Escape of SARS-CoV-2 501Y.V2 variants from neutralization by convalescent plasma

Sandile Cele1,2, Inbal Gazy2,3,4, Laurelle Jackson1, Shi-Hsia Hwa1,5, Houriiyah Tegally3, Gila Lustig6, Jennifer Giandhari3, Sureshnee Pillay3, Eduan Wilkinson3, Yeshnee Naidoo4, Farina Karim1,2, Yashica Ganga1, Khadija Khan1, Alejandro B. Balazs7, Bernadett I. Gosnell8, Willem Hanekom1,5, Mahomed-Yunus S. Moosa8, NGS-SA§, COMMIT-KZN Team§§, Richard J. Lessells2,3,6, Tulio de Oliveira2,3,6,9*, Alex Sigal1,2,10*

1Africa Health Research Institute, Durban 4001, South Africa. 2School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa. 3KwaZulu-Natal Research Innovation and Sequencing Platform, Durban 4001, South Africa. 4Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Hadassah Medical School, The Hebrew University of Jerusalem, 91120, Jerusalem, Israel. 5Division of Infection and Immunity, University College London, London WC1E 6BT, UK. 6Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa. 7Ragon Institute of MGH, Harvard, and MIT, Cambridge, USA. 8Department of Infectious Diseases, Nelson R. Mandela School of Clinical Medicine, University of KwaZulu-Natal, Durban 4001, South Africa. 9Department of Global Health, University of Washington, Seattle, USA. 10Max Planck Institute for Infection Biology, Berlin 10117, Germany.

* Corresponding authors. Email: deoliveira@ukzn.ac.za, alex.sigal@ahri.org

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

New SARS-CoV-2 variants with mutations in the spike glycoprotein have arisen independently at multiple locations and may have functional significance. The combination of mutations in the 501Y.V2 variant first detected in South Africa include the N501Y, K417N, and E484K mutations in the receptor binding domain (RBD) as well as mutations in the N-terminal domain (NTD). Here we address whether the 501Y.V2 variant could escape the neutralizing antibody response elicited by natural infection with earlier variants. We were the first to outgrow two variants of 501Y.V2 from South Africa, designated 501Y.V2.HV001 and 501Y.V2.HVdF002. We examined the neutralizing effect of convalescent plasma collected from six adults hospitalized with COVID-19 using a microneutralization assay with live (authentic) virus. Whole genome sequencing of the infecting virus of the plasma donors confirmed the absence of the spike mutations which characterize 501Y.V2. We infected with 501Y.V2.HV001 and 501Y.V2.HVdF002 and compared plasma neutralization to first wave virus which contained the D614G mutation but no RBD or NTD mutations. We observed that neutralization of the 501Y.V2 variants was strongly attenuated, with IC_{50} 6 to 200-fold higher relative to first wave virus. The degree of attenuation varied between participants and included a knockout of neutralization activity. This observation indicates that 501Y.V2 may escape the neutralizing antibody response elicited by prior natural infection. It raises a concern of potential reduced protection against re-infection and by vaccines designed to target the spike protein of earlier SARS-CoV-2 variants.
Outgrown viral variants

Infecting variant sequences of blood plasma donors

<table>
<thead>
<tr>
<th>Lineage</th>
<th>B.1.1</th>
<th>501Y.V2 (B.1.351)</th>
<th>B.1.1</th>
<th>B.1.1</th>
<th>B.15</th>
<th>B.1.5</th>
<th>B.1.140</th>
<th>B.1.1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence ID</td>
<td>K002868</td>
<td>K005321</td>
<td>K005325</td>
<td>K002868</td>
<td>K004289</td>
<td>K004285</td>
<td>K004291</td>
<td>K004295</td>
</tr>
<tr>
<td>Spike indels</td>
<td>242-244del</td>
<td>242-244del</td>
<td>242-244del</td>
<td>242-244del</td>
<td>242-244del</td>
<td>242-244del</td>
<td>242-244del</td>
<td>242-244del</td>
</tr>
</tbody>
</table>

Outgrown viral variants of blood plasma donors.

Sampling
- Global
- South Africa

Viruses and plasma in this study
- B.1.140
- B.1.1
- B.1.1.1
- B.1.351 (501Y.V2)
- B.1.5

Plasma used in challenge

Virus outgrown
Figure 1: Study design and sequences of SARS-CoV-2 variants. (A) We obtained convalescent plasma and detected the matching infecting variant in the first SARS-CoV-2 infection wave in South Africa. A blood draw and nasopharyngeal/oropharyngeal was performed on study participants. First wave virus was outgrown from one of the participants and compared to two viruses outgrown from the second wave, which were 501Y.V2 variants. A focus forming microneutralization assay was used to quantify neutralization. (B) Phylogenetic tree and mutations of variant sequences. Variants which infected the study participants who were plasma donors only for this study are marked in blue. Sequences of variants which were outgrown are marked in yellow. Participant 039-13-0013 was both a plasma donor and the donor from whom the first wave virus was outgrown. Y-axis denotes time of sampling for viral sequencing. Table shows mutations present in Spike for the 501Y.V2 variants and the first wave virus used in the study. See Table S2 for a complete list of mutations in the viral genomes.

We chose plasma from participants from the first infection wave where the infecting virus was successfully sequenced (Table S1) and where RBD binding was detected by ELISA. These viruses were from a variety of B.1 lineages circulating in South Africa and contained the D614G mutation but none of the spike mutations defining 501Y.V2 (Figure 1, see Table S2 for whole genome mutations). Plasma samples were from blood drawn approximately 1 month post-symptom onset (Table S1), shown to be close to the antibody response peak [16, 17].

We outgrew first wave virus (Materials and methods) from cohort participant 039-13-0013 during the first infection wave in South Africa peaking in July 2020, and second wave 501Y.V2 virus from two samples obtained in the second wave starting November 2020 through our genomic surveillance program. We used a microneutralization live virus focus forming assay (FFA) [18]. This relies on a methylcellulose overlay to limit cell-free viral spread, resulting in a local infection focus then detected by an anti-SARS-CoV-2 Spike antibody (Materials and methods). Re-sequencing of the first 501Y.V2 variant after outgrowth revealed no changes in the RBD or NTD but a deletion in the furin cleavage site (Table S3) commonly observed after in vitro culture in Vero E6 cells [19, 20]. We designated this variant 501Y.V2.HVdF002. HV represents the outgrowth protocol which included initial outgrowth in a human H1299 cell line derivative overexpressing the ACE2 receptor, followed by a cell-to-cell infection of Vero E6 cells (Materials and methods). dF represents the deletion of the furin cleavage site. Deletion of the furin cleavage site may not affect neutralization [19]. However, we proceeded to test an additional 501Y.V2 variant. This variant, which we designated 501Y.V2.HV001, had an additional mutation, L18F, in the NTD prior to outgrowth and showed no changes in spike sequence after outgrowth.

We mixed the virus with serially diluted participant plasma, then added the mixture to Vero E6 cells and counted infection foci after 28 hours (Figure 2A, Materials and methods). There was a clear visual difference in the number of foci as a function of plasma dilution. 501Y.V2.HV001 also showed dramatically larger foci (Figure 2A).

We normalized the number of foci to the number of foci in the absence of plasma on the same plate to obtain the transmission index (Tx, [21]). In this context, it is the number of foci in the presence of plasma inhibition divided by the number of foci in the absence of plasma. This controls for experiment variability between plates and experiments. The data from the FFA approximated a normal distribution (Figure S1) and we therefore used parametric statistics to describe it. We observed neutralization of the first wave virus which varied between plasma samples (Figure 2B). To obtain the IC_{50}, we fitted the data for each participant to a sigmoidal function [22] with IC_{50} as the only free parameter (Materials and methods). Fitted IC_{50} values (Figure 2D) varied between 4 \times 10^{-3} for participant 039-13-0013 to 1 \times 10^{-4} for participants 039-13-0033 and 039-02-0015, consistent with the previously observed heterogeneity in neutralization between individuals [16, 17].

We next determined neutralization of 501Y.V2. A decline in plasma neutralization was clearly observed (Figure 2A). T501Y.V2.HV001 also showed attenuated neutralization likely greater than that of 501Y.V2.HVdF002 (Figure S2), ruling out the in vitro generated deletion in the furin cleavage site as being responsible for escape. We combined the data for both 501Y.V2 variants. Fitted IC_{50} values varied between 1 \times 10^{-3} (1:100 dilution) for plasma from participant 039-13-0033 to a complete knock-out of activity for plasma from participant 039-13-0013 (Figure 2D). The 501Y.V2 to first wave IC_{50} ratio ranged from 6 to 200-fold (Figure 2D). Averaging across all participants highlighted the dramatic decrease in sensitivity to neutralization of authentic 501Y.V2 variants (Figure 2E).
Figure 2: Neutralization of first wave and 501Y.V2 variants by convalescent plasma from first wave infections. (A) A representative focus forming assay using plasma from participant 039-13-0015. Plasma neutralization of (B) first wave virus and (C) the combined results from the two 501Y.V2 variants. Colored circles represent means and standard errors from 8 independent neutralization experiments using plasma from 6 convalescent participants who were infected by first wave variants in the first peak of the pandemic in South Africa. Correspondingly colored lines are fits of the sigmoidal equation with IC₅₀ as the fitted parameter. Black points represent a pool of plasma from three uninfected controls. The transmission index (Tx) is the number of foci in the presence of the plasma dilution normalized by the number of foci in the absence of plasma. (D) Plasma IC₅₀ values and ratios for first wave and 501Y.V2 variants. Knockout (KO) was scored as IC₅₀ > 1. ND, not defined. (E) Mean and standard error across all plasma donors.
As we have entered the second year of the SARS-CoV-2 pandemic with high levels of transmission in many parts of the world, variants with mutations at key residues in the spike glycoprotein have emerged. Here we present clear evidence using authentic SARS-CoV-2 that the 501Y.V2 variant first detected in South Africa is associated with reduced neutralization by plasma collected from patients infected in the first wave with SARS-CoV-2 variants without the 501Y.V2 defining RBD and NTD mutations. While our findings are based on plasma samples from six convalescent study participants, the relative consistency of the effect argues that the potential to escape neutralizing antibodies elicited by prior SARS-CoV-2 infection may be widespread.

The reduced neutralization is most likely related to the mutations in the spike RBD and NTD that characterize the 501Y.V2 variant. While the E484K mutation has the clearest association with immune escape, the other mutations in the RBD (K417N, N501Y) are also located within residues targeted by some class 1 and class 2 NAbs [7]. Information about the significance of NTD mutations is also emerging. NAbs targeting this site have been shown to be potent neutralizers of SARS-CoV-2 [5, 6]. The deletion at residues 242-244 is just outside an antigenic supersite loop (residues 245-264) and L18 also falls within the antigenic supersite. Furthermore, mutations at L18 and D80 have been selected during passage with mAbs [5]. Our second variant contains the L18F mutation. This may be associated with the trend to lower neutralization sensitivity relative to the first 501Y.V2 variant (Figure S2). This variant also has strikingly larger foci (Figure 2A).

The reasons for the rapid emergence and fixation of potential immune escape mutations in South Africa remain unclear. The 501Y.V2 variant was first detected in the Eastern Cape Province of South Africa, in Nelson Mandela Bay, an urban municipality with a population of just over one million. While we have no SARS-CoV-2 seroprevalence data from this area, there were 1909 excess natural deaths (approximately 1600 per million population) by the end of the first wave in mid-September (https://www.samrc.ac.za/reports/report-weekly-deaths-south-africa). In the context of a young population (over 80 percent of the population under 50 years), this data would suggest a high attack rate from the first wave. While circumstantial, this provides some support to a hypothesis of high levels of population immunity driving the selection of variants with capacity to evade natural immunity. This area also has high HIV prevalence, and has amongst the lowest proportions of people with HIV who have viral suppression (http://www.hivdata.org.za/). We have not observed evidence of chronic SARS-CoV-2 infection in people living with HIV in our longitudinal cohort [15]. However, most cohort participants had sustained virological suppression with antiretroviral therapy (ART). We did observe altered immune dynamics after SARS-CoV-2 infection in HIV viremic participants relative to those who were virologically suppressed, and we are currently enrolling additional participants to examine SARS-CoV-2 clearance in the HIV viremic subset.

The implications of these results for re-infection and vaccine efficacy are still unclear. Our findings emphasize the need to understand whether the 501Y.V2 variant, and other similar variants, are associated with an increased rate of re-infection. Vaccines such as the Oxford/Astra Zeneca ChAdOx1 [23] and the Pfizer-BioNTech BNT162b2 [24] elicit neutralization titers in a similar range to the convalescent plasma in this study. However, these vaccines may elicit a broader antibody response and protective T cell immunity [25]. Protective T cell immunity also likely occurs following natural infection. Furthermore, it is unclear what degree of neutralization mediates protection, and infection may be particularly sensitive to inhibition at exposure [26].

In conclusion, we present data suggesting that the 501Y.V2 variant first detected in South Africa is able to escape the neutralizing antibody response elicited by natural infection with earlier variants. We expect data in the next weeks from phase 3 vaccine trials being conducted in South Africa. If the variant does have an effect on vaccine efficacy, then there may be a signal in the data from these clinical trials.
Material and methods

Ethical statement

Nasopharyngeal/oropharyngeal swab samples and plasma samples were obtained from six hospitalized adults with PCR-confirmed SARS-CoV-2 infection enrolled in a prospective cohort study approved by the Biomedical Research Ethics Committee (BREC) at the University of KwaZulu-Natal (reference BREC/00001275/2020). The 501Y.V2 variants were obtained from residual nasopharyngeal/oropharyngeal samples used for routine SARS-CoV-2 diagnostic testing by the National Health Laboratory Service, through our SARS-CoV-2 genomic surveillance program (BREC approval reference BREC/00001510/2020).

Whole genome sequencing, genome assembly and phylogenetic analysis

cDNA synthesis was performed on the extracted RNA using random primers followed by gene specific multiplex PCR using the ARTIC V3 protocol. Briefly, extracted RNA was converted to cDNA using the Superscript IV First Strand synthesis system (Life Technologies, Carlsbad, CA) and random hexamer primers. SARS-CoV-2 whole genome amplification was performed by multiplex PCR using primers designed on Primal Scheme (http://primal.zibraproject.org/) to generate 400bp amplicons with an overlap of 70bp that covers the 30Kb SARS-CoV-2 genome. PCR products were cleaned up using AmpureXP purification beads (Beckman Coulter, High Wycombe, UK) and quantified using the Qubit dsDNA High Sensitivity assay on the Qubit 4.0 instrument (Life Technologies Carlsbad, CA). We then used the Illumina® Nextera Flex DNA Library Prep kit according to the manufacturer’s protocol to prepare indexed paired end libraries of genomic DNA. Sequencing libraries were normalized to 4nM, pooled and denatured with 0.2N sodium acetate. 12pM sample library was spiked with 1% PhiX (PhiX Control v3 adapter-ligated library used as a control). We sequenced libraries on a 500-cycle v2 MiSeq Reagent Kit on the Illumina MiSeq instrument (Illumina, San Diego, CA). We have previously published full details of the amplification and sequencing protocol [27].

We assembled paired-end fastq reads using Genome Detective 1.126 (https://www.genomedetective.com) and the Coronavirus Typing Tool [28]. We polished the initial assembly obtained from Genome Detective by aligning mapped reads to the references and filtering out low-quality mutations using bcftools 1.7-2 mpileup method. Mutations were confirmed visually with bam files using Geneious software (Biomatters Ltd, Auckland, New Zealand). All of the sequences were deposited in GISAID (https://www.gisaid.org/). We retrieved all South African SARS-CoV-2 genotypes from the GISAID database as of 11 January 2021 (N=2704). We initially analyzed South African genotypes against the global reference dataset (N=2592) using a custom pipeline based on a local version of NextStrain. The pipeline contains several python scripts that manage the analysis workflow. It performs alignment of genotypes in MAFFT [29], phylogenetic tree inference in IQ-TREE20, tree dating and ancestral state construction and annotation (https://github.com/nextstrain/ncov).

Cells

Vero E6 cells (ATCC CRL-1586, obtained from Cellonex) were propagated in complete DMEM with 10% fetal bovine serum (Hylone) containing 1% each of HEPES, sodium pyruvate, L-glutamine, and non-essential amino acids (Sigma-Aldrich). Cells were passaged every 3-4 days. H1299 cells were propagated in complete RPMI with 10% fetal bovine serum containing 1% each of HEPES, sodium pyruvate, L-glutamine, and non-essential amino acids and passaged every second day.

H1299-E3 cell line for first passage SARS-CoV-2 outgrowth

The H1299-H2AZ clone with nuclear labelled YFP [30] was constructed to overexpress ACE2 as follows: VSVG-pseudotyped lentivirus containing the human ACE2 was generated by co-transfecting 293T cells with the pHAGE2-EF1aht-ACE2-WT plasmid along with the lentiviral helper plasmids HDM-VSVG,
Viral Outgrowth

All live virus work was performed in Biosafety level 3 containment using AHRI Institutional Biosafety Committee approved protocols for SARS-CoV-2. For first wave virus, a T25 flask (Corning) was seeded with Vero E6 cells at 2×10^5 cells/ml and incubated for 18-20 hours. After 1 DPBS wash, the sub-confluent cell monolayer was inoculated with 500µL universal transport medium (UTM) diluted 1:1 with growth medium and filtered through a 0.45µM filter. Cells were incubated for 1 hour. Flask was then filled with 7mL of complete growth medium and checked daily for cytopathic effect (CPE). Four days post infection, supernatants of the infected culture were collected, centrifuged at 300 rcf for 3 minutes to remove cell debris, and filtered using a 0.45µM filter. Viral supernatant was aliquoted and stored at -80°C. For 501Y.V2 variants, we used H1299-ACE2-E3 cells for initial isolation followed by passage into Vero E6 cells. H1299-ACE2-E3 cells were seeded at 1.5×10^5 cells/ml and incubated for 18-20 hours. After 1 DPBS wash, the sub-confluent cell monolayer was inoculated with 500µL universal transport medium (UTM) diluted 1:1 with growth medium and filtered through a 0.45µM filter. Cells were incubated for 1 hour. Wells were then filled with 3mL of complete growth medium. 8 days post-infection, cells were trypsinized, centrifuged at 300 rcf for 3 minutes and resuspended in 4mL growth medium. 1mL was added to Vero E6 cells that had been seeded at 2×10^5 cells/ml 18-20 hours earlier in a T25 flask (approximately 1:8 donor-to-target cell dilution ratio) for cell-to-cell infection. Coculture of H1299-ACE2-E3 and Vero E6 cells was incubated for 1 hour and flask was then filled with 7mL of complete growth medium and incubated for 6 days. Viral supernatant was aliquoted and stored at -80°C or further passaged in Vero E6 cells as above.

Microneutralization using focus forming assay

Vero E6 cells were plated in an 96 well plate (Eppendorf) at 30,000 cells per well 1 day pre-infection. Plasma was separated from EDTA-anticoagulated blood by centrifugation at 500 rcf for 10 minutes and stored at -80°C. Aliquots of plasma samples were heat-inactivated at 56°C for 30 minutes, and clarified by centrifugation at 10,000 rcf for 5 minutes, where the clear middle layer was used for experiments. Inactivated plasma was stored in single use aliquots to prevent freeze-thaw cycles. For experiments, plasma was serially diluted two-fold from 1:100 to 1:1600. Virus stocks were used at approximately 50 focus-forming units (FFU) per microwell and added to diluted plasma; antibody-virus mixtures were incubated for 1 hour at 37°C, 5% CO2. Cells were infected with 100µL of the virus-antibody mixtures, to allow adsorption of virus. Subsequently, 100µL of a 1x RPMI 1640 (Sigma-Aldrich R6504), 1.5% carboxymethylcellulose (Sigma-Aldrich C4888) overlay was added to the wells without removing the inoculum. Cells were fixed at 28 hours post-infection using 4% paraformaldehyde (Sigma-Aldrich) for 20 minutes. For staining of foci, a rabbit anti-Spike monoclonal antibody (mAb BS-R2B12, GenScript...
A02058) was used at 0.5µg/mL as the primary detection antibody. Antibody was resuspended in a permiabilization buffer containing 0.1% saponin (Sigma-Aldrich), 0.1% BSA (Sigma-Aldrich), and 0.05% tween (Sigma-Aldrich) in PBS. Plates were incubated with primary antibody overnight at 4°C, then washed with wash buffer containing 0.05% tween in PBS. Secondary goat anti-rabbit horseradish peroxidase (Abcam ab205718) was added at 1 µg/mL and incubated for 2 hours at room temperature with shaking. The TrueBlue peroxidase substrate (SeraCare 5510-0030) was then added at 50µL per well and incubated for 20 minutes at room temperature. Plates were then dried for 2 hours and imaged using a Metamorph-controlled Nikon TiE motorized microscope with a 2x objective. Automated image analysis was performed using a Matlab2019b (Mathworks) custom script, where focus detection was automated and did not involve user curation. Image segmentation steps were stretching the image from minimum to maximum intensity, local Laplacian filtering, image complementation, thresholding and binarization. For the second 501Y.V2 variant, a dilation/erosion step was introduced to prevent the large foci from fragmenting into smaller objects.

Statistics and fitting

All statistics and fitting were performed using Matlab2019b. Neutralization data was fit to

\[T_x = 1 + (D/IC_{50}) \]

Here \(T_x \) is the number of foci normalized to the number of foci in the absence of plasma on the same plate at dilution D. Fit to a normal distribution using Matlab2019b function normplot, which compared the distribution of the \(T_x \) data to the normal distribution (see https://www.mathworks.com/help/stats/normplot.html).

Acknowledgements

This work was supported by the Bill and Melinda Gates Investment INV-018944 (AS) and by the South African Medical Research Council and the Department of Science and Innovation (TdO).

Network for Genomic Surveillance in South Africa (NGS-SA)

Shareef Abrahams1, Luiz Carlos Junior Alcantara2, Arghavan Alisoltani-Dehkordi3,4, Mushal Allam5, Jinal N Bhiman5,6, Mary-Ann Davies7,8, Declan Doolabi9, Susan Engelbrecht10, Vagner Fonseca11, Marta Giovanetti2, Allison J Glass6,12, Adam Godzik4, Dominique Goedhals13, Diana Hardie14, Martin Hsiao14, Arash Iranzadeh4, Arshad Ismail5, Stephen Korsman14, Sergei L Kosakovskiy Pond15, Oluwakemi Laguda-Akingba11,16, Jose Lourenco17, Gert Marais14, Darren Martin9,18, Caroline Maslo19, Koleka Misam20,21, Thabo Mohale5, Nokuhanya Msomi22, Innocent Mudau9, Francesco Petruccione23,24, Wolfgang Preiser10, Emmanuel James San11, Bryan Trevor Sewell25, Lynn Tyers9, Gert Van Zyl10, Anne von Gottberg5,6, Sibongile Walaza5,26, Steven Weaver15, Constantinos Kurt Wibmer5, Carolyn Williamson9,14,21, Denis York27.

1National Health Laboratory Service, Port Elizabeth, South Africa. 2Laboratorio de Flavivirus, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil. 3Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa. 4Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA. 5National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa. 6School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. 7Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa. 8Western Cape Government: Health, Cape Town, South Africa. 9Division of Medical Virology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa. 10Division of Medical Virology at NHLS Tygerberg Hospital and Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. 11KwaZulu-Natal Research Innovation and
Sequencing Platform (KRISP), Department of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa.
12Department of Molecular Pathology, Lancet Laboratories, Johannesburg, South Africa.
13Division of Virology at NHLS Universitas Academic Laboratories, University of The Free State, Bloemfontein, South Africa.
14Division of Medical Virology at NHLS Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa.
15Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, USA.
16Department of Laboratory Medicine and Pathology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, South Africa.
17Department of Zoology, University of Oxford, Oxford, United Kingdom.
18Computational Biology Division, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa.
19Department of Quality Leadership, Netcare Hospitals, Johannesburg, South Africa.
20National Health Laboratory Service, Johannesburg, South Africa.
21Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa.
22Discipline of Virology, University of KwaZulu-Natal, School of Laboratory Medicine and Medical Sciences and National Health Laboratory Service, Durban, South Africa.
23Centre for Quantum Technology, University of KwaZulu-Natal, Durban, South Africa.
24National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, South Africa.
25Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, South Africa.
26School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
27Molecular Diagnostics Services, Durban, South Africa.

§ § COMMIT-KZN Team

1Department of Paediatrics and Child Health, University of KwaZulu-Natal, Durban, South Africa.
2Department of Cardiothoracic Surgery, University of KwaZulu-Natal, Durban, South Africa.
3Africa Health Research Institute, Durban, South Africa.
4Department of Paediatrics, Oxford, UK.
5Institute for Global Health, University College London, UK.
6Department of Neurosurgery, University of KwaZulu-Natal, Durban, South Africa.
7South African Population Research Infrastructure Network, Durban, South Africa.
8Institute of Child Health, University College London, UK.
9Division of Infection and Immunity, University College London, London, UK.
10Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
11College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
12Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
13Ragon Institute of MGH, MIT and Harvard, Boston, USA.
14HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
15Max Planck Institute for Infection Biology, Berlin, Germany.
16Department of Pulmonology and Critical Care, University of KwaZulu-Natal, Durban, South Africa.
17Department of Neurology, University of KwaZulu-Natal, Durban, South Africa.
18Division of Infectious Diseases, University of Alabama at Birmingham.

References

Ann Davies, Lynn Tyers, Innocent Mudau, Denis York, Caroline Maslo, Dominique Goedhals,
Shareef Abrahams, Oluwakemi Laguda-Akingba, Arghavan Alisoltani-Dehkordi, Adam Godzik,
Constantinos Kurt Whmer, Bryan Trevor Sewell, José Loureno, Luiz Carlos Junior Alcantara,
Sergei L Kosukovsky Pond, Steven Weaver, Darren Martin, Richard J Lessells, Jinal N Bhiman,
Carolyn Williamson, and Tulio de Oliveira. Emergence and rapid spread of a new severe acute
respiratory syndrome-related coronavirus 2 (sars-cov-2) lineage with multiple spike mutations in

[2] Erik Volz, Swapnil Mishra, Meera Chand, Jeffrey C. Barrett, Robert Johnson, Lily Geidel-
berg, Wes R Hinsley, Daniel J Laydon, Gavin Dabrera, Áine O’Toole, Roberto Amato, Manon
Ragonnet-Cronin, Ian Harrison, Ben Jorgensen, Richard Myers, Verity Hill, David K. Jackson, Katy
Gaythorpe, Natalie Groves, John Sillitoe, Dominic P. Kwiatkowski, Seth Flaxman, Oliver
Ratmann, Samir Bhatt, Susan Hopkins, Axel Gandy, Andrew Rambaut, and Neil M Ferguson.
Transmission of sars-cov-2 lineage b.1.1.7 in england: Insights from linking epidemiological and

Brustolini, Alexandra L Gerber, Ana Paula de C Guimarães, Dinna Mariani, Raissa Mirella da
Costa, Orlando C. Ferreira, Adriana Cony Cavalcanti, Thiago Silva Frauches, Claudia Maria Braga
de Mello, Rafael Mello Gallie, Débora Souza Faffe, Terezinha M P Castaíneiras, Amílcar Tanuri,
and Ana Tereza R de Vasconcelos. Genomic characterization of a novel sars-cov-2 lineage from rio de

Fregni, D. Pinto, L. E. Rosen, J. E. Bowen, O. J. Acton, S. Jacomi, B. Guarino, A. Minola, F. Zatta,
N. Sprugasci, J. Bassi, A. Peter, A. De Marco, J. C. Nix, F. Mele, S. Jovic, B. F. Rodriguez,
S. V. Gupta, F. Jin, G. Pinnatti, G. Lo Presti, A. F. Pellanda, M. Biggiogero, M. Tarkowski,
M. S. Pizzuto, E. Cameroni, C. Havenar-Daughton, M. Smitey, D. Hong, V. Lepori, E. Albanese,
A. Ceschi, E. Bernasconi, L. Elzi, P. Ferrari, C. Garzoni, A. Riva, G. Shell, F. Sallusto, K. Fink,
H. W. Virgin, A. Lanzavecchia, D. Corti, and D. Veesler. Mapping neutralizing and immuno-
dominant sites on the sars-cov-2 spike receptor-binding domain by structure-guided high-resolution

[5] Matthew McCallum, Anna De Marco, Florian Leupp, M. Alejandra Tortorici, Dora Pinto,
Alexandra C. Walls, Martina Beltramello, Alex Chen, Zhuoming Liu, Fabrizia Zatta, Samantha
Zepeda, Julia di Iulio, John E. Bowen, Martin Montiel-Ruiz, Jiayi Zhou, Laura E. Rosen, Siro
Bianchi, Barbara Guarino, Chiara Silacci Fregni, Rana Abdelnabi, Shy-Yan Caroline Foo, Paul W.
Rothlauf, Louis-Marie Bloyet, Fabio Benigni, Elisabetta Cameroni, Johan Neyts, Agostino Riva,
Gyorgy Snell, Amalio Telenti, Sean P.J. Whelan, Herbert W. Virgin, Davide Corti, Matteo Samuele
Pizzuto, and David Veesler. N-terminal domain antigenic mapping reveals a site of vulnerability

[6] Gabriele Cerutti, Yicheng Guo, Tongqing Zhou, Jason Gorman, Myungjin Lee, Micah Rapp,
Eswar R. Reddem, Jian Yu, Fabiana Bahna, Jude Binemla, Yaoxing Huang, Phinkoula S.
Katsamba, Lihong Liu, Manoj S. Nair, Reda Rawi, Adam S. Olia, Pengfei Wang, Gwo-Yu
Chuang, David D. Ho, Zizhang Sheng, Peter D. Kwong, and Lawrence Shapiro. Potent
sars-cov-2 neutralizing antibodies directed against spike n-terminal domain target a single
https://www.biorxiv.org/content/biorxiv/early/2021/01/11/2021.01.10.426120.full.pdf.

Figure S 1: Fit of combined data for each plasma dilution to a normal distribution. The Matlab2019b function normplot was used to assess the fit of the data (blue crosses) to a normal distribution (solid red line). Lack of pronounced curvature of the data in the range of the solid line indicates that the data is a reasonably good fit to a normal distribution. See https://www.mathworks.com/help/stats/normplot.html for additional information.
Figure S 2: Neutralization of first wave and 501Y.V2 by convalescent plasma from first wave infections separated by variant. Four sets of independent experiments were performed per 501Y.V2 - first wave pair, where the matched first wave variant results are shown to the left of the 501Y.V2 neutralization results. 501Y.V2 variant 2 contained the L18F mutation in addition to the mutations of variant 1, and did not have the furin cleavage site deletion from outgrowth in Vero E6 cells. Colored points represent means and standard errors from 4 independent experiments for each 501Y.V2 variant/first wave pair of neutralization activity of plasma from 6 convalescent participants infected by first wave viruses. Corresponding lines are fits of the sigmoidal equation with IC_{50} as the fitted parameter. Black points represent a pool of plasma from three uninfected controls. The transmission index (Tx) is the number of foci in the presence of the plasma dilution normalized by the number of foci in the absence of plasma.
Table S1: Plasma donor characteristics

<table>
<thead>
<tr>
<th>PID</th>
<th>Sex</th>
<th>Disease severity</th>
<th>Days between symptom onset and swab</th>
<th>Days between symptom onset and plasma</th>
<th>Spike mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>039-02-0014</td>
<td>F</td>
<td>Mild</td>
<td>13</td>
<td>27</td>
<td>D614G</td>
</tr>
<tr>
<td>039-02-0017</td>
<td>F</td>
<td>Supp. O₂</td>
<td>7</td>
<td>28</td>
<td>D614G</td>
</tr>
<tr>
<td>039-13-0013</td>
<td>F</td>
<td>Mild</td>
<td>3</td>
<td>30</td>
<td>D614G, A688V</td>
</tr>
<tr>
<td>039-13-0015</td>
<td>F</td>
<td>Mild</td>
<td>12</td>
<td>26</td>
<td>D614G</td>
</tr>
<tr>
<td>039-13-0033</td>
<td>F</td>
<td>Mild</td>
<td>23</td>
<td>30</td>
<td>D614G</td>
</tr>
<tr>
<td>039-13-0062</td>
<td>M</td>
<td>Mild</td>
<td>12</td>
<td>26</td>
<td>D614G</td>
</tr>
</tbody>
</table>
Table S 2: Mutation profile for the genomes of the outgrown viruses and for the infecting viruses of convalescent plasma donors

<table>
<thead>
<tr>
<th>Lineage</th>
<th>Outgrown virus</th>
<th>Infecting virus from plasma donors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.1.1</td>
<td>B.1.351 (S010Y.V2)</td>
</tr>
<tr>
<td>Sequence ID</td>
<td>EPI_ISL_602622 03-13-0013</td>
<td>EPI_ISL_678570</td>
</tr>
<tr>
<td>Accession ID</td>
<td>K002868</td>
<td>EPI_ISL_602622</td>
</tr>
<tr>
<td>Cohort ID</td>
<td></td>
<td>EPI_ISL_602622</td>
</tr>
<tr>
<td>Spike deletions</td>
<td>S:242-244del</td>
<td>S:242-244del</td>
</tr>
<tr>
<td></td>
<td>ORF1a:T2651</td>
<td>ORF1a:T2651</td>
</tr>
<tr>
<td></td>
<td>ORF1a:K1655N</td>
<td>ORF1a:K1655N</td>
</tr>
<tr>
<td></td>
<td>ORF1a:K3553R</td>
<td>ORF1a:K3553R</td>
</tr>
<tr>
<td></td>
<td>ORF2a:Q571H</td>
<td>ORF2a:Q571H</td>
</tr>
<tr>
<td>Other deletions</td>
<td>orf1ab:3675-3675del</td>
<td>orf1ab:3675-3675del</td>
</tr>
</tbody>
</table>

Lineage classification was performed by Pangolin software application version v2.1.7 (https://cov-lineages.org/pangolin.html). Accession ID refers to GISAID EpiCoV™ database (www.gisaid.org). Amino acid mutation nomenclature includes open reading frame, wild-type amino acid, ORF position and amino-acid mutation (e.g. S:D80A, Spike D to A substitution at position 80). del refers to deletion between stated positions. Amino acid mutations are annotated based on mature protein region of coding sequence (CDS) of SARS-CoV-2 reference sequence NC_045512.2.
Table S3: Mutation profile for the genomes of the outgrown 501Y.V2 viruses, showing the original genome produced from the nasopharyngeal swab specimen and the genomes generated following passage in VeroE6 cells

<table>
<thead>
<tr>
<th>Sequence ID</th>
<th>Outgrown 501Y.V2 Original</th>
<th>Outgrown 501Y.V2 After passage 2</th>
<th>Outgrown 501Y.V2 After passage 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>K005321</td>
<td>S:D80A</td>
<td>S:D80A</td>
<td>S:D80A</td>
</tr>
<tr>
<td></td>
<td>S:D215G</td>
<td>S:D215G</td>
<td>S:D215G</td>
</tr>
<tr>
<td></td>
<td>S:K417N</td>
<td>S:K417N</td>
<td>S:K417N</td>
</tr>
<tr>
<td></td>
<td>S:E484K</td>
<td>S:E484K</td>
<td>S:E484K</td>
</tr>
<tr>
<td></td>
<td>S:D614G</td>
<td>S:D614G</td>
<td>S:D614G</td>
</tr>
<tr>
<td></td>
<td>S:A701V</td>
<td>S:A701V</td>
<td>S:A701V</td>
</tr>
<tr>
<td>K007776</td>
<td>S:D80A</td>
<td>S:D80A</td>
<td>S:D80A</td>
</tr>
<tr>
<td></td>
<td>S:D215G</td>
<td>S:D215G</td>
<td>S:D215G</td>
</tr>
<tr>
<td></td>
<td>S:K417N</td>
<td>S:K417N</td>
<td>S:K417N</td>
</tr>
<tr>
<td></td>
<td>S:E484K</td>
<td>S:E484K</td>
<td>S:E484K</td>
</tr>
<tr>
<td></td>
<td>S:D614G</td>
<td>S:D614G</td>
<td>S:D614G</td>
</tr>
<tr>
<td></td>
<td>S:A701V</td>
<td>S:A701V</td>
<td>S:A701V</td>
</tr>
</tbody>
</table>

Supplementary Table 3. Mutation profile for the genomes of the outgrown 501Y.V2 viruses, showing the original genome produced from the nasopharyngeal swab specimen and the genomes generated following passage in VeroE6 cells.

Amino acid mutation nomenclature includes open reading frame, wild-type amino acid, ORF position and amino-acid mutation (e.g. S:D80A, Spike D to A substitution at position 80). del refers to deletion between stated positions. Amino acid mutations are annotated based on mature protein region of coding sequence (CDS) of SARS-CoV-2 reference sequence NC_045512.2. Substitutions and deletions in bold are those emerging during passage.