Covid-19 positive test cycle threshold trends predict covid-19 mortality in Rhode Island

Andrew G. Bostom, M.D., M.S.,¹ Todd Kenyon, Ph.D.,² Charles B. Eaton, M.D., M.S.¹

¹ The Brown University Center For Primary Care and Prevention
Department of Family Medicine
Memorial Hospital of Rhode Island
111 Brewster Street
Pawtucket, Rhode Island 02860

²Nobadeer Capital Management, LLC
337 Water Street
Warren, Rhode Island 02885

Abstract
The cycle thresholds (Cts) at which reverse transcriptase polymerase chain reaction (rtPCR) tests for covid-19 become positive are intimately associated with both viral load, and covid-19 infectiousness (i.e., ability to culture live virus). Clinical data indicate lower Cts—and hence larger viral loads—independently predict greater covid-19 mortality when patients are hospitalized for symptomatic covid-19 pneumonia. We merged public covid-19 mortality data from the Rhode Island Department of Health with a de-identified dataset of n=5036 positive rtPCR test Cts from the Rhode Island Department of Health State Laboratory to explore the potential relationship between positive covid-19 test Ct distribution trends, and covid-19 mortality in the state of Rhode Island, from March through early to mid-June, 2020. Mean daily covid-19 positive test Ct data were compiled, and 7-day rolling average covid-19 mortality was offset by 21-days, given the lag between infection and death. We divided the Ct data into three strata, >32, 28-32, and <28, which were operationally defined as “not infectious,” “maybe infectious,” and “infectious,” respectively. Between late March and June, mean daily Ct values rose linearly (R-squared=0.789) so that by early June, as the covid-19 pandemic ebbed in severity, all means reached the noninfectious (Ct >32) range. Most notably, this May-June trend for Cts was accompanied by a marked, steady decline in Rhode Island’s daily covid-19 mortality. Our results suggest that monitoring, and public reporting of mean population covid-19 test Cts over time is warranted to gauge the vacillations of covid-19 outbreak severity, including covid-19 mortality trends.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Introduction
The cycle thresholds (Cts) at which reverse transcriptase polymerase chain reaction (rtPCR) tests for covid-19 become positive are intimately associated with both viral load, and covid-19 infectiousness (i.e., ability to culture live virus). An rtPCR covid-19 assay system developed at the Harvard University/ Massachusetts Institute of Technology Broad Institute, currently determining covid-19 “positivity” at 108 northeastern universities—including Rhode Island’s major colleges—described this exponential relationship: "...the Ct values correlated strongly with the logarithm of (covid-19) RNA concentration (R-squared > 0.99), with the observed range from Ct =12 cycles to Ct = 38 cycles corresponding to viral loads ranging from ~1.9 billion copies/mL to 8 copies/mL, respectively.

Additional clinical data indicate lower Cts—and hence larger viral loads—individually predict greater covid-19 mortality when patients are hospitalized for symptomatic covid-19 pneumonia, or other manifestations of being heavily infected by the virus. Conversely, a study which recorded Cts of patients, serially, during their hospitalization for diagnosed covid-19 pneumonia, reported that increasing Cts were accompanied by decreasing disease severity (Sequential Organ Failure Assessment; SOFA) scores. We explored the potential relationship between positive covid-19 test Ct distribution trends, and covid-19 mortality in the state of Rhode Island, between March and June, 2020.

Methods
Public covid-19 mortality data from the Rhode Island Department of Health COVID-19 Data Tracker, were merged with a de-identified dataset of n=5036 positive rtPCR test Cts obtained through an Access to Public Records Act request to the Rhode Island Department of Health State Lab (RISHL). Standard rtPCR SARS-CoV-2 assay methodology targeting the nucleocapsid genes N1 and N2 was employed by the RISHL. Mean daily covid-19 positive test Ct data were compiled, and 7-day rolling average covid-19 mortality was offset by 21-days, given the lag between infection and death. We divided the Ct data into three strata, >32, 28-32, and <28, which were operationally defined as “not infectious,” “maybe infectious,” and “infectious,” respectively, consistent with prior reports, including a pooled analysis of six studies.

Results
Between late March and June, mean daily Ct values rose linearly (Figure 1.; R-squared=0.789) so that by early June, as the covid-19 pandemic ebbed in severity, all means reached the non-infectious (>32) range. Most notably, Figure 2. depicts how this May-June trend for Cts was accompanied by a pronounced, steady decline in Rhode Island’s daily covid-19 mortality.

Discussion
An analysis evaluating the infectiousness of patients hospitalized with covid-19 reported that only viral loads >10 million copies/mL, equivalent to Cts ≤ 25, were associated with isolation of infectious virus from the respiratory tract. A complementary systematic review published 12/3/20 by the Oxford University Center for Evidence-Based Medicine confirmed that covid-19 rtPCR testing patient sample Cts >30 (mean from 6-studies) are associated with an inability to culture live virus, i.e., are non-infectious.

Data analyzed from the United Kingdom’s National Covid-19 Infection Survey revealed a significant impact of calendar time on the prevalence of rtPCR positives at a Ct <30: markedly fewer during mid-July to early August, versus the month of May, through mid-June, 2020. Moreover, investigators from the Bronx Montefiore Medical Center have reported lower hospital admission covid-19 rtPCR Cts were independently associated with increased covid-19 inpatient mortality. Specifically, Cts <22.9 (the lowest quartile), multivariable-adjusted for age, sex, body-mass index, hypertension, and diabetes, were associated with a 4-fold greater covid-19 mortality risk, versus Cts >32.4 (the uppermost quartile). Using a comparable cutpoint, a priori, i.e., Cts <32, we externally validated these findings by demonstrating that statewide Rhode Island covid-19 mortality dropped precipitously from March to June, 2020, as mean covid-19 positive test Cts from our RISHL sample rose above 32.
Conclusion
Our results suggest that monitoring, and public reporting of mean population covid-19 test Cts over time is warranted to gauge the vacillations of covid-19 outbreak severity, including covid-19 mortality trends.

References
7. Rhode Island Department of Health COVID-19 Data Tracker https://docs.google.com/spreadsheets/d/1c2QrNMz8plbYEKzMJL7Uhz2dtThOJa2j1sSMwiDo5Gz4/edit?gid=1592746937
Figure 1. Covid-19 rtPCR\(^a\) mean daily Ct\(^b\) values, March-June, 2020

\(^a\)rtPCR= reverse transcriptase polymerase chain reaction

\(^b\)Ct=cycle threshold, daily means; blue dots
Figure 2. Covid-19 rtPCR positive test mean daily Ct values\(^c\), and covid-19 deaths\(^d\)

\(^c\)Ct=cycle threshold, daily means; blue dots
\(^d\)21-day offset for 7-day rolling average of deaths; red line curve