Title of article: A novel biomechanical injury risk score demonstrates correlation with lower limb posterior chain injury in fifty elite level rugby union athletes.

Corresponding (Lead) Author

Name: Mr. Rhys Hughes
Senior Physiotherapist, Gloucester Rugby Performance Medical Department, Gloucester, United Kingdom.
Postal Address: Performance Medical Department, Gloucester Rugby, Kingsholm Stadium, Kingsholm Road, Gloucester, GL1 3AX.
Email: RHphysio@gmail.com

Co-author 1

Name: Dr. Matt Cross
Research and Rugby Development Manager, Premiership Rugby, London, United Kingdom.
Email: MCross@premiershiprugby.com

Co-author 2

Name: Prof. Keith Stokes
Medical Research Lead, Rugby Football Union, London, United Kingdom and Professor in Sports Injury Prevention Group and Department of Health, University of Bath, United Kingdom.
Email: KeithStokes@rfu.com

Abstract Word Count: 244

Manuscript Word Count: 2,988
ABSTRACT

Objectives: Lower limb posterior chain injury (PCI) is common amongst athletic populations, with multi-factorial risk factors including age, previous injury, strength measurements, range of motion and training load. Biomechanics are commonly considered in the prevention and rehabilitation of PCI by performance staff. However, there is no documented testing method to assess for associations between biomechanics and PCI. The aim of this study was to investigate whether there is an association between an easily applicable, novel biomechanical assessment tool and PCI. Methods: Fifty male elite-level rugby union athletes (age 22.83±5.08) participating in the highest tier of England were tested at the start of the 2019 pre-season period and PCIs (N=48) were recorded over the 2019/20 playing season. Participants’ biomechanics were analysed using two-dimensional video analysis against an Injury Risk Score (IRS) system in the performance of the combined movement – prone hip extension and knee flexion. Participants’ biomechanics in carrying out this movement were scored against the 10-point IRS, where the more compensatory movement recorded sees an increase in an individual’s IRS. Participants’ IRS were then compared against the number of PCI sustained and Spearman’s correlation coefficient was utilised for analysis. Results: There is a good significant association between IRS and PCI (R=0.573, p<0.001). Linear Regression demonstrated that an increase of 1 in IRS was associated with a 35% increase in PCI incidence (R²=0.346). Conclusion: A good significance between the IRS and PCI provides preliminary support for its use as an injury risk assessment tool.
INTRODUCTION

The term posterior chain injury (PCI) is commonly used in relation to injuries to the posterior musculoskeletal system of the lower limb.[1-2] PCI is commonly observed within athletic populations, with a reported time loss of 10 hours for every 1000 playing hours within elite level sport.[3] The most prevalent PCIs involve structures within the posterior musculoskeletal system such as the trunk, pelvis, hamstring, and calf complexes.[4-8] This has subsequently led to a large amount of research being conducted that focuses on these areas of PCI, particularly during high velocity activities such as sprinting. Sprinting requires multiple structures of the posterior musculoskeletal system to work concurrently.[8-9] Occurrence of PCI is attributed to a failure and a loss of concurrence somewhere within this system.[9-10] Therefore, it is no surprise that PCI prevalence is high in many sports that require sprinting, including rugby union,[3] soccer,[11] American football[12] and athletics [13]. Of the structures within the posterior musculoskeletal system, the hamstring complex is most frequently affected.[14]

Research in athletic populations has found the non-modifiable risk factors of: 1) greater age and 2) previous injury to be predictors of PCI.[15-16]

Modifiable risk factors suggested to influence PCI include deficits in strength, particularly eccentric strength in hamstring injury,[17] overload in training volume,[18-19] sprint performance,[20] and reduced ranges of motion.[21] The most influential finding regarding modifiable risk factors relating to PCI management has arguably been the introduction of the Nordic hamstring
extension (NHE) in 2001.[4, 17, 22-24] Many exercise programmes focusing on the prevention or rehabilitation of PCI aim to influence these modifiable factors and include some form of coached lower limb biomechanical positioning during exercise prescription.[25] However, there is a lack of evidence of the effect biomechanics may have on PCI specifically. Whilst pelvic and lower limb positioning is assessed in many ways by practitioners in sport performance-medical settings, until recently [20, 26-27] there has been no evidence of a relationship between biomechanics and PCI. It is also worth noting, there is currently no uniform clinical assessment method of pelvic or lower limb mechanics that relates to PCI.

A multi-modal intervention of bed-based treatment, mobility and exercise therapy has demonstrated positive influence on pelvic biomechanics when assessed using an inertial sensor.[26] The authors suggest a neutral pelvis position and relative limb alignment could reduce hamstring strain injury risk, however there is a lack of uniform assessment and comparison to injury incidences to conclude this. Further research,[20] also supports a link between these factors highlighting athletes who have sustained a PCI present with an increased amount of anterior pelvic tilt through the gait cycle of running when compared against those who do not. Yet, no conclusion was drawn as to whether this was the cause or effect of the injuries and no evidential comparison can be made. The role of muscle co-contraction in biomechanics when analysing electromyography (EMG) patterns within soccer players has also been investigated.[27] Athletes who demonstrated an inefficient co-contraction pattern when recruiting specific stabilising
muscles within the posterior musculoskeletal system (lumbar spine erectors, gluteus maximus and hamstrings) were up to 8 times more susceptible to PCI.[27] It is evident association between an individuals’ biomechanics and PCI risk may be present but need further evidential support with direction on a uniform assessment method.

This study assesses the association between an easily applicable, novel, clinician-assessed biomechanical injury risk score (IRS) and the number of PCI amongst a group of elite-level rugby union athletes.

METHODS

Study Participants
Fifty adult male professional rugby union athletes aged between 18 and 35 years (22.8±5.1) were recruited at the start of a full playing season (1st July 2019) and were considered relatively well rested after a minimum of 5 weeks break between playing seasons. The participants were injury free and considered available for full training at the time of testing. Informed consent was gained from all participants and ethics were appropriately obtained from the Research Ethics Approval Committee for Health at the University of Bath, reference number EP18/19029.

Study Design
This study investigates the association between a clinician assessed injury risk score (IRS) system and PCI sustained during one full playing season. PCI was defined as any non-contact injury to the foot (palmar aspect), calf
complex (including the achilles tendon), hamstring muscle group, gluteal muscle group, lumbar spine, and thoracic spine regions that led to time loss in training and/or matches. PCI included soft tissue disruption categorised using the British Athletics Muscle Injury Classification, [28] which details tissue disruption of all types between grades 0-4; discopathy, neuropathy, tendonopathy and overload injuries were also included. Contact injuries from direct impact were excluded from the study as direct impact injuries are not deemed to be affected by biomechanics.

The Injury Risk Score (IRS)

A visual representation of the testing procedure is presented in figure 1 and an example of the IRS system criteria in figure 2. This novel testing protocol is clinician assessed and it is not documented in empirical literature. However, the assessment method uses a modified approach that utilised EMG in assessing prone hip extension (PHE), which demonstrated good levels of reliability and validity.[27] The modification translated into this study sees the replacement of EMG with palpable assessment of gluteal muscle tone, the addition of prone knee flexion (PKF) and observation of biomechanics retrospectively analysed using two-dimensional video analysis. Biomechanics are assessed against the IRS system in the performance of combined PHE and PKF (figure 1), subsequently providing greater comparison to the gait cycle than PHE alone, where PHE and PKF are performed concurrently.[20] Participants can score a maximum of 10 points following the IRS system criteria – the more biomechanical change observed from the participants anatomical prone starting position, the higher the score.
The 5 compensatory criteria include: 1) loss of palpable co-activation in either gluteal muscle, 2) lumbar spine extension, 3) lift of the anterior superior iliac spine from the plinth, 4) An increase in hip external rotation 5) An increase in hip abduction. If the athlete displays a compensatory movement pattern for one of the 5 criterion, 1 point would be scored per limb, left (maximum 5 points) and right (maximum 5 points) with a maximum of 10 points achievable.

As the IRS system is novel, a repeatability pilot was performed prior to the data collection and results analysed using Fleiss Kappa to assess inter-rater reliability (IRR). The lead researcher educated and familiarised four assessors in the IRS system. Each clinician had a minimum of five years’ experience in musculoskeletal medicine. The clinicians were blinded and asked to analyse a small pilot group (four participants), against the IRS system. Results from this pilot study were interpreted as suggested by McHugh,[29] whereby (R=>0.90 – excellent, R=0.80-0.89 – very good, R=0.60-0.79 – good, R=0.40-0.59 – moderate and R=0.21-0.39 – minimal). Completing this pre-trial pilot demonstrated good levels of IRR (R=0.651, p <0.001) and allowed for some minor adjustments in the logistics around participant testing, reflected in the testing procedure section.

Testing Procedure

Each participant started in a prone position on a treatment plinth with arms placed by their side or above their head (as in figure 1) to negate the use of upper limb stabilisation during testing. The testing clinician then placed their
index finger and thumb of one hand on the horizontal plateau of the gluteus maximus to assess palpable gluteal activation.[30] Prior to testing, each participant was read the same script by the testing clinician, “Tense both buttock muscles and maintain this contraction for the duration of the movement, until told the test is over. Now bend your left knee to 90 degrees and lift that knee off the bed”. The testing practitioner would then say, “The test is over”. The participant then relaxes, resuming the prone starting position. The opposite side would then be tested with the same instructions where “left knee” was replaced with “right knee”. Each participant was given a 2-minute testing window and participants were tested consecutively. The testing clinician retrospectively assessed each participant through the combined PHE and PKF movement against the IRS criteria (table 1), using video analysis. The only live score recorded during the testing protocol was palpable gluteal activation as muscle tone was deemed unrecordable by video analysis. All scores were recorded on a laptop using spreadsheet software.

Setting and Equipment

Equipment included: a password protected external hard drive; computer compatible with spreadsheet software and the Statistical Package for the Social Sciences (SPSS) version 25 [31] for analysis; height adjustable treatment plinth (plinth height was maintained throughout); three high resolution video recording cameras (Panasonic HC-V770 50x Zoom 4k Full HD) with tripods, capable of recording in two dimensions at perpendicular angles in line with the horizontal surface of the treatment plinth. Video
cameras were synchronised to record simultaneously from two angles at the start of testing. Recording angles included a lateral view of both left and right sides of the participants and a caudal to cephalad view. Footage was cropped to allow for time efficiency when assessing IRS by deleting plinth transfer footage between participants using video analysis software.[32] This method of video augmentation in movement analysis is well validated [33-34] and has proven reliable when qualitatively assessing human biomechanics against quantitative criteria.[35-37]

Data Collection

Data collection took place within the physiotherapy room of an English premiership rugby union club. Participants were required to spend a maximum of 2 minutes each (including transfer time) in a prone position on the treatment plinth. Testing for all participants took approximately 2 hours including equipment set up. Data was collected from all participants on day one of pre-season testing. The number and location of PCIs for each participant were then recorded for the duration of one full English premiership rugby playing season using digital spreadsheet software as part of departmental injury surveillance. This was standardised using the definition of PCI as outlined in the study design and the same individual was responsible for data recording to ensure continuity and avoid potential for bias.
Outcome Measures

The two main outcome measures for this study were PCI (dependent variable) and the IRS (independent variable). The IRS was measured quantitatively from analysis of the qualitative data collected against the IRS and cross referenced against the recorded video by the lead researcher. The number of PCI sustained by each player across a 10-month playing season was captured at the end of the season.

Statistical Analysis

Data analysis using SPSS version 25 [31] was utilised for data comparisons and assessment of correlation. Prior to statistical analysis both IRS and PCI variables were assessed for homogeneity of variance and normal distribution using the Kolmogorov-Smirov and Shapiro-Wilk tests. As assumptions of homogeneity and normal distribution were not met, a Spearman’s correlation co-efficient (SCC) was conducted where R was interpreted as (R=>0.90 – very strong, R=0.70-0.89 – strong, R=0.40-0.69 – good, R=0.10-0.39 – weak and R=0-0.09 – negligible). [38]

To reduce the likelihood of any type 1 errors within the group (N=50) a critical alpha (p) of <0.05 was utilised. Finally, a non-parametric linear regression was conducted to demonstrate whether there was a linear relationship between PCI and IRS, and if so to what degree the variables were related. To ensure methodological rigour throughout the study adheres to STROBE [39] reporting guidelines.
Patient and Public Involvement

Participants were first involved in research during the first day of data collection when informed consent was obtained, and their IRS was recorded. The research question and outcome measures were developed by the authors, and participants were informed of these using a patient information sheet prior to data collection. Participants were not involved in study design, recruitment or conduction and they were not asked to assess the burden or time required to participate in the study. In the dissemination of the results the participants will receive their individual IRS followed by a discussion around their PCI risk with advice around reducing this risk.

RESULTS

Fifty subjects participated in the study (age 22.83±5.08). The mean IRS score across the population was 5.80±1.74 and participants IRS ranged from 3 to 10 with a median of 7. A total of 48 PCIs were observed in 20 of the participants across the playing season, as displayed in figure 3. Twenty participants did not suffer a PCI, eighteen suffered 1 PCI, seven suffered 2 PCIs, four suffered 3 PCIs and one suffered 4 PCIs. The average number of PCIs across the population was 0.90±1.03 per participant. The most frequently observed PCIs were lumbar spine – (muscle cramp/ stiffness/ myofascial trigger points) and hamstring – biceps femoris (grade 2) both recording 7 incidences across the season (figure 3). The number of biomechanical compensations observed across the group was 320, with some common themes in compensation, as displayed in table 2.
Table 2: IRS system points scored for each biomechanical compensation.

<table>
<thead>
<tr>
<th></th>
<th>Loss of Palpable Glute Co-activation</th>
<th>Lumbar Spine Extension</th>
<th>Lift off of the Anterior Superior Iliac Spine from plinth</th>
<th>Increase in Hip External Rotation from starting position</th>
<th>Increase in Hip Abduction from starting position</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total points for each biomechanical characteristic</td>
<td>62</td>
<td>95</td>
<td>71</td>
<td>54</td>
<td>38</td>
<td>320</td>
</tr>
<tr>
<td>Percentage (%)</td>
<td>19%</td>
<td>30%</td>
<td>22%</td>
<td>17%</td>
<td>12%</td>
<td></td>
</tr>
</tbody>
</table>

Spearman’s correlation demonstrated a good positive association between participant IRS and number of PCIs ($R=0.573$ ($p <0.001$)) (figure 4). Linear regression identified that for every 1-point increase in IRS there was a 35% increase for a further PCI ($R^2=0.346$) (figure 4).

DISCUSSION

With significance demonstrating association between the IRS and PCI an increase in the identified biomechanical compensations are suggestive of increasing an individual’s risk of PCI. These results also provide confidence in the IRS as a biomechanical assessment tool for injury risk of PCI and provide guidance on biomechanical areas for intervention. Hence, practitioners may use the IRS alongside other pre-existing methods of identifying PCI risk, whilst guiding injury prevention. The IRS also has
capacity to provide practitioners with areas for biomechanical improvement in the prevention of PCI when considering table 2. These suggest target areas for reducing an individual’s IRS when considering reduction of PCI risk. For example, lumbar spine extension is highlighted as the most common compensatory movement in the IRS across the population. With good levels of significance in the association between PCI and the IRS assessment tool it could be suggested that reducing lumbar spine extension which in turn lowers an individual’s IRS could reduce the PCI risk, although further investigation would be required to prove this.

It is also worth highlighting the observational differences in IRS as highlighted with the yellow markers in figure 5. The transverse views of the IRS clearly demonstrate an example of the possible biomechanical asymmetry present when performing combined prone PHE and PKF (figure 5). Figure 5 further demonstrates how observational differences may translate from the prone IRS testing position to upright running using the ALTIS kinogram analysis.[40] It is evident in the transverse views of the IRS that lower limb abduction and external rotation are increased from the midline starting position in the participants right lower limb compared to left, this is also evident at toe off in the kinogram analysis – see corresponding points A and B on figure 5. This may provide some practical explanation of how the correlation between IRS and PCI occurs during function, further promoting the use of the IRS in the management of PCI.
Limitations

Despite the injury surveillance data originally being planned across a full season, it is worth noting data collection was reduced to 9 months due to the COVID-19 pandemic in March 2020 with approximately twenty five percent of the season’s games remaining. Injury surveillance data is missing the last 3 months of the season when injuries may be most prevalent, possibly limiting true findings.[3] As is also common in literature of this type, further limitation is present on the information quality of biomechanics as a single point in time (preseason IRS testing) is compared to PCI occurring at multiple points through the season, some months apart.

Additionally, the IRS quantifies an individual score for each participant based on a subjective analysis of movement which will always be open to interpretation as with any descriptive method of movement analysis.[40] This enforces the need for careful undertaking of the methodology in any replication of this study. A new test should demonstrate appropriate levels of reliability and validity and whilst the methodology gives clear direction in performing the IRS system with good pilot levels of IRR, this is a novel test and there is arguably room for development. Further studies could improve the reliability and strength of the IRS in completing a larger IRR analysis. In addition, whilst the inclusion criteria required individuals to be injury free and well rested at the time of IRS testing, no adjustment was made for previous injury history. Amongst athletic populations it is difficult to find athletes without previous injury history, particularly at elite level but as one of the largest risk factors to injury this could be considered a further limitation.
Future Studies

It may be of interest to first compare the IRS against an established injury predictor such as strength assessment.[23] Any correlation between an established injury risk predictor and IRS system would further strengthen its use as an assessment tool. Performing PHE and PKF is a key component of human movement, particularly in running [16, 27, 41-42] and although the correlation in prone testing to upright running positions has been discussed, formal comparison is required. An upright testing position may provide greater functional comparison although may present difficulties when standardising test position.

CONCLUSION

The results demonstrate good significant correlation between the novel IRS system compared to PCI within in an athletic population. This study adds evidence that demonstrates that an increased IRS has influence on an individual’s PCI risk and provides guidance for a uniformed assessment tool in assessing this risk. Establishing individual injury risk scores for athletes in this way may aid in preventing and managing PCI that lead to time loss in training and matches. The IRS system can be utilised easily within musculoskeletal settings requiring minimal equipment, making it easily applicable around the constraints of performance-medical environments.
STATEMENTS

Acknowledgements: We would like to thank the players of Gloucester Rugby and the performance medical staff who assisted with this study particularly Eoin Power, Steph McNally and Steve Whyte who assisted with injury surveillance data, additionally to Aaron Walters and Luke Croughton who assisted with the inter-rater reliability pilot, and Tom Reynolds who facilitated the video analysis. I (RH) would also like to acknowledge Tony Denton a previous colleague and physiotherapist who originally introduced me to pelvic mechanics and provoked the initial thoughts surrounding this novel screening method, some years ago.

Contributors: Conception and design: all authors. Acquisition of data: RH. Analysis and interpretation: all authors. Drafting, critical revision and final approval: all authors. Statistical analysis, collection and assembly of the data: RH. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved: all authors.

Patient Consent: Informed consent was gained from all participants.

Competing Interests: The authors identified no competing interests for this research.

Funding: The authors have not declared a specific grant for this research from any funding agency in the public, commercial, or not-for-profit sectors.
REFERENCES

LEGEND

Figure 1: Still image views of longitudinal (left) and transverse (right) views of biomechanical deficit and limb asymmetry when using the IRS system. Starting Position (1a), Testing Left Limb (1b) and Testing Right Limb (1c).

Figure 2: IRS System Criteria.

Figure 3: Number of Posterior Chain Injuries (PCI) for the study population.

Figure 4: A graph demonstrating the Number of Posterior Chain Injuries (PCI Number) vs Injury Risk Score (IRS) with Linear Regression.

Figure 5: Example of translation in biomechanics from IRS to upright running in Kinogram analysis. Note – Analysis of increased external rotation observed in right limb in IRS and Kinogram (on toe off) at points B compared to left limb at points A.
Figure 1: Still image views of longitudinal (left) and transverse (right) views of biomechanical deficit and limb asymmetry when using the IRS system. Starting Position (1a), Testing Left Limb (1b) and Testing Right Limb (1c).

Images Available upon reasonable request from author. Blanked to maintain anonymity.
Injury Risk Score System Criteria

<table>
<thead>
<tr>
<th>Injury Risk Score System Criteria</th>
<th>Lower Limb</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of Palpable Glute Co-activation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lumbar Spine Extension</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lift off of the Anterior Superior Iliac Spine from plinth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase in Hip External Rotation from starting position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase in Hip Abduction from starting position</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unilateral Risk Score

| Unilateral Risk Score | / 5 | / 5 |

Total Risk Score

| Total Risk Score | / 10 |

Key: 1 = Yes, this occurs / 0 = No, this does not occur.

Figure 2: IRS System Criteria
Figure 3: Number of Posterior Chain Injuries (PCI) for the study population.
Figure 4: A graph demonstrating the Number of Posterior Chain Injuries (PCI Number) vs Participant’s Injury Risk Score (IRS) with Linear Regression.
Figure 5: Example of translation in biomechanics from IRS to upright running in Kinogram analysis. Note – Analysis of increased external rotation observed in right limb in IRS and Kinogram (on toe off) at points B compared to left limb at points A.

Images Available upon reasonable request from author. Blanked to maintain anonymity.