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2Departamento de Fı́sica, Universidade Federal de Pernambuco, 50670-901 Recife, Pernambuco, Brazil
3Departamento de Fı́sica, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil
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ABSTRACT

We apply a generalised logistic growth model, with time dependent parameters, to describe the fatality
curves of the COVID-19 disease for several countries that exhibit a second wave of infections. The model
parameters vary as a function of time according to a logistic function, whose two extreme values, i.e., for
early and late times, characterise the first and second waves, respectively. We show that the theoretical
curves are in excellent agreement with the empirical data for all cases considered. The model also allows
for predictions about the time of occurrence and relative severity of the second wave, in comparison to
the first wave. It is shown furthermore that the COVID-19 second waves can be generically classified in
two main types, namely, standard and anomalous second waves, according as to whether the second
wave starts well after or still during the first wave, respectively. We have also observed that the standard
second waves tend, in their majority, to be more severe than the corresponding first wave, whereas for
anomalous second waves the opposite occurs.

1 Introduction
One year after the first death by the novel coronavirus (SARS-CoV-2), on January 11, 2020, in Wuhan,
China, the direst predictions about the danger and severity of the ensuing pandemic have been confirmed.
As of this writing, more than 100 millions of cases of infection by the SARS-CoV-2 virus haven been
identified worldwide and over 2.2 millions of deaths have been attributed to the disease (COVID-19)
caused by the virus1, 2. The response strategies to counter the propagation of the virus have varied widely
from country to country, and even within countries. Notwithstanding their different approaches to fight
the COVID-19 pandemic, a great deal of countries have suffered a significant loss of life to the virus.
The widespread severity of the pandemic is reflected in the fact that, as of this writing, 54 countries have
registered more than 50 deaths per 100,000 inhabitants, with half of them showing a death rate above 100
deaths per 100,000 inhabitants3. A particularly interesting but troublesome development in the course of
the pandemic is the fact that many countries were able to control somewhat the spread of the disease during
the first few months after its onset, only to see a subsequent increase in the rate of infections and deaths.
This resurgence of the COVID-19 epidemic, commonly referred to as a second wave of infections, has in
some cases been even more severe that the so-called first wave. Hence it is a topic of special relevance,
from both the mathematical modelling viewpoint and the public health perspective.

In the context of the COVID-19 epidemic, a second wave of infections can, broadly speaking, appear
via two main different dynamics. First, in a standard or textbook second wave, the resurgence of infections
appears after the epidemic curves for the cumulative number of cases and deaths have reached a near-
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plateau. This means that the daily numbers of new infections and deaths have decreased substantially—and
remains low for a somewhat prolonged period of time—, before they surge again. Correspondingly, the
daily curves display two well-defined sharp “peaks,” separated by a rather shallow “valley.” In other
words, in a standard second wave there is a clear, distinct separation between the first and the second
waves of infections. There are other situations, however, where the epidemic curve undergoes a strong
re-acceleration regime even before the daily rates of infections and death have been significantly reduced,
indicating that a second wave starts before the first wave has subdued. Such an “anomalous” second-wave
effect shows up in the respective cumulative curve as a rapid change in the trend of the growth profile, i.e.,
from deceleration to acceleration, even though no plateau-like regime had yet been reached. Thus, in an
anomalous second wave there is a transition period where the first and the second waves can be said to
“coexist,” as represented by the fact that the two peaks in the daily curve are separated by a relatively high
valley.

Locating and quantifying second-wave effects in a given epidemic curve, beyond simple visual
inspection, is an important but not trivial task. This requires, for instance, a mathematical or computational
model that is able to efficiently describe the complex growth profiles that arise in the cumulative epidemic
curves and from which one can estimate the location and intensity of each wave’s peak in the daily curves.
A standard way to investigate multiple wave effects is to start with a basic epidemiological model and
then allow its parameters to vary in time to reflect the occurrence of secondary waves of infections4, 5.
Understanding the evolution of possible multiple waves of infections is also, of course, relevant for public
health officials, as it may help them to develop better strategies to fight the propagation of the virus.
In response to the widespread occurrence of second-wave effects in the COVID-19 epidemic in many
countries around the world, there is now a growing body of literature on the subject6–18. In such studies,
compartmental models10, 11, 14 and agent based models19, 20 are typically the models of choice, although
models based on artificial intelligence algorithms have also been used15–18.

In this paper, we depart from previous approaches and propose to model second-wave effects in the
COVID-19 epidemic in terms of a generalised logistic model with time-dependent parameters. More
specifically, we consider an extension of the so-called beta logistic model (BLM)21, where we assume that
each parameter of the model (see below) is allowed to vary continuously and smoothly in time between
two well defined values, representing the first and second waves of the epidemic dynamics, respectively.
We apply the model to study the fatality curves of COVID-19, as represented by the cumulative number
of deaths as a function of time, for several selected countries that display second wave effects, namely:
Australia, Austria, Brazil, Germany, Iran, Italy, Japan, Morocco, Serbia, and US. We show that the
generalised BLM describes very well the mortality curves of all selected countries. Furthermore, from the
theoretical curves we are able to quantify the transition times between the first and second waves as well
as the relative intensity of the second wave. In particular, we have observed that standard second waves, in
the sense defined above, tend to be more severe than the corresponding first waves; whereas the opposite
happens for anomalous second waves.

2 Data
Here we focus exclusively on mortality data from COVID-19, rather than on the number of infection cases,
because it is difficult to estimate the actual number of infected people by the SARS-CoV-2, since the
confirmed cases represent only an unknown fraction of the total number of infections. In this scenario, the
number of deaths attributed to COVID-19 is a somewhat more reliable measure to describe the dynamics
of the epidemic22.

We analysed the COVID-19 fatality curves for ten selected countries, namely: Australia, Austria,
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Brazil, Germany, Iran, Italy, Japan, Morocco, Serbia, and US. As our main aim here is to analyse the
second waves of the COVID-19 epidemic in different countries, we have not included mortality data that
may be attributed to third or subsequent waves of infections. For example, for Iran, Japan, Morocco,
Serbia, and US, we used mortality data up to a maximum date (typically in September or October, 2020)
that excludes a third regime of accelerated growth that has been observed in the epidemic curves of these
countries. For Australia, we analysed data up to November 6, 2020, because at this point the second wave
had nearly reached a plateau, after which no resurgence of COVID-19 deaths has so far been observed.
For Austria, Brazil, Germany, and Italy we used recent data (January, 2021), because in these countries
the respective second waves are still developing as of the time of this writing.

The data used in this study were obtained from the database made publicly available by the Johns
Hopkins University1, 23, which lists in automated fashion the number of the confirmed cases and deaths
per country. The specific time periods comprised in the mortality datasets for each country considered in
the presented study are given in Sec. 4.

3 Methods
In the present paper we are mainly interested in modelling epidemic curves that display second-wave
effects, as indicated for example by the presence of two regimes with strong positive accelerations,
corresponding to the first and second waves of infection, respectively. Because our model for such cases
is a generalisation of a single-wave model, we shall start by reviewing the basic one-wave model (i.e.,
with constant parameters), after which the general model with time-dependent parameters is discussed.
Subsequently, we also discuss the numerical methods used to analyse the empirical data.

3.1 Single-Wave Model
We model the time evolution of the number of deaths in the epidemic by means of the beta logistic model
(BLM), defined by the following ordinary differential equation (ODE)21, 24:

dC
dt

= r [C(t)]q
[

1−
(

C(t)
K

)α]p

, (1)

where C(t) is the cumulative number of deaths at time t. We assume for the time being that the model
parameters {r,q,α, p,K} are all constant in time, in which case they can be interpreted as follows: r is the
growth rate at the early stage; q controls the initial growth profile and allows to interpolate from linear
growth (q = 0) to sub-exponential growth (q < 1) to purely exponential growth (q = 1); the exponent p
controls the late-time growth rate, with p > 1 implying a slow-decaying polynomial rate, whereas p = 1
yields a fast exponential decay (see below); the exponent α controls the degree of asymmetry with respect
to the symmetric S-shape of the logistic curve, which is recovered for q = p = α = 1; and, finally, K is the
final size of the epidemic, meaning that C(t) = K for t→ ∞. Equation (1) must be supplemented with the
initial condition

C(0) =C0, (2)

for some given value of C0.
The BLM described in (1) is one of the most general growth models, from which many other known

models emerge as special cases21, 24. For instance, for q = p = α = 1 we recover the standard logistic
model, as already mentioned. In addition, for q = p = 1 we obtain the Richards growth model25, with the
case p = 1 corresponding to the so-called generalised Richards model26; while setting α = 1 in (1) yields
the Blumberg’s equation27; for other special cases see24.

3/17

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 1, 2021. ; https://doi.org/10.1101/2021.01.31.21250867doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.31.21250867


In the case where the parameters {r,q,α, p,K} are constant, the BLM admits an analytic solution21 in
the following implicit form:

t = f (C)− f (C0), (3)

where

f (C) =
C1−q

r(1−q) 2F1

(
p,

1−q
α

;1+
1−q

α
;
(

C
K

)α)
, (4)

with 2F1(a,b;c;x) being the Gauss hypergeometric function. Equation (3) describes a sigmoidal curve,
whose only inflection point is located at the time tc obtained by substituting the value Cc =K[q/(q+α p)]1/α

in (3). The small- and large-times asymptotic behaviour of the growth profile C(t) are as follows:

C(t)≈

{
Atµ , for t� tc,

K− B
tν
, for t� tc,

(5)

where µ = 1/(1− q), A = [r(1− q)]1/(1−q), ν = 1/(p− 1), and B = [K p−q/(p−1)rα p]
1/(p−1). (For

q→ 1 and p→ 1, one obtains exponential growth and exponential decay, respectively.)
Growth models have the mathematical advantage that they often admit analytical solutions, as we

have shown above for the BLM, which is a very useful property when fitting models to empirical data28.
Furthermore, it is worth pointing out that there is an intrinsic connection between growth models and
mechanistic epidemic models of the Susceptible-Infected-Recovered (SIR) class of models. For instance,
it is possible to construct a map between the Richards growth model and SIR-type models29, 30. Thus,
when properly applied and interpreted, growth models are useful tools for understanding the spreading
dynamics of infectious diseases21, 22, 26. Although in the present paper we restrict our analysis to the BLM,
it is important to bear in mind the aforementioned connection between growth models and compartmental
models. We therefore thought it was worth including here a brief discussion about a map between the
BLM and a generalised SIRD model.

3.2 SIRD Model with Power-Law Behaviour
As mentioned above, it is possible to put the BLM in correspondence with a SIRD-like model, but in this
case the target SIRD-type model has to be modified by the inclusion of a power law in the incidence term,
owing to the power-law behaviour exhibited by the BLM, as shown below.

We start by recalling the standard Susceptible (S)-Infected (I)-Recovered (R)-Deceased (D) epidemio-
logical model31, 32

dS(t)
dt

=−βS(t)I(t)
N

(6)

dI(t)
dt

=
βS(t)I(t)

N
− (γ1 + γ2)I(t) (7)

dR(t)
dt

= γ1I(t) (8)

dD(t)
dt

= γ2I(t), (9)

where S(t), I(t), R(t), and D(t) are the number of individuals at time t in the classes of susceptible,
infected, recovered, and dead respectively, while N is the constant total number of individuals in the
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population, so that N = S(t)+ I(t)+R(t)+D(t). The parameters β , γ1 and γ2 are the transmission,
recovery and death rates respectively. The initial values can be chosen to be S(0) = S0, I(0) = I0, with
S0 + I0 = N, and R(0) = 0 = D(0).

We then consider a modified SIRD model, where in (6) and (7) we replace N with only the partial
population in the S and I compartments29. Furthermore, we follow Refs.33, 34 and replace the term I(t) on
the right-hand side of all equations above by [I(t)]p, to obtain

dS
dt

=− βS(t)
I(t)+S(t)

[I(t)]p, (10)

dI
dt

=
βS(t)

I(t)+S(t)
[I(t)]p− (γ1 + γ2)[I(t)]p, (11)

dR
dt

= γ1[I(t)]p, (12)

dD
dt

= γ2[I(t)]p. (13)

Although this model is still not general enough to accommodate all the phenomenology of the intervention
biased dynamics of the COVID-19 epidemics, it does nonetheless exhibit subexponential behaviour for
both short and large time scales in all compartments. In order to show this, we define y(t) = S(t)+ I(t)
and divide (11) by (10) to obtain

dy
y

=
1

R0

dS
S
, (14)

where R0 = β/(γ1+γ2). Integrating both sides of (14), and inserting the result into (10), yields an equation
of the BLM type:

dS
dt

=−r [S(t)]q
[

1−
(

S(t)
K

)α]p

, (15)

where r,K > 0, q = 1+(p−1)/R0 and α = 1−1/R0. It follows from (15), in comparison with model
(1), that S(t) exhibits power-law regimes (for both early and large times) akin to those described by the
BLM. Furthermore, it is easy to see that all other compartments, I(t), R(t), and D(t), inherit from S(t) the
power-law behaviour, even though their respective equations of motion are not of the BLM-type. Note
that the parameters q, p, and α in (15) are not all independent of one another—in fact, the conditions
q < 1 and p > 1 are mutually incompatible. Nonetheless, the preceding qualitative argument shows
that the power-law dynamics of the sort predicted by the BLM can in principle be accommodated by
compartmental models. We are currently carrying out further research to establish a more complete map
between the BLM and a generalised SIRD model where the exponents q, p, and α are all independent of
each other.

The BLM with constant parameters has been show to describe remarkably well the first wave of the
COVID-19 epidemic for several countries in Europe and North America21. However, after the resurgence
of the COVID-19 epidemic in many countries (most notably after the Summer of 2020 in the Northern
hemisphere), their respective epidemic curves started to exhibit more complex patterns that cannot be
captured by the standard BLM. In the next subsection we introduce a generalised version of the BLM with
time-dependent parameters, which is much more adequate to describe growth processes with two or more
distinct growth phases, corresponding to different waves of infection.
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Figure 1. Time dependence of the generic parameter ζ (t) of the two-wave model, as defined by the
logistic function given in (17). The dashed line represents the linear approximation to the logistic function,
where the inclined straight line meets the upper and lower horizontal lines at the points t0±2/ρ ,
respectively.

3.3 Two-Wave Model
Our two-wave model is still described by the ODE given in (1), but now we assume that all parameters
depend on time, that is, r = r(t), q = q(t), α = α(t), p = p(t), and K = K(t). To capture the two distinct
growth regimes (“waves”), we propose that these parameters, here generically represented by the symbol
ζ (t), obey the following logistic-like equation

dζ

dt
= ρ(ζ −ζ1)

(
1− ζ

ζ2

)
, (16)

whose solution, with the condition ζ (t0) = (ζ1 +ζ2)/2, is of the following form:

ζ (t) = ζ1 +
(ζ2−ζ1)

2

[
1+ tanh

(
ρ(t− t0)

2

)]
, (17)

where ζ (t) stands for any of the parameters r, α , q, p, and K, with ζ1 and ζ2 representing the corresponding
parameter values for the first and second waves, respectively. A schematic of the generic parameter ζ (t),
as defined in (17), is shown in Fig. 1. The parameter t0 determines the transition time between the first
and second wave; whereas the parameter ρ characterises how rapid this transition is, so that the larger the
parameter ρ the quicker the transition towards the second-wave regime. Note that the characteristic time
scale t0 and the corresponding transition rate ρ are the same for all parameters. This is justified because an
overall change in the epidemic dynamics, brought about, say, by a relaxation of control measures or by
a change in the population behaviour (or both), is expected to affect simultaneously all epidemiological
parameters, which are in turn described in an effective manner by the growth model parameters22.

It is worth pointing out, however, that although the parameter t0 in (17) sets the time scale for the
transition between the first and second waves, it does not, in itself, represent the time where second-wave
effects begin, as the onset of the second wave also depends on the parameter ρ . This can been seen more
clearly in Fig. 1, where we also indicated a piecewise linear approximation (dashed line) to the function
(solid line) described by (17). Under this linear approximation, one sees that a better estimate for the
onset of the second wave is given by t0−2/ρ . The linear transition region, t0−2/ρ < t < t0 +2/ρ , thus
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(a) (b)

Figure 2. (a) Schematic of an epidemic curve for the cumulative number, C(t), of deaths with two waves
of infections. Here K1 is the plateau value if only the first wave had been present and K2 is the actual value
at the end of the epidemic (final plateau), assuming that no subsequent recrudescence of the epidemic
occurs. (b) Time derivative, dC/dt, of the cumulative curve shown in (a), representing the daily number of
deaths, where the peaks for the first and second waves are indicated by M1 and M2, respectively.

represents the period when new fatalities can, at least from a theoretical viewpoint, be attributed both to
the terminal phase of the first wave and the initial phase of the second wave. This superposition effect
could be avoided by imposing a discontinuous change of parameters, i.e., taking ρ → ∞, but in this case
additional continuity condition on the derivative of C(t) is necessary, as considered , e.g., in Ref.22. For
numerical purposes, it is more convenient however to describe the transition between the first and second
waves with a smooth function, as indicated in (17). Physically, we believe that this smooth transition
between different waves of infection is also more reasonable, as a resurgence of infections do not tend to
occur suddenly.

As an analytical solution for the theoretical curve C(t) for the BLM time-dependent parameters is
no longer possible, one must resort to a numerical integration of the ODE (1), with the parameters
{r(t),q(t),α(t), p(t),K(t)} described by their respective transition functions of the form given in (17). A
schematic of the cumulative curve, C(t), for the two-model upon numerical integration (for an arbitrary
choice of parameters) is shown in Fig. 2a. In this figure, the dashed line denoted by K1 represents the
plateau level if only the first wave had been present, whereas the parameter K2 is the actual final plateau
corresponding to the total number of deaths at the end of the epidemic (assuming that subsequent waves of
infection do not occur). In Fig. 2b, we show the time derivative, dC/dt, of the cumulative curve shown
in Fig. 2a, which corresponds to the daily number of deaths as a function of time. In this figure one
clearly sees the distinct “peaks” of the two waves, whose maximum values are indicated by M1 and M2,
respectively.

At face value, our two-wave model has 12 free parameters, corresponding to the initial and final values
for each of the five BLM parameters {r,q,α, p,K}, together with the parameters t0 and ρ describing the
transition between first and second waves. Blindingly trying to fit a given empirical epidemic curve with a
model containing such a large number of parameters is not an efficient procedure, as one is bound to incur
into over-fitting issues. Next, we describe a two-step fitting procedure that aims at circumventing, at least
partially, these difficulties.
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3.4 Data Analysis
In the first step of our fitting procedure, we give an initial educated guess for the possible location of the
transition t0. We then fit the data up to this time with the one-wave model, as given by its analytical solution
(3). At this point, it is important to recall that the parameters r, q, and α in the one-wave model (1) are
restricted to certain allowed ranges. For example, the exponent q is limited to the range 0≤ q≤ 1, as q > 1
would imply a super-exponential growth which is not justified on epidemiological grounds. Furthermore,
it is expected by biological reasons (see, e.g., the discussion in Refs.22, 29) that the asymmetry parameter
α should also be within the interval (0,1). Similarly, we restrict the values of r to the range (0,1), as we
observed that values of r outside this interval tends to be an indication of possible over-fitting. In other
words, we assume here that the restrictions 0 < q ≤ 1, 0 < α ≤ 1, and 0 < r < 1 are useful empirical
criteria to reduce over-fitting.

The second step in our fitting procedure comprises the numerical fit of the entire empirical curve using
the two-wave model. In this case, the values obtained for the parameters r1, q1, α1, p1, and K1 in the first
step described above are used as initial guesses for the respective parameters describing the first wave
in the full two-wave model. The initial guesses for the second set of parameters, r2, q2, α2, p2, and K2,
characterising the second wave as well as for the rate of transition ρ are chosen somewhat arbitrarily
within their ranges of definition.

In all numerical fits, for both the single-wave and two-wave models, we employed the Levenberg-
Marquardt algorithm to solve the non-linear least square optimisation problem, as implemented in the
lmfit package for the Python language, which has a built-in routine for estimating the errors of the fitted
parameters via the covariance matrix35. The results of the fitting procedure are deemed acceptable when
the errors in the parameters were smaller than the values themselves estimated for the parameters. (In most
cases reported here, however, the errors are much smaller than the maximum allowed tolerance of 100%.)
We noticed, however, that in order to control the errors and minimise overfitting issues, it was necessary to
apply the restriction α2 = 1 and p2 = 1. This is because these two parameters control the bending and
approach towards the second plateau, and since there are generally fewer points in this final portion of the
empirical curve (at least for the datasets selected here), estimating these two parameters is more difficult
and usually leads to large unacceptable errors. Hence it proved convenient to set α2 = p2 = 1.

4 Results and Discussion
As our main aim in this paper is to illustrate the application of our two-wave model, we have chosen a
representative sample of fatality curves that present a clear, extended second region of accelerated growth,
which can be unmistakably associated with a second wave of COVID-19 infections. We have furthermore
been careful to avoid including mortality data that may be attributed to possible third or subsequent waves.
With these goals in mind, we have analysed the COVID-19 fatality curves for ten selected countries,
namely: Australia, Austria, Brazil, Germany, Iran, Italy, Japan, Morocco, Serbia, and US. As discussed
before, for some of countries we have included data only up to a maximum earlier date in 2020, so as to
exclude third-wave effects; while for others we have include data up to the present time (up to January
2021), because in such cases the second wave of infections is still developing as of the time of writing. (We
remark parenthetically that our model can in principle be extended to include any number of subsequent
waves, but this requires greater numerical effort, and so this task will not be pursued here; see below for
further discussion on this topic.)

In the left panels of Figs. 3-5, we show the cumulative number of deaths (red circles) attributed to
COVID-19 for the selected countries, as a function of time counted in days since the first death in each
country. Also shown in these figures are the corresponding best fits (black solid curves) by the two-wave
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Left panels: Cumulative number of deaths (red circles) attributed to COVID-19 for (a)
Australia up to 06/11/2020, (c) Austria up to 12/01/2021, and (e) Brazil up to 24/01/2021. The solid
curves are the best fits by the second-wave model, where the black dot in each curve represents the time,
t(2)0 = t0−4/ρ , that separates the first and second waves. Right panels: Daily number of deaths for the
same countries as in the corresponding left panels, where the empirical data are indicated by red circles
and the solid curve represents the time derivative of the respective theoretical curve in the left panels.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Same as in Fig. 3 for (a) Germany up to 11/01/2021, (c) Iran up to 04/09/2020, and (e) Italy
up to 11/01/2021.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5. Same as in Fig. 3 for (a) Japan up to 14/10/20, (c) Morocco up to 04/10/2020, (e) Serbia up to
25/09/2020, and (g) US up to 29/10/2020.
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model given in (1) and (17). One sees from these figures that the theoretical curves describe remarkably
well the empirical data for all cases considered. The respective best-fit parameters are shown in the legend
box of each graph in Figs. 3-5, and the specific dates considered for each country are listed in the captions
of the respective figures.

In the right panels of Figs. 3-5 we show the daily numbers of deaths for the selected countries, where
the red circles represent the empirical data and the black solid curves correspond to the time derivative of
the theoretical curve C(t) predicted by the two-wave model, as obtained from the fits shown in the left
panels of the respective figures. One sees that the theoretical daily curves are also in very good agreement
with the empirical data. In particular, the model predicts remarkably well the location and general shape
of both peaks (in the daily empirical curves) associated with the first and second waves, respectively. It
is worth emphasizing that the numerical fits are performed only for the cumulative curves, so that the
good agreement between the theoretical daily curves and the empirical daily data represents a further
consistency check of the model.

As already discussed in the Introduction, a second wave of infections can, broadly speaking, take
place in two main different ways. First, a “standard” second wave pattern can be said to occur when the
epidemic curve re-embarks on a rapid acceleration regime after the first wave of infections had nearly
‘died out.’ This means that the cumulative curve has reached a near-plateau, before it surges up again.
Examples of standard second waves can be seen in Figs. 3-5 for the cases of Australia, Austria, Germany,
Italy, Morocco, and Serbia. Note that the two peaks in the respective daily curves are well separated
by a shallow valley, corresponding to the intervening plateau between the two waves in the cumulative
curve. In another possible scenario, an “anomalous” second wave can develop well before the first wave
has significantly subsided, causing the cumulative curve to change trend at some point in time (before
it reaches a plateau) and re-accelerate again. In such cases, there is a sort of “superposition” of the two
effects in the sense that a second wave-like surge appears when the daily deaths (of the first wave) are still
relatively high. This implies that the two peaks in the daily cases are not quite far apart, with a relatively
high valley between them. Examples of this situation can be seen in Figs. 3-5 for the epidemic curves of
Brazil, Iran, Japan, and US.

We have seen from Figs. 3-5 that our two-wave model is capable of describing very well the epidemic
curves, over their entire range, for both types of second waves described above. Furthermore, our model
has the advantage of being able to provide an estimation for the time of occurrence and intensity of the
second wave, as discussed below.

Although a visual inspection of an epidemic curve can easily reveal when a second wave of infection
is likely to be present, estimating more precisely when such resurgence actually begins is not an obvious
task. As we have argued in Sec. 3.3, the time t0− 2/ρ provides an upper bound for the onset of the
second wave. This estimate can be further improved by noticing that the width of the transition region
between the first and second waves if of the order of 4/ρ , as illustrated in Fig. 1. Thus, we shall take the
time t(2)0 = t0−4/ρ as an estimate for the time when the second-wave effects begin to become important.

The corresponding values of t(2)0 for each of the selected countries are indicated in Figs. 3-5 by a black
dot on the respective cumulative curve, where one sees that this parameter does indeed correspond to a
good separating point between the first and second waves. Next, we now turn our attention to discussing
possible measures for the intensity of the second wave.

We recall that the parameter K1 represents an estimate of the total number of deaths if only the first
wave had been present. Similarly, the parameter K2 is the model prediction for the total number of deaths
at the end of the second wave of infections, assuming that a third wave does not occur. Thus, the difference
∆K = K2−K1 can be used to estimate the ‘excess of deaths’ attributed to the second wave of infections.
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Table 1. Parameters estimating the intensity of the second wave.

Country K1 K2 γ

Australia 101 910 6.00
Austria 859 7353 4.58
Brazil 199400 240569 0.84
Germany 9365 88377 3.11
Iran 8355 80626 1.43
Italy 35692 104507 1.00
Japan 979 1719 0.62
Morocco 299 4110 5.83
Serbia 259 754 2.00
US 196908 345064 0.49

Alternatively, ∆K can be interpreted, at least theoretically speaking, as the number of lives that could have
been saved if a given country had been able to avoid its second wave of COVID-19. In Table 1 we show
the values of K1 and K2 for the 10 countries analysed here. One striking feature of Table 1 is the fact that
several countries were very efficient in controlling the first wave of COVID-19, only to see a very high
second wave. For example, the excess of deaths, ∆K, attributed to the second wave is nearly 13 times
greater than K1 for Morocco, while this ratio is approximately 9 times for Iran and more than 8 times for
Germany, which indicates a heavy toll of lives due to the second COVID-19 wave in comparison to that of
the first wave.

It should however be noted that in all selected countries, except perhaps for Australia, the epidemic
has not yet (as of now) approached its terminal phase, so that an interpretation of the parameter K2 as
an estimate of the severity of the epidemic requires certain caution. On the one hand, for countries that
have experienced a third wave of infections, such as Iran, Japan, Morocco, Serbia, and US, the value
of K2 clearly represents an underestimate of the total number of deaths at the end the epidemic. On the
other hand, for countries where the second wave is still developing, such as Austria, Brazil, and Germany,
the errors in the estimated values of K2 tend naturally to be higher, since there are fewer points in the
final portion of the curve to allow a more precise estimate of this parameter. Nonetheless, a comparison
between K2 and K1 is still a valid measure of the severity of the second wave of COVID-19 (relative to the
first wave) for all cases above.

An alternate (and possibly more accurate) measure of the intensity of the second wave, relative to the
first wave, can be obtained by considering the corresponding peaks in the daily curve. To this end, we
introduce the following measure:

γ =
M2

M1
, (18)

where M1 and M2 are the maximum values (peaks) of the theoretical daily curves for the first and second
waves, respectively. More precisely, we define

Mi = Ċ(ti), i = 1,2, (19)

where ti is the location of the peaks, i.e., C̈(ti) = 0 and
...
C(ti)< 0, with dots denoting time derivative.

The values of γ for the selected countries are also shown in Table 1. Among the countries that have
experienced a standard second wave (Australia, Austria, Italy, Germany, Morocco, and Serbia), only Italy
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(a) (b)

Figure 6. Cumulative (left panel) and daily (right panel) number of deaths attributed to COVID-19 for
Serbia up to January 16, 2021, where one can clearly identify three distinct waves of infection.

has a second wave of approximately the same severity as the first wave, as measured by the ratio γ ; while
for all the others the second wave was considerably more intense. This observation, i.e., that in a standard
second-wave scenario the second peak of infections tend to be stronger than the first one, can perhaps be
explained as follows: once the first wave was nearly controlled, the enforced or voluntary control measures
might have been relaxed (or not adhered by the population with the same zeal), leading to a stronger peak
in the second wave. In contradistinction, for countries where the second waves happened in an anomalous
way, in the sense explained above, the majority of them (Brazil, Japan, and US) had a relatively less severe
second wave, with only Iran showing a more intense second wave. Since by the time of the upsurge of an
anomalous second wave, the first wave has not been significantly diminished, it is reasonable to expect
that in such cases many of the control measures were likely to be still in place or had only been moderately
relaxed, which may explain the lower peak of the second wave. In other words, as health officials and the
population in general were still facing a relatively high rate of infections owing to the first wave, it could
have been easier in this case to avoid a stronger follow-up wave.

As we mentioned in Sec. 3.4, for some of the selected countries (e.g., Iran, Japan, Morocco, Serbia,
US) a third regime of strong re-acceleration has occurred subsequently to the maximum time considered
in this study. An example, for illustrative purposes only, is shown in Fig. 6 for Serbia, where one clear
sees three distinct waves of infections of increasing intensity. In the present analysis we have not included
mortality data that may be attributed to third-wave effects, as mentioned above. Notwithstanding, it should
be noted that our model could in principle be extended to include such multiple waves by considering
time-dependent parameters of the following form:

ζ (t) = ζ1 +
N−1

∑
i=1

(ζi+1−ζi)

2

[
1+ tanh

(
ρi(t− ti)

2

)]
, (20)

where N indicates the number of infection waves. As the total number of parameters grows linearly with
N, the numerical task of fitting a N-wave model to a given empirical curve becomes quite challenging,
specially considering that the total number of points in an empirical epidemic curve is relatively small (typ-
ically of the order of a few hundreds). Nonetheless, this interesting prospect deserves further investigation
and is topic of ongoing research.
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5 Conclusion
In this paper, we have studied the dynamics of the second waves the infections by the novel coronavirus.
To this end, we have introduced a generalised logistic model with time-dependent parameters to analyse
the COVID-19 fatality curves of several countries from six continents. Not only the theoretical curves
are in excellent agreement with the empirical data for all cases considered, but they also allow us to infer
predictions about the location and severity of the secondary waves. For instance, we have verified that
the intensity of a standard second wave (i.e., one that follows after the first wave has nearly subsided)
tends, in its majority, to be considerably stronger that the first wave, as measured by ratio between the
respective peaks in the daily number of deaths. Contrarily, in the majority of countries that experienced an
anomalous second wave (i.e., where the resurgence of infections takes places while the first wave was still
developing), the peak of the second wave was less intense than that of the first wave.

We have argued that the behaviour described above might be due to the possible relaxation of control
measures by government and health officials or lack of adherence to them by the respective populations.
In other words, a sort of “prevention paradox” might be at play here, whereby early success in controlling
the first wave of COVID-19 might lead to a false impression that “the worst was behind,” thus stimulating
a relaxation of voluntary or enforced measures beyond what would be desirable. By the same token, in
countries where a recrudescence of infections happened when the daily rates of deaths were still relatively
high, so that more stringent control measures were possibly still in place, such an anomalous second wave
would tend to be less severe. Of course, the severity of the secondary waves of infections is not only
determined by their time of occurrence, as the dynamics of an epidemic at any stage depends considerably
on the specific responses adopted by the affected populations. Furthermore, we have analysed only ten
representative countries, as our main objective here was to introduce and validate our second-wave model.
Nevertheless, we expect that the trends identified here should hold in general.

The results reported in the present paper are relevant both from a mathematical viewpoint, in that
they show that additional care is needed when modelling multiple-wave epidemics, and from a practical
perspective, for they may help policymakers and health authorities in devising strategies to battle the
disease during all of its waves. Here we have restricted our analysis to second-wave effects, but our model
can in principle be extended to include multiple waves. This interesting possibility is currently under
investigation.
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