included. 

� Publication bias was assessed by applying Begg’s and Egger’s tests. 

� This study focused on the association between outdoor air pollution and the 

asthma exacerbation risk in single lag0 and lag1 exposure patterns. 

� There were few available studies regarding the AQI, other events, and death 

analyses.  

 

INTRODUCTION 

Asthma is a common chronic airway inflammatory disease that affects > 300 million 
people worldwide.[1] The global prevalence of clinical/treated asthma in adults is 
4.5%; moreover, it varies among 70 countries by as much as 21-fold.[2] 
Epidemiologic studies have revealed an increasing asthma prevalence; moreover, 
asthma contributes to functional loss, increased healthcare costs, and severe medical 
complications.[3] Asthma exacerbations accelerate disease progression, as well as 
increase the incidence of hospitalizations and deaths.[4] 

Outdoor air pollution has been made more and more attention to the serious 
consequences. Evidence has demonstrated that air pollution could cause critical 
public health problems. A retrospective study of 80, 515 deaths in Beijing during 
2004-2008 has found that a reduction in life expectancy was associated with 
increased air pollution.[5] Several studies have shown that air pollution exposure 
increases the risk of asthma exacerbations.[6, 7, 8]  However, the air pollution 

components are complex, including particulate matter diameter ≤ 2.5 μm (PM2.5), 

particulate matter diameter ≤ 10 μm (PM10), sulfur dioxide (SO2), carbon monoxide 
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(CO), nitrogen dioxide (NO2), ozone (O3), etc. Martinez-Rivera et al. [6] reported 
that a positive association of the levels of NO2, but not SO2 and CO, with the number 
of accident and emergency room (ER) visits and hospitalizations for asthma 
exacerbations. However, another study reported a positive association of SO2, but 
not NO2, levels with pediatric asthma exacerbations. [7] Additionally, Ostro et al.[8] 
reported that new coughing episodes were associated with exposure to PM10, PM2.5, 
and NO2, but not O3. There have been inconsistent findings by studies on different 
pollutants. 

A meta-analysis confirmed an association of the aforementioned six air pollutants 
with significantly increased risks of asthma emergency room visits and 
hospitalizations.[9] However, there are numerous pollutant types to be monitored; 
moreover, each pollutant has different effects on asthma exacerbations. Therefore, 
there is a need for a comprehensive pollution index that can represent the various 
pollutant effect and facilitate estimation of the air pollution level by the general 
public. The air quality index (AQI) is a useful comprehensive index that was adopted 
by the US Environmental Pollution Administration for daily air quality reporting to 
the general public in 1999.[10] The AQI includes sub-indices for PM2.5, PM10, SO2, 
NO2, CO, and O3.[11] Pan et al.[12] reported an association of AQI with an 
increased risk of hospitalizations for childhood asthma. Contrastingly, Letz et al.[13] 
reported no significant correlation of the AQI with the occurrence of ER visits for 
asthma in the basic military trainee population. There have been inconsistent 
findings regarding AQI and the asthma exacerbation risk. Additionally, multiple lag 
estimates, including single and cumulative lags, were selected in the overall analyses 
of the aforementioned meta-analysis. Lag exposure sensitivity analyses have 
employed different single lag patterns for different pollutants.[9] However, there is a 
need to understand whether pollutants contribute to asthma exacerbations on the 
same day or have lag effects. Moreover, other asthma exacerbation outcomes (e. g., 
symptoms) should be considered. 

This systematic review and meta-analysis of time-series and case-crossover 
studies aimed to summarize existing evidence regarding the relationships of various 
pollutants (AQI, PM2.5, PM10, SO2, NO2, CO, and O3) with the asthma exacerbation 
risk (exacerbation-associated outpatient visits; ER visits; hospitalizations; deaths, 
and other events, including symptoms, lung function changes, and medication use as 
needed) in single lag0 and lag1 exposure patterns. 
 

METHODS 

We follow the standardized program: Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses guidelines.[14] There is no review protocol. 
 
Eligibility criteria and search strategy 
The inclusion criteria were as follows: (1) a time-series or case-crossover study with 
original data; (2) asthma exacerbations associated with outpatient visits, ER visits, 
hospitalizations, deaths, or other events (symptoms, lung function changes, and 
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medication use as needed) as outcomes; (3) inclusion of a study population of 
children, adults, or both; (4) using AQI, PM2.5, PM10, SO2, NO2, CO, or O3 as 
measurements for outdoor air pollution; and (5) reporting on the relationship 
between outdoor air pollution and asthma exacerbations. 

The exclusion criteria were: (1) no single-pollutant model; (2) no data regarding 
single lag0 or lag1 exposure patterns; (3) having data that could not be recalculated 
into study-specific relative risks (RRs) and 95% confidence intervals (CIs) to a 

100-unit increase in AQI, a 1 mg/m3 increase in CO, and a 10μg/m3 in the other 

pollutants (PM2.5, PM10, SO2, NO2, and O3) by assuming a linear relationship of all 
pollutants. 

We conducted a systematic literature search of PubMed, Embase, Cochrane 
Library, Web of Science, ClinicalTrials, China National Knowledge Internet, 
Chinese BioMedica, and Wanfang databases until August 1st, 2020 (no start date 
specified and no language limitation). We used a combination of keywords 
associated with the exposure types (e.g., “AQI”) and asthma exacerbation outcomes 
(e.g., “symptom increase”) (see supplementary Table S1 Search strategies for more 
details).  

We excluded irrelevant articles by applying title screening. Articles meeting the 
inclusion criteria were included in the abstract reading. Moreover, we included the 
references of the articles that met the inclusion criteria. Among them, articles that did 
not meet the exclusion criteria were included in this systematic review and 
meta-analysis through full-text reading.  
 
Quality assessment and data extraction 
Quality assessment was conducted based on Mustafic’s study with a maximum score 
of 5.[15] One point was assigned if asthma exacerbations were coded by the 
International Classification of Diseases, American Thoracic Society, National 
Asthma Education or Prevention Program, or International Classification of Primary 
Care 2. One point was assigned if pollutant measurements were performed daily 
with < 25% missing data. One point was assigned if long-term trends, seasonality, 
and temperature were all adjusted. One point was assigned if the humidity or 
day-of-week was adjusted. One point was assigned if influenza epidemics or 
holidays were adjusted.  

Data extraction was performed using a standardized form, including the main 
characteristics (author, publication year, location, subgroup, study population, 
sample size, period, lag pattern, and quality score), outcome measures (asthma 
exacerbations related to outpatient visits; ER visits; hospitalizations; deaths; and 
other events, including symptoms, lung function changes, and medication use as 
needed), exposure measures (AQI, PM2.5, PM10, SO2, NO2, CO, and O3), and the 
study-specific RRs (95%CIs) of the single lag0 or lag1 exposure pattern. Eligible 
studies were examined and their relevant characteristics were independently 
recorded by two authors (XW and JH) in this standardized form. Any disagreements 
were resolved by consensus after discussion with an additional author (YH). When 
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the same population was used in several publications, we only included the largest 
and most complete study.  
 
Statistical analysis and data synthesis 
Standardized effect estimates were expressed as RRs and 95% CIs. The 
study-specific RRs were derived from single-pollutant models reporting RRs or 
percentage changes. We recalculated the study-specific RRs to a 100-unit, 1 mg/m3, 

10μg/m3 increase in AQI, CO, and other pollutants (PM2.5, PM10, SO2, NO2, and O3), 

respectively, by assuming a linear relationship of all pollutants. We calculated the 
summary RRs of the single lag0 and lag1 exposure patterns. Heterogeneity was 
evaluated using the Q and I2-statistics through the random-effect model. An I2 
statistic > 50%, 25%-50%, and < 25% indicates high, moderate, low heterogeneity, 
respectively.[16] Publication bias was assessed using Begg’s and Egger’s tests.[17, 
18] To explore the heterogeneity in our pooled analysis, we applied sensitivity 
analyses based on studies with a quality of 4–5 scores. Various outcome analyses 
were conducted to combine the effects for evaluating differences in outpatient visits, 
ER visits, hospitalizations, deaths, and other events. Moreover, age-based subgroup 
analyses were conducted to evaluate differences between children (0–14 years) and 
adults (> 14 years). Statistical analyses were conducted using Stata/MP 14.0 (Stata, 
College Station, TX, USA). All tests were two-sided; moreover, statistical 
significance was defined as P < 0.05. 
 
Patient and public involvement 
Given the nature of systematic review and meta-analysis, this study lacked patient or 
public involvement. 
 

RESULTS 

Study selection and eligible study characteristics 
We initially identified 1169 articles. After reading the title, abstract, and full text, we 
included 84 articles. Figure 1 presents the approach to study selection. 
  Supplementary Table S2 presents the quality scores and main characteristics of the 
eligible studies.[12, 19-101] The outcomes were asthma exacerbations related to 
outpatient visits (9 studies), ER visits (44 studies), hospitalizations (29 studies), 
deaths (2 studies), and other events (7 studies). Additionally, one study did not 
specify separate data regarding ER visits and hospitalizations[96]; consequently, it 
was classified as ER visits or hospitalization outcomes. Regarding the single lag 
exposure pattern, 68 and 63 studies reported on lag0 and lag1, respectively. 
Regarding the age subgroups, 34 and 21 studies investigated children and adults, 
respectively.  
 
Overall and quality sensitivity analyses 
In overall analyses, air pollutants were associated with significantly increased risks 
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of asthma exacerbations in both of the single lag0 and lag1 exposure patterns [lag0: 
RR (95% CI) (pollutants), 1.057(1.011, 1.103) (AQI), 1.007(1.005, 1.010) (PM2.5), 
1.009(1.005, 1.012) (PM10), 1.010(1.006, 1.014) (NO2), 1.030(1.011, 1.048) (CO), 
1.005(1.002, 1.009) (O3); lag1: RR (95% CI) (pollutants), 1.064(1.022, 1.106) (AQI), 
1.005(1.002, 1.008) (PM2.5), 1.007(1.004, 1.011) (PM10), 1.008(1.004, 1.012) (NO2), 
1.025(1.007, 1.042) (CO), 1.010(1.006, 1.013) (O3)], except for SO2 [lag0: RR 
(95%CI), 1.004(1.000, 1.007); lag1: RR (95%CI), 1.003(0.999, 1.006)] (Table 1). 
The study-specific RRs presented high heterogeneity for all pollutants except for CO 
in the single lag1 exposure pattern. Table 1 shows the p values of Begg’s and Egger’s 
tests. There was no publication bias for AQI, PM2.5, NO2, and CO in the lag0 pattern, 
as well as AQI, PM2.5, SO2, and NO2 in the lag1 pattern. Supplementary Figure S1 
shows the forest plot for the association between air pollutants and asthma 
exacerbations while Supplementary Figure S2 shows Begg’s funnel plot. 
 
 
Table 1. Relationships between air pollutants and asthma exacerbations in 
overall and quality sensitivity analyses 
Characteristics Air pollutants (incremental unit) 

AQI 

(100units) 

PM2.5 (10μ

g/m3) 

PM10 (10μ

g/m3) 

SO2 (10μ

g/m3) 

NO2 (10μ

g/m3) 

CO 

(1mg/m3) 

O3 (10μg/m3) 

Overall 

analyses with 

lag0 exposure a 

       

  Number of 

the studies 

4 27 27 31 28 14 33 

  RR (95%CI) 1.057(1.011, 

1.103) 

1.007(1.005, 

1.010) 

1.009(1.005, 

1.012) 

1.004(1.000, 

1.007) 

1.010(1.006, 

1.014) 

1.030(1.011, 

1.048) 

1.005(1.002, 

1.009) 

  I2, % 95.8 80.0 85.1 58.6 68.3 64.3 86.1 

  Begg’s test, 

p value 

0.308 0.687 0.664 0.026 0.631 0.322 0.015 

  Egger’s test, 

p value 

0.331 0.061 0.021 0.007 0.519 0.114 0.042 

Quality 

sensitivity 

analyses with 

lag0 exposure a 

       

  Number of 

the studies 

3 16 18 19 19 9 23 

  RR (95%CI) 1.018(0.998, 

1.038) 

1.007(1.004, 

1.010) 

1.006(1.003, 

1.009) 

1.006(0.998, 

1.013) 

1.009(1.006, 

1.013) 

1.017(1.002, 

1.031) 

1.006(1.002,1.010) 

  I2, % 78.5 87.7 65.7 72.3 51.8 46.8 90.4 

  Begg’s test, 

p value 

1.000 0.940 0.889 0.085 0.496 0.917 0.047 

  Egger’s test, 0.837 0.156 0.247 0.072 0.595 0.867 0.066 
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p value 

Overall 

analyses with 

lag1 exposure b 

       

  Number of 

the studies 

4 24 27 31 27 17 35 

  RR (95%CI) 1.064(1.022, 

1.106) 

1.005(1.002, 

1.008) 

1.007(1.004, 

1.011) 

1.003(0.999, 

1.006) 

1.008(1.004, 

1.012) 

1.025(1.007, 

1.042) 

1.010(1.006, 

1.013) 

  I2, % 96.1 85.6 83.5 56.9 68.2 41.7 86.5 

  Begg’s test, 

p value 

0.308 0.835 0.253 0.478 0.168 0.124 0.059 

  Egger’s test, 

p value 

0.252 0.883 0.002 0.088 0.068 0.006 0.008 

Quality 

sensitivity 

analyses with 

lag1 exposure b 

       

  Number of 

the studies 

3 18 19 24 20 13 25 

  RR (95%CI) 1.022(1.000, 

1.043) 

1.005(1.003, 

1.008) 

1.006(1.003, 

1.009) 

1.002(0.998, 

1.006) 

1.009(1.005, 

1.013) 

1.011(1.002, 

1.020) 

1.009(1.005, 

1.013) 

  I2, % 86.5 85.4 70.3 58.0 62.4 2.0 87.5 

  Begg’s test, 

p value 

1.000 0.928 0.778 0.333 0.441 0.202 0.116 

  Egger’s test, 

p value 

0.674 0.989 0.042 0.145 0.052 0.055 0.036 

Abbreviations: PM2.5, particulate matter diameter ≤ 2.5 μm; PM10, particulate matter diameter ≤ 2.5 μm; RR, relative risk. 

a lag0 exposure, single lag0 exposure. 

b lag1 exposure, single lag1 exposure. 

 
  Moreover, quality sensitivity analyses revealed a significant positive association 
of PM2.5, PM10, NO2, CO, and O3 with asthma exacerbations risks in both single lag0 
and lag1 exposure patterns (Table 1). The study-specific RRs showed high 
heterogeneity for all pollutants except for CO. Publication bias was detected with 
Begg’s test for O3 in the lag0 pattern and Egger’s tests for PM10 and O3 in the lag1 
pattern (Table 1). Supplementary Figure S3 shows the forest plot for relationships 
between air pollutants and asthma exacerbations while supplementary Figure S4 
shows Begg’s funnel plot. 
 
Various outcome and age subgroup analyses 
Various outcome analyses revealed more pronounced relationships for other event 
outcomes [lag0: RR (95% CI) (pollutants), 1.201(1.155, 1.247) (AQI), 1.047(1.024, 
1.069) (PM2.5), 1.119(1.018, 1.220) (PM10), 1.033(1.000, 1.066) (NO2), 1.124(1.051, 
1.197) (CO); lag1: RR (95% CI) (pollutants), 1.204(1.158, 1.251) (AQI), 
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1.080(1.010, 1.150) (PM2.5), 1.122(1.015, 1.230) (PM10), 1.046(1.013, 1.079) (NO2), 
1.155(1.037, 1.274) (CO)], except for SO2 and O3. Supplementary Table S3 presents 
details regarding the relationship between air pollutants and asthma exacerbations in 
various outcomes analyses. Supplementary Figure S1 shows the forest plot. 
  Age-based subgroup analyses revealed stronger relations in children than in adults, 
except for NO2 in the lag1 pattern and O3 in both patterns. There was no tendency 
toward a stronger relation for AQI given the AQI adult subgroup lacked eligible 
studies. Supplementary Table S3 presents the details regarding the relationship 
between air pollutants and asthma exacerbations in various outcomes and age 
subgroup analyses. Figure 2 and 3 shows the forest plot. 
   

DISCUSSION 

Summary of evidence 
Our study provides novel evidence that air pollution exposure significantly increases 
the asthma exacerbation risk; specifically, AQI, PM2.5, PM10, NO2, CO, and O3 
contribute to asthma exacerbations with single lag0 and lag1 exposure patterns. This 
suggests that these pollutants cause asthma exacerbations on the day of air pollution 
onset. Moreover, the AQI may be a good index representing the asthma exacerbation 
risk during air pollution. Mechanisms underlying the association of air pollution with 
asthma exacerbations include stimulation of airway epithelium and inflammatory 
cells, oxidative stress responses, respiratory cells, respiratory reflex responses, and 
epigenetic modifications.[102] Exposure to PM modulates the airway epithelium and 
promotes the production of several cytokines, including IL-1, IL-6, IL-8, IL-25, 

IL-33, TNF-α, and GM-CSF.[103] In a mouse model, there was an ozone-induced 

increase in bronchoalveolar lavage (BAL) levels of IL-23, which is an important 
cytokine for IL-17A+ cell recruitment and activation, at 24 h after ozone exposure (2 

ppm for 3 h).[104] Willart et al.[105] reported an increase in lung IL-1α levels in 

naïve mice at 2 h and 24 h after exposure. Another study reported an increase in IL-1

αlevels within the first 24 h after ozone exposure (1 ppm for 1 h).[106] A study 

assessed sensitized mice before (0 h) and 1, 6, 12, 24, and 72 h after exposure and 
reported that the 12- and 24-h group had the highest cytokine levels and cell counts 
in BAL fluid.[107] Diesel exhaust particles were found to induce an increase in 
IL-17A levels in primary bronchial epithelial cells of patients with asthma at 2 
post-exposure hours.[108] Moreover, Zhang et al.[109] reported that diesel exhaust 
particles induced increased TET1 expression in human bronchial epithelial cells at 1 
post-exposure hour. Therefore, in case air pollution exposure cannot be avoided, 
patients with asthma should employ adequate strategies (including asthma 
medications) to reduce damage on the same day.  

In lag0 and lag1 exposure patterns, we found that the RRs of air pollution and 
asthma exacerbations related to other events (including symptoms, lung function 
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changes, and medication use as needed) were much higher than those of outpatient 
visits, ER visits, hospitalizations, and deaths. There has been no study on the 
relationship between outdoor air pollution and other events, as well as outpatient 
visits, ER visits, hospitalizations, or deaths within the same population. However, a 
prospective case-control study on children reported an association of AQI, PM2.5, 
NO2, and O3 with increased expression of multiple inflammatory airway epithelial 
responses, as well as a decline in FEV1%predicted in the lead up to clinical asthma 
exacerbations on the exacerbation-onset day without a viral trigger.[110] Pan et 
al.[12] reported a positive correlation between AQI and childhood asthma 
hospitalizations that appeared and peaked on lag3 and lag9 days, respectively. 
Additionally, there are positive correlations of asthma deaths with PM2.5[32] on lag3 
day or SO2 and NO2

79 on lag2 day. This could be attributed to changes in symptoms 
and lung function being the initial manifestations of airway inflammation caused by 
air pollution. Subsequently, patients use relief medications for these changes and if 
they do not improve, they seek medical help and are recorded as outpatient visits, ER 
visits, or hospitalizations. Therefore, when patients with asthma present with 
symptoms or lung function changes during air pollution, they should receive active 
treatment to block asthma exacerbation progression.  

It has been confirmed that children with asthma were more susceptible to outdoor 
air pollution. This could be attributed to immature lung growth and host-defense 
capacity in children.[9] Since children spend more time outdoors than adults, they 
inhale more air pollutants per pound of body weight.[111] Additionally, children may 
have low symptom tolerance and parents may be more active in taking their children 
to hospitals.  
 
Validity of results 
This study has several strengths, including identification of potential articles based 
on a systematic literature search of six databases (no start date specified and no 
language limitation) and inclusion of secondary references. Furthermore, two authors 
examined the eligible studies based on the inclusion and exclusion criteria followed 
by independent data extraction using a priori set method in the standardized form. 
Finally, any disagreements were discussed together with a third author. 
 
Limitations 
This study has several limitations. First, there were few available studies for the AQI, 
other events, and death analyses. Therefore, findings regarding the AQI, deaths, and 
other events analyses should be cautiously interpreted. Second, there was a high 
heterogeneity degree in most analyses. This might be associated with varying study 
outcomes and design qualities. Nonetheless, we reduced the heterogeneity degrees in 
quality sensitivity and various outcome analyses.  
 

CONCLUSIONS 

This systematic review and meta-analysis provides new evidence indicating that air 
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pollution exposure significantly increases the asthma exacerbation risk. Specifically, 
AQI, PM2.5, PM10, NO2, CO, and O3 contribute to asthma exacerbations with single 
lag0 and lag1 exposure patterns. In case air pollution exposure cannot be avoided, 
patients with asthma should employ adequate strategies (including asthma 
medications) to reduce same-day damage. 
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Subtotal  (I-squared = 0.0%, p = 0.801)

ID

Adults

Halonen JI20, 2008, (Finland)

Yamazaki S48, 2013, (Japan), Fall

Children

Study

1.010 (1.007, 1.014)

1.005 (1.002, 1.008)

1.054 (0.991, 1.118)

1.009 (1.004, 1.013)

1.012 (1.001, 1.021)

0.998 (0.882, 1.129)

1.005 (1.004, 1.006)

0.993 (0.979, 1.034)

0.958 (0.776, 1.182)

1.035 (1.023, 1.047)

1.042 (1.017, 1.069)

1.070 (1.010, 1.140)

1.001 (1.000, 1.002)

1.039 (0.883, 1.222)

1.006 (1.005, 1.008)

1.029 (1.019, 1.038)

1.032 (1.025, 1.039)

RR (95% CI)

1.006 (0.958, 1.056)

0.991 (0.885, 1.109)

100.00

82.63

0.31

15.07

7.72

0.08

19.56

1.54

0.03

6.08

1.71

0.29

19.56

0.04

19.19

8.21

17.37

Weight

0.51

0.10

%

1.010 (1.007, 1.014)

1.005 (1.002, 1.008)

1.054 (0.991, 1.118)

1.009 (1.004, 1.013)

1.012 (1.001, 1.021)

0.998 (0.882, 1.129)

1.005 (1.004, 1.006)

0.993 (0.979, 1.034)

0.958 (0.776, 1.182)

1.035 (1.023, 1.047)

1.042 (1.017, 1.069)

1.070 (1.010, 1.140)

1.001 (1.000, 1.002)

1.039 (0.883, 1.222)

1.006 (1.005, 1.008)

1.029 (1.019, 1.038)

1.032 (1.025, 1.039)

RR (95% CI)

1.006 (0.958, 1.056)

0.991 (0.885, 1.109)

100.00

82.63

0.31

15.07

7.72

0.08

19.56

1.54

0.03

6.08

1.71

0.29

19.56

0.04

19.19

8.21

17.37

Weight

0.51

0.10

%

  
1.75 1 1.25
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(C) 

(D) 

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 86.5%, p = 0.000)

Yamazaki S48, 2013, (Japan), Winter

Subtotal  (I-squared = 83.1%, p = 0.000)

Subtotal  (I-squared = 0.0%, p = 0.753)

Krmpotic D64,  2011, (Croatia)

Yamazaki S48, 2013, (Japan), Spring

Pothirat C41, 2016, (Tailand)

Adults

Jalaludin B43, 2008, (Australia)

Yamazaki S48, 2013, (Japan), Summer

Cadelis G37, 2014, (France), Dust-free

Slaughter JC74, 2003, (USA)

Morgan G66, 2010, (Australia)

Ye F75, 2001, (Japan)

Yamazaki S48, 2013, (Japan), Fall

Yu O79, 2000, (USA)

Cadelis G37, 2014, (France), Dust-affected

Samoli E58, 2011, (Greece)

ID

Children

Morgan G66, 2010, (Australia)

Study

1.018 (1.003, 1.033)

1.022 (0.902, 1.158)

1.027 (1.002, 1.052)

1.003 (1.001, 1.004)

0.989 (0.942, 1.044)

0.988 (0.936, 1.043)

1.010 (0.970, 1.040)

1.018 (1.011, 1.026)

0.968 (0.818, 1.146)

1.011 (0.941, 1.046)

1.060 (1.000, 1.090)

0.994 (0.966, 1.022)

1.003 (1.001, 1.004)

0.971 (0.900, 1.047)

1.090 (1.010, 1.180)

1.091 (1.071, 1.111)

1.025 (1.001, 1.051)

RR (95% CI)

0.991 (0.964, 1.018)

100.00

1.23

65.10

34.90

5.17

4.87

7.59

12.61

0.78

4.99

5.96

8.93

13.01

3.13

2.49

10.56

9.54

Weight

9.13

%

1.018 (1.003, 1.033)

1.022 (0.902, 1.158)

1.027 (1.002, 1.052)

1.003 (1.001, 1.004)

0.989 (0.942, 1.044)

0.988 (0.936, 1.043)

1.010 (0.970, 1.040)

1.018 (1.011, 1.026)

0.968 (0.818, 1.146)

1.011 (0.941, 1.046)

1.060 (1.000, 1.090)

0.994 (0.966, 1.022)

1.003 (1.001, 1.004)

0.971 (0.900, 1.047)

1.090 (1.010, 1.180)

1.091 (1.071, 1.111)

1.025 (1.001, 1.051)

RR (95% CI)

0.991 (0.964, 1.018)

100.00

1.23

65.10

34.90

5.17

4.87

7.59

12.61

0.78

4.99

5.96

8.93

13.01

3.13

2.49

10.56

9.54

Weight

9.13

%

  
1.75 1 1.25

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 64.1%, p = 0.000)

Children

Abe T39, 2009, (Japan)

Subtotal  (I-squared = 53.9%, p = 0.034)

Kim S19, 2012, (Korea)

ID

Petroeschevsky A62, 2001, (Australia)

Tenias JM27, 1998, (Spain)

Sunyer J95, 2003, (Europa)

Smargiassi A92, 2009, (Canada)

Sunyer J95, 2003, (Europa)

Petroeschevsky A62, 2001, (Australia)

Yu O79, 2000, (USA)

Cassino C35, 1999, (USA)

Mohr LB29, 2008, (USA), Spring

Smargiassi A92, 2009, (Canada)

Mohr LB29, 2008, (USA), Winter

Samoli E58, 2011, (Greece)

Castellsague J30� 1995, (Spain), Summer

Jalaludin B43, 2008, (Australia)

Subtotal  (I-squared = 63.8%, p = 0.001)

Adults

Abe T39, 2009, (Japan)

Castellsague J30� 1995, (Spain), Winter

Mohr LB29, 2008, (USA), Summer

Mohr LB29, 2008, (USA), Fall

Study

1.009 (0.999, 1.018)

0.996 (0.982, 1.010)

0.999 (0.984, 1.013)

1.559 (0.997, 2.203)

RR (95% CI)

1.028 (0.990, 1.070)

1.076 (0.936, 1.224)

1.000 (0.991, 1.010)

1.072 (1.012, 1.133)

1.013 (1.004, 1.022)

0.979 (0.965, 0.994)

1.024 (0.965, 1.094)

0.977 (0.938, 1.019)

0.997 (0.979, 1.017)

1.169 (1.024, 1.349)

1.010 (0.986, 1.035)

1.060 (1.009, 1.113)

1.021 (0.992, 1.052)

1.070 (1.030, 1.104)

1.015 (1.003, 1.027)

1.008 (0.967, 1.049)

1.008 (0.984, 1.034)

0.997 (0.976, 1.017)

1.003 (0.983, 1.021)

100.00

8.88

37.79

0.02

Weight

3.70

0.41

9.92

2.00

10.02

8.75

1.80

3.64

7.63

0.33

6.33

2.54

5.22

4.10

62.21

3.58

6.22

7.26

7.63

%

1.009 (0.999, 1.018)

0.996 (0.982, 1.010)

0.999 (0.984, 1.013)

1.559 (0.997, 2.203)

RR (95% CI)

1.028 (0.990, 1.070)

1.076 (0.936, 1.224)

1.000 (0.991, 1.010)

1.072 (1.012, 1.133)

1.013 (1.004, 1.022)

0.979 (0.965, 0.994)

1.024 (0.965, 1.094)

0.977 (0.938, 1.019)

0.997 (0.979, 1.017)

1.169 (1.024, 1.349)

1.010 (0.986, 1.035)

1.060 (1.009, 1.113)

1.021 (0.992, 1.052)

1.070 (1.030, 1.104)

1.015 (1.003, 1.027)

1.008 (0.967, 1.049)

1.008 (0.984, 1.034)

0.997 (0.976, 1.017)

1.003 (0.983, 1.021)

100.00

8.88

37.79

0.02

Weight

3.70

0.41

9.92

2.00

10.02

8.75

1.80

3.64

7.63

0.33

6.33

2.54

5.22

4.10

62.21

3.58

6.22

7.26

7.63

%

  
1.8 1 1.2 1.4
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(E) 

(F) 

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 39.3%, p = 0.049)

Tenias JM27, 1998, (Spain)

Castellsague J30� 1995, (Spain), Winter

Castellsague J30� 1995, (Spain), Summer

Adults

Morgan G69, 1998, (Australia)

Yamazaki S48, 2013, (Japan), Summer

Thompson AJ68, 2001, (Ireland)

ID

Cassino C35, 1999, (USA)

Anderson HR60, 1998, (UK)

Mehta AJ51, 2012, (Switzerland)

Petroeschevsky A62, 2001, (Australia)

Samoli E58, 2011, (Greece)

Morgan G69, 1998, (Australia)

Jalaludin B43, 2008, (Australia)

Subtotal  (I-squared = 49.9%, p = 0.036)

Yamazaki S48, 2013, (Japan), Fall

Halonen JI20, 2008, (Finland)

Yamazaki S48, 2013, (Japan), Spring

Subtotal  (I-squared = 23.8%, p = 0.248)

Yamazaki S48, 2013, (Japan), Winter

Children

Study

1.009 (1.004, 1.015)

1.066 (0.989, 1.149)

1.022 (1.004, 1.042)

1.018 (1.004, 1.032)

1.007 (0.991, 1.022)

1.054 (0.784, 1.592)

1.039 (1.015, 1.063)

RR (95% CI)

0.990 (0.951, 1.029)

1.005 (0.999, 1.011)

1.019 (0.849, 1.223)

0.988 (0.974, 1.002)

1.011 (0.993, 1.029)

1.009 (0.995, 1.025)

1.012 (1.007, 1.016)

1.008 (0.998, 1.018)

1.061 (0.895, 1.300)

0.999 (0.968, 1.032)

0.942 (0.802, 1.149)

1.010 (1.003, 1.018)

0.939 (0.808, 1.126)

100.00

0.50

6.53

9.74

8.61

0.02

4.57

Weight

1.97

18.61

0.09

9.74

7.06

8.97

20.44

53.93

0.08

2.81

0.11

46.07

0.13

%

1.009 (1.004, 1.015)

1.066 (0.989, 1.149)

1.022 (1.004, 1.042)

1.018 (1.004, 1.032)

1.007 (0.991, 1.022)

1.054 (0.784, 1.592)

1.039 (1.015, 1.063)

RR (95% CI)

0.990 (0.951, 1.029)

1.005 (0.999, 1.011)

1.019 (0.849, 1.223)

0.988 (0.974, 1.002)

1.011 (0.993, 1.029)

1.009 (0.995, 1.025)

1.012 (1.007, 1.016)

1.008 (0.998, 1.018)

1.061 (0.895, 1.300)

0.999 (0.968, 1.032)

0.942 (0.802, 1.149)

1.010 (1.003, 1.018)

0.939 (0.808, 1.126)

100.00

0.50

6.53

9.74

8.61

0.02

4.57

Weight

1.97

18.61

0.09

9.74

7.06

8.97

20.44

53.93

0.08

2.81

0.11

46.07

0.13

%

  
1.75 1 1.25

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 68.7%, p = 0.001)

Abe T39, 2009, (Japan)

Yu O79, 2000, (USA)

Subtotal  (I-squared = 58.2%, p = 0.091)

Krmpotic D64,  2011, (Croatia)

ID

Children

Halonen JI20, 2008, (Finland)

Abe T39, 2009, (Japan)

Jalaludin B43, 2008, (Australia)

Slaughter JC74, 2003, (USA)

Fletcher T67, 2000, (Brazil)

Subtotal  (I-squared = 67.1%, p = 0.010)

Adults

Cassino C35, 1999, (USA)

Study

1.030 (1.007, 1.052)

1.019 (0.985, 1.053)

1.176 (1.024, 1.360)

1.111 (0.937, 1.286)

1.321 (1.013, 1.705)

RR (95% CI)

0.938 (0.836, 1.045)

1.151 (1.053, 1.249)

1.025 (1.017, 1.034)

1.112 (1.038, 1.200)

1.009 (0.998, 1.022)

1.022 (1.002, 1.041)

0.940 (0.760, 1.160)

100.00

19.13

1.75

6.35

0.43

Weight

4.17

4.67

31.76

6.41

30.43

93.65

1.25

%

1.030 (1.007, 1.052)

1.019 (0.985, 1.053)

1.176 (1.024, 1.360)

1.111 (0.937, 1.286)

1.321 (1.013, 1.705)

RR (95% CI)

0.938 (0.836, 1.045)

1.151 (1.053, 1.249)

1.025 (1.017, 1.034)

1.112 (1.038, 1.200)

1.009 (0.998, 1.022)

1.022 (1.002, 1.041)

0.940 (0.760, 1.160)

100.00

19.13

1.75

6.35

0.43

Weight

4.17

4.67

31.76

6.41

30.43

93.65

1.25

%

  
1.6 1 1.4
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(G) 
 

NOTE: Weights are from random effects analysis

.

.
Overall  (I-squared = 80.7%, p = 0.000)

Jalaludin B43, 2008, (Australia)

Medina S70, 1997, (France)

Mohr LB29, 2008, (USA), Summer

Zu K94, 2017, (USA)

Yamazaki S48, 2013, (Japan), Winter

Yamazaki S48, 2013, (Japan), Spring

Mohr LB29, 2008, (USA), Fall
Mohr LB29, 2008, (USA), Winter

Gleason JA55, 2014, (USA)

Cassino C35, 1999, (USA)

Subtotal  (I-squared = 81.5%, p = 0.000)

Hajat S21, 1999, (UK)

Morgan G69, 1998, (Australia)

Subtotal  (I-squared = 81.3%, p = 0.000)

Anderson HR60, 1998, (UK)

Yamazaki S48, 2013, (Japan), Summer

ID

Thompson AJ68, 2001, (Ireland)

Szyszkowicz M25� 2008, (Canada)

Castellsague J30� 1995, (Spain), Winter

Adults

Lee SW28, 2019, (Korea)

Zu K94, 2017, (USA)

Castellsague J30� 1995, (Spain), Summer

Mar TF36, 2009, (USA)

Mohr LB29, 2008, (USA), Spring

Yamazaki S48, 2013, (Japan), Fall

Children

Glad JA82, 2012, (USA)

Samoli E58, 2011, (Greece)

Study

1.005 (1.000, 1.011)

1.003 (1.001, 1.006)

1.032 (0.982, 1.113)

0.981 (0.953, 1.014)

1.004 (1.000, 1.009)

0.955 (0.857, 1.081)

1.001 (0.929, 1.087)

1.005 (0.977, 1.032)
1.023 (0.986, 1.065)

1.015 (1.012, 1.018)

0.957 (0.917, 1.007)

1.006 (0.996, 1.017)

0.984 (0.975, 0.995)

1.004 (0.996, 1.013)

1.004 (0.997, 1.011)

1.001 (0.993, 1.009)

1.055 (0.969, 1.157)

RR (95% CI)

0.977 (0.953, 1.005)

1.028 (1.013, 1.043)

1.022 (0.999, 1.046)

1.045 (1.030, 1.060)

1.008 (1.001, 1.015)

0.996 (0.976, 1.018)

0.995 (0.972, 1.019)

1.033 (1.005, 1.065)

0.993 (0.904, 1.103)

0.997 (0.987, 1.007)

0.969 (0.934, 1.005)

100.00

8.81

0.63

2.31

8.45

0.22

0.44

2.68
1.53

8.74

1.23

39.54

6.85

7.33

60.46

7.49

0.32

Weight

2.89

5.28

3.30

5.28

7.79

3.79

3.30

2.36

0.28

6.85

1.82

%

1.005 (1.000, 1.011)

1.003 (1.001, 1.006)

1.032 (0.982, 1.113)

0.981 (0.953, 1.014)

1.004 (1.000, 1.009)

0.955 (0.857, 1.081)

1.001 (0.929, 1.087)

1.005 (0.977, 1.032)
1.023 (0.986, 1.065)

1.015 (1.012, 1.018)

0.957 (0.917, 1.007)

1.006 (0.996, 1.017)

0.984 (0.975, 0.995)

1.004 (0.996, 1.013)

1.004 (0.997, 1.011)

1.001 (0.993, 1.009)

1.055 (0.969, 1.157)

RR (95% CI)

0.977 (0.953, 1.005)

1.028 (1.013, 1.043)

1.022 (0.999, 1.046)

1.045 (1.030, 1.060)

1.008 (1.001, 1.015)

0.996 (0.976, 1.018)

0.995 (0.972, 1.019)

1.033 (1.005, 1.065)

0.993 (0.904, 1.103)

0.997 (0.987, 1.007)

0.969 (0.934, 1.005)

100.00

8.81

0.63

2.31

8.45

0.22

0.44

2.68
1.53

8.74

1.23

39.54

6.85

7.33

60.46

7.49

0.32

Weight

2.89

5.28

3.30

5.28

7.79

3.79

3.30

2.36

0.28

6.85

1.82

%

  
1.85 1 1.15
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(A) 

(B) 

NOTE: Weights are from random effects analysis

.

Overall  (I-squared = 0.0%, p = 0.911)

Subtotal  (I-squared = 0.0%, p = 0.911)

Zhu L98, 2015, (China)

Study

ID

Children

Pan R12, 2020, (China)

1.015 (1.009, 1.021)

1.015 (1.009, 1.021)

1.015 (1.009, 1.021)

RR (95% CI)

1.014 (0.998, 1.031)

100.00

100.00

88.32

%

Weight

11.68

1.015 (1.009, 1.021)

1.015 (1.009, 1.021)

1.015 (1.009, 1.021)

RR (95% CI)

1.014 (0.998, 1.031)

100.00

100.00

88.32

%

Weight

11.68

  
1.95 1 1.05

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 87.7%, p = 0.000)

Tian Y56, 2017, (China)

Adults

Evans KA54, 2014, (USA)

Subtotal  (I-squared = 96.1%, p = 0.000)

Study

Glad JA82, 2012, (USA)

Lin M86, 2002, (Canada), Male

Halonen JI20, 2008, (Finland)

Jalaludin B43, 2008, (Australia)

Lin M86, 2002, (Canada), Female

Slaughter JC74, 2003, (USA)

Lavigne E45, 2012, (Canada)

Tian Y56, 2017, (China)

Tian Y56, 2017, (China)

Gleason JA55, 2014, (USA)

ID

Children

Subtotal  (I-squared = 0.0%, p = 0.450)

1.006 (1.003, 1.010)

1.000 (0.998, 1.001)

0.967 (0.450, 1.750)

1.005 (1.001, 1.009)

1.023 (0.982, 1.064)

1.000 (0.968, 1.043)

0.999 (0.953, 1.048)

1.017 (1.008, 1.027)

0.989 (0.946, 1.043)

1.080 (1.010, 1.150)

0.909 (0.697, 1.121)

1.008 (1.007, 1.009)

1.005 (1.004, 1.006)

1.012 (1.000, 1.024)

RR (95% CI)

1.014 (1.007, 1.021)

100.00

26.22

0.00

80.74

%

0.79

0.94

0.59

9.77

0.57

0.28

0.03

26.86

26.86

7.07

Weight

19.26

1.006 (1.003, 1.010)

1.000 (0.998, 1.001)

0.967 (0.450, 1.750)

1.005 (1.001, 1.009)

1.023 (0.982, 1.064)

1.000 (0.968, 1.043)

0.999 (0.953, 1.048)

1.017 (1.008, 1.027)

0.989 (0.946, 1.043)

1.080 (1.010, 1.150)

0.909 (0.697, 1.121)

1.008 (1.007, 1.009)

1.005 (1.004, 1.006)

1.012 (1.000, 1.024)

RR (95% CI)

1.014 (1.007, 1.021)

100.00

26.22

0.00

80.74

%

0.79

0.94

0.59

9.77

0.57

0.28

0.03

26.86

26.86

7.07

Weight

19.26

  
1.75 1 1.25
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(C) 

(D) 

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 45.3%, p = 0.058)

Lee JT73� 2002, (Korea)

Jalaludin B43, 2008, (Australia)

Subtotal  (I-squared = 46.5%, p = 0.070)

Yu O79, 2000, (USA)

Hajat S21, 1999, (UK)

Study

Lin M86, 2002, (Canada), Female

Subtotal  (I-squared = 3.8%, p = 0.308)

Morgan G66, 2010, (Australia)

Slaughter JC74, 2003, (USA)

Pothirat C41, 2016, (Tailand)

Lin M86, 2002, (Canada), Male

Adults

ID

Children

Morgan G66, 2010, (Australia)

1.012 (1.003, 1.020)

1.017 (1.010, 1.027)

1.014 (1.008, 1.022)

1.014 (1.005, 1.023)

1.110 (1.030, 1.200)

1.012 (0.997, 1.029)

0.993 (0.959, 1.027)

0.998 (0.978, 1.019)

0.987 (0.961, 1.017)

1.050 (0.990, 1.080)

1.010 (0.980, 1.040)

1.020 (0.993, 1.047)

RR (95% CI)

0.989 (0.962, 1.016)

100.00

22.99

24.82

86.20

0.97

14.53

%

5.18

13.80

7.06

3.20

6.34

7.46

Weight

7.46

1.012 (1.003, 1.020)

1.017 (1.010, 1.027)

1.014 (1.008, 1.022)

1.014 (1.005, 1.023)

1.110 (1.030, 1.200)

1.012 (0.997, 1.029)

0.993 (0.959, 1.027)

0.998 (0.978, 1.019)

0.987 (0.961, 1.017)

1.050 (0.990, 1.080)

1.010 (0.980, 1.040)

1.020 (0.993, 1.047)

RR (95% CI)

0.989 (0.962, 1.016)

100.00

22.99

24.82

86.20

0.97

14.53

%

5.18

13.80

7.06

3.20

6.34

7.46

Weight

7.46

  
1.75 1 1.25

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 23.2%, p = 0.185)

Ueda K72, 2010, (Japan)

Hajat S21, 1999, (UK)

Kim S19, 2012, (Korea)

Subtotal  (I-squared = 79.1%, p = 0.029)

ID

Smargiassi A92, 2009, (Canada)

Study

Lavigne E45, 2012, (Canada)

Cassino C35, 1999, (USA)

Subtotal  (I-squared = 11.9%, p = 0.320)

Mei L77, 2004, (Canada), Female-low

Lin M87, 2003, (Canada), Male

Mei L77, 2004, (Canada), Female-high

Smargiassi A92, 2009, (Canada)

Lin M87, 2003, (Canada), Female

Adults

Children

Anderson HR60, 1998, (UK)

Jalaludin B43, 2008, (Australia)

Yu O79, 2000, (USA)

Mei L77, 2004, (Canada), Male-low

Evans KA54, 2014, (USA)

Mei L77, 2004, (Canada), Male-high

1.017 (1.005, 1.029)

0.988 (0.887, 1.131)

1.027 (1.001, 1.054)

1.689 (1.115, 2.353)

1.271 (0.606, 1.935)

RR (95% CI)

1.048 (0.988, 1.120)

1.089 (0.911, 1.267)

0.996 (0.957, 1.043)

1.015 (1.005, 1.025)

1.053 (0.947, 1.170)

1.000 (0.975, 1.025)

1.074 (0.957, 1.202)

0.988 (0.986, 1.133)

1.021 (0.985, 1.055)

1.006 (1.001, 1.011)

1.052 (1.017, 1.083)

1.024 (0.965, 1.098)

1.021 (0.936, 1.106)

1.125 (0.875, 1.450)

1.032 (0.947, 1.128)

100.00

0.93

12.88

0.04

6.37

Weight

3.00

%

0.45

6.33

93.63

1.11

13.84

0.93

2.46

8.76

33.05

9.55

2.96

1.87

0.17

1.66

1.017 (1.005, 1.029)

0.988 (0.887, 1.131)

1.027 (1.001, 1.054)

1.689 (1.115, 2.353)

1.271 (0.606, 1.935)

RR (95% CI)

1.048 (0.988, 1.120)

1.089 (0.911, 1.267)

0.996 (0.957, 1.043)

1.015 (1.005, 1.025)

1.053 (0.947, 1.170)

1.000 (0.975, 1.025)

1.074 (0.957, 1.202)

0.988 (0.986, 1.133)

1.021 (0.985, 1.055)

1.006 (1.001, 1.011)

1.052 (1.017, 1.083)

1.024 (0.965, 1.098)

1.021 (0.936, 1.106)

1.125 (0.875, 1.450)

1.032 (0.947, 1.128)

100.00

0.93

12.88

0.04

6.37

Weight

3.00

%

0.45

6.33

93.63

1.11

13.84

0.93

2.46

8.76

33.05

9.55

2.96

1.87

0.17

1.66

  
1.6 1 1.4 2
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(E) 

(F) 

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 18.7%, p = 0.250)

ID

Lin M87, 2003, (Canada), Female

Mei L77, 2004, (Canada), Male-high

Petroeschevsky A62, 2001, (Australia)

Adults

Mei L77, 2004, (Canada), Male-low

Cassino C35, 1999, (USA)

Lin M87, 2003, (Canada), Male

Mei L77, 2004, (Canada), Female-low

Jalaludin B43, 2008, (Australia)

Mei L77, 2004, (Canada), Female-high

Halonen JI20, 2008, (Finland)

Children

Mehta AJ51, 2012, (Switzerland)

Lavigne E45, 2012, (Canada)

Hajat S21, 1999, (UK)

Subtotal  (I-squared = 7.6%, p = 0.372)

Ueda K72, 2010, (Japan)

Subtotal  (I-squared = 0.0%, p = 0.393)

Study

1.008 (1.002, 1.014)

RR (95% CI)

0.996 (0.965, 1.027)

1.030 (0.962, 1.105)

0.992 (0.975, 1.009)

1.098 (1.030, 1.173)

1.013 (0.974, 1.058)

1.018 (0.996, 1.044)

1.053 (0.970, 1.143)

1.007 (1.003, 1.010)

1.008 (0.925, 1.098)

1.007 (0.991, 1.024)

0.953 (0.878, 1.036)

1.056 (0.944, 1.178)

1.012 (1.002, 1.023)

1.009 (1.004, 1.014)

1.023 (0.966, 1.045)

0.993 (0.978, 1.009)

100.00

Weight

3.69

0.74

10.40

0.74

2.09

5.86

0.51

41.21

0.51

10.89

0.61

0.28

20.11

86.90

2.35

13.10

%

1.008 (1.002, 1.014)

RR (95% CI)

0.996 (0.965, 1.027)

1.030 (0.962, 1.105)

0.992 (0.975, 1.009)

1.098 (1.030, 1.173)

1.013 (0.974, 1.058)

1.018 (0.996, 1.044)

1.053 (0.970, 1.143)

1.007 (1.003, 1.010)

1.008 (0.925, 1.098)

1.007 (0.991, 1.024)

0.953 (0.878, 1.036)

1.056 (0.944, 1.178)

1.012 (1.002, 1.023)

1.009 (1.004, 1.014)

1.023 (0.966, 1.045)

0.993 (0.978, 1.009)

100.00

Weight

3.69

0.74

10.40

0.74

2.09

5.86

0.51

41.21

0.51

10.89

0.61

0.28

20.11

86.90

2.35

13.10

%

  
1.75 1 1.25

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 54.5%, p = 0.009)

Lavigne E45, 2012, (Canada)

Cassino C35, 1999, (USA)

ID

Evans KA54, 2014, (USA)

Lin M87, 2003, (Canada), Female

Slaughter JC74, 2003, (USA)

Mei L77, 2004, (Canada), Female-low

Subtotal  (I-squared = .%, p = .)

Yu O79, 2000, (USA)

Lin M87, 2003, (Canada), Male

Adults

Halonen JI20, 2008, (Finland)

Mei L77, 2004, (Canada), Male-high

Subtotal  (I-squared = 49.0%, p = 0.028)

Mei L77, 2004, (Canada), Female-high

Jalaludin B43, 2008, (Australia)

Mei L77, 2004, (Canada), Male-low

Children

Study

1.041 (1.013, 1.070)

1.600 (1.080, 2.240)

0.998 (0.981, 1.019)

RR (95% CI)

1.800 (0.155, 4.200)

1.000 (0.888, 1.096)

1.112 (1.038, 1.200)

1.016 (0.872, 1.176)

0.998 (0.979, 1.017)

1.240 (1.088, 1.416)

1.080 (1.000, 1.176)

1.027 (0.924, 1.132)

1.096 (0.968, 1.224)

1.067 (1.024, 1.110)

1.080 (0.904, 1.256)

1.017 (1.001, 1.025)

1.096 (0.984, 1.224)

100.00

0.24

25.81

Weight

0.02

6.06

8.80

3.19

25.81

2.78

7.81

6.06

4.30

74.19

2.45

27.69

4.80

%

1.041 (1.013, 1.070)

1.600 (1.080, 2.240)

0.998 (0.981, 1.019)

RR (95% CI)

1.800 (0.155, 4.200)

1.000 (0.888, 1.096)

1.112 (1.038, 1.200)

1.016 (0.872, 1.176)

0.998 (0.979, 1.017)

1.240 (1.088, 1.416)

1.080 (1.000, 1.176)

1.027 (0.924, 1.132)

1.096 (0.968, 1.224)

1.067 (1.024, 1.110)

1.080 (0.904, 1.256)

1.017 (1.001, 1.025)

1.096 (0.984, 1.224)

100.00

0.24

25.81

Weight

0.02

6.06

8.80

3.19

25.81

2.78

7.81

6.06

4.30

74.19

2.45

27.69

4.80

%

  
1.6 1 1.4
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(G) 
 

NOTE: Weights are from random effects analysis

.

.

Overall  (I-squared = 74.9%, p = 0.000)

Tenias JM27, 1998, (Spain)

Adults

Szyszkowicz M25� 2008, (Canada)

Zu K94, 2017, (USA)

Study

Zu K94, 2017, (USA)

Petroeschevsky A62, 2001, (Australia)

Subtotal  (I-squared = 48.7%, p = 0.083)

Lin M87, 2003, (Canada), Female
Lin M87, 2003, (Canada), Male

Mei L77, 2004, (Canada), Male-high

Mortimer KM38, 2002, (USA), Symptom

Mei L77, 2004, (Canada), Female-high

Subtotal  (I-squared = 79.5%, p = 0.000)

Glad JA82, 2012, (USA)

Mei L77, 2004, (Canada), Male-low

ID

Lee JT73� 2002, (Korea)

Mortimer KM38, 2002, (USA), Decline in FEFR

Mei L77, 2004, (Canada), Female-low

Mar TF36, 2009, (USA)

Evans KA54, 2014, (USA)

Lavigne E45, 2012, (Canada)
Gleason JA55, 2014, (USA)

Morgan G69, 1998, (Australia)

Jalaludin B43, 2008, (Australia)

Cassino C35, 1999, (USA)

Children

Medina S70, 1997, (France)

1.007 (1.002, 1.012)

1.083 (1.024, 1.146)

1.017 (1.003, 1.032)

1.006 (1.001, 1.010)

1.016 (1.009, 1.022)

1.030 (1.007, 1.054)

1.009 (1.000, 1.019)

0.967 (0.949, 1.009)
0.991 (0.972, 1.009)

0.978 (0.946, 1.013)

1.009 (0.981, 1.037)

0.972 (0.931, 1.016)

1.006 (0.999, 1.012)

1.000 (0.990, 1.010)

0.953 (0.924, 0.981)

RR (95% CI)

1.026 (1.015, 1.034)

1.012 (0.991, 1.037)

1.035 (0.991, 1.088)

1.014 (0.991, 1.042)

0.911 (0.793, 1.121)

1.004 (0.946, 1.073)
1.012 (1.006, 1.015)

0.996 (0.989, 1.003)

1.005 (1.003, 1.007)

1.023 (0.977, 1.080)

1.021 (0.999, 1.048)

100.00

0.64

5.71

9.92

%

9.14

3.23

24.95

2.24
4.41

1.88

2.50

1.25

75.05

7.57

2.43

Weight

7.80

3.33

0.99

2.88

0.09

0.60
9.92

8.93

10.59

0.88

3.05

1.007 (1.002, 1.012)

1.083 (1.024, 1.146)

1.017 (1.003, 1.032)

1.006 (1.001, 1.010)

1.016 (1.009, 1.022)

1.030 (1.007, 1.054)

1.009 (1.000, 1.019)

0.967 (0.949, 1.009)
0.991 (0.972, 1.009)

0.978 (0.946, 1.013)

1.009 (0.981, 1.037)

0.972 (0.931, 1.016)

1.006 (0.999, 1.012)

1.000 (0.990, 1.010)

0.953 (0.924, 0.981)

RR (95% CI)

1.026 (1.015, 1.034)

1.012 (0.991, 1.037)

1.035 (0.991, 1.088)

1.014 (0.991, 1.042)

0.911 (0.793, 1.121)

1.004 (0.946, 1.073)
1.012 (1.006, 1.015)

0.996 (0.989, 1.003)

1.005 (1.003, 1.007)

1.023 (0.977, 1.080)

1.021 (0.999, 1.048)

100.00

0.64

5.71

9.92

%

9.14

3.23

24.95

2.24
4.41

1.88

2.50

1.25

75.05

7.57

2.43

Weight

7.80

3.33

0.99

2.88

0.09

0.60
9.92

8.93

10.59

0.88

3.05

  
1.85 1 1.15
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