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Abstract

The strict mathematical relationship between R; and the
curve of daily cases f(t) is shown. Up-to-date and statis-
tically robust R; from the curve of daily cases can be esti-
mated as soon as new cases are added to the curve. That is
equivalent to estimating R; by averaging all detected cases
of infection, without any distortion induced by the difficulty
of following and weighting trees of secondary cases from orig-
inal ones, and without needing to wait for secondary cases
to manifest infection. With this method, if R; scaled num-
bers are of interest, only the average duration of infectivity
of subjects has to be estimated directly, but independently
of linking secondary cases to primary ones. A new index, in-
stantaneous reproduction number R, is introduced, which
does not depend on the duration of infectivity of subjects.
R;st, R, and the doubling/halving time of the epidemics may
be estimated by simple computations at the very detection
time of new daily cases. Any smoothed curve of daily cases
gives smooth R; and R;s;. No phase lag on R; estimate is
introduced by this method.
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Motivation for the method described here

I am new to epidemiology. I began to think about R; during the
first outbreak of COVID19 epidemics in Italy, while I was tinker-
ing with a diffusion-saturation model trying to fit epidemic data:
http://adaptive.it/covidi9/l S0, I do not know if what I found is new,
or trivial, or already perfectly know. Excuse me for that. I am
submitting my findings to the community in hope they may help.

During the first phase of COVID19 epidemics I encountered
estimations of R; which where incompatible with the doubling time
of daily cases and the location in time of the peaks. So, I began to
think on the subject.

It seems that R; was defined from the epidemiological point of
view with the assumption in mind that an epidemics can be charac-
terized by a somewhat stable relationship between a pathogen and
its infectable host. This in the hope of predicting the evolution of
an outbreak. Which is not.

In fact, the initial susceptibility of a population of hosts is al-
ways unknown because unknown is the reaction of the immune
system spectrum and history of a population. Besides that, both
pathogen and host can modify this relationship via several options
(decreasing susceptibility of the host population due to the spread-
ing of the epidemics that saturates a population or sub-population
of susceptible individuals, reaction of immune systems, reactive be-
haviors of the host and the pathogen populations, etc).

This writing shows how R, definition is strictly tied to the curve
of daily cases by mathematical equations. The two are essentially
the same thing expressed with different words. R; is a sort of first
derivative of the curve of daily cases with respect to time t.

The difficulty of directly estimating R; in a reliable way is the
same as predicting the evolution of an epidemics in a reliable way.
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Indeed even much harder, since one has to face the further un-
certainty of estimating trees of secondary cases, with all the un-
certainty implied by this process. It is very similar to estimating
the space traveled by measuring acceleration with very inaccurate
accelerometers, but very much harder and error prone.

The excellent articles by Cori, et al. [2] and Dietz [3] clearly
show this difficulty.

Epidemiological definition of R;
The epidemiological definition of R, states:

R; is the number of secondary infections caused
by a single case of disease during its period of in-
fectivity in a completely susceptible population,
on average.

(see: https://en.wikipedia.org/wiki/Basic_reproduction_number [5] )

According to this epidemiological definition, R; is analogous to
the multiplier of the initial unit capital after 1 period, in a com-
pound capitalization process.

This analogy allows the estimation of R; from the epidemic
curve of daily cases by introducing the concept of Instantaneous
Reproduction Number R;g, similar to the instantaneous capitaliza-
tion rate in actuarial mathematics.

Definition of R,

The epidemiological definition of R; (and its cousin Ry, as its limit
to the beginning of an epidemics of an uninfected population) in-
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dicates an exponential expansion. An infected, after his period of
infectious capacity will have infected a new infected plus (or minus)
a number of new infected individuals. Let’s say, for example, one
infected plus another one and a half infected, equal to two and a
half infected (1 + 1.5 = 2.5). After 2 periods of infectivity, the in-
fected will be those of the previous period (2.5) each of which will
have infected new ones (1 + 1.5 = 2.5): i.e. the (1 + 1.5) of period
1, multiplied by (1 4 1.5) of period 2; and so on...

In general:

o after period 1: 1-(1+7) =Ry ;

e after period 2: 1-(1+7)-(1+7)=1-(1+7r)%

e and so on: (1+ 7))L, (1+7)%...(1+r)P.

In fact, this is a process equivalent to the amount of a compound

capitalization of the interest rate r, where R; is the amount after
period 1.

To obtain which interest rate r should be used for a continuous
compound capitalization of n fractions of a period that gives the
amount R; after 1 period, we can write as follows:

equivalent to
nar
Ry = [(1 + I) 7‘:|
n

Passing to the limit for n — oo, and noting that lim,, (1 +

=)t =e, we get:

R, = {lim (1—|—£)ﬂr =e"

n— o0 n



hence
T = ln(Rt)

In other terms, r is the exponent to be given to e to obtain R;
after a period of infectious duration equal to 1. That is:

Rigt -1 =r=In(Ry)

If we want to express R;s in a unit of time g; other than the di-
mensionless unit period, for example the days (or hours) with which
we measure the duration of the infectivity period of an infectious
subject and with which we measure the progress of the epidemic,
we can write:

from wich:

In this way we have the parameter R;s; which characterizes the
exponential growth (as per the definition of R;) at the point in time
t that the increase (or decrease) of the daily cases generates.

Connecting R, to the epidemic curve of daily
cases

Whenever an exponential function y = e%" is represented in loga-
rithmic scale In(y) = az, it becomes a straight line. Its shape factor
a becomes the slope of the straight line (the angular coefficient).

If we represent the curve of the daily cases f(t) in logarithmic
scale h(t) =In(f(t)), the slope of the tangent of h(t) at point ¢
is the slope R;g, corresponding to the exponential growth of the



epidemiological definition of the effective reproduction number Ry,
represented in logarithmic scale, at time ¢, and scaled in time units
of the curve of daily cases. But the tangent of h(t) at point ¢ is also
the first derivative of h(t)

that is: n(Ry) q
Ly

= ’LS:_ht
) R = h(0

A different reasoning perhaps better illustrates the concept of
estimating R; from epidemic curves.

R, is basically the ratio between the daily cases at time ¢ + 1
compared to the cases at time ¢, where 1 is the infecting period.
Given the point a on the curve of daily cases that precedes the point
b, then R; = b/a.

Differentiating the curve of daily cases, expressed in logarithmic
scale with base e, means making the difference between two values,
spaced by a unitary period of time tending to zero, that is: In(b) —
In(a). This expression is equivalent to doing In(b/a), as those who
have used slide rules easily remember: In(b) — In(a) = In(b/a).
(see: https://en.wikipedia. org/wiki/Slide_rule)

By doing the inverse operation of extracting a logarithm from
a number, i.e. raising the base of the logarithm to a power of the
value of the logarithm in question, one obtains the ratio b/a in the
scale of daily cases of infection: e(¥/@) = p/a.

This ratio represents the rate of increase (if > 1), or decrease
(if < 1), of the infections averaged over all the infections observed,
including all the information on the overall average resistance to
the spread of the infection that may have formed meanwhile, for any
known or unknown reason it was formed. It also takes in properly
weighted account all the overlappings of the infection trees defined
by R; and of the varying susceptibility of the hosts.

Furthermore, the value obtained in this way is a very accurate


https://en.wikipedia.org/wiki/Slide_rule

value of R; acting at current time of b, that is, at the very moment
in which the current value of the infected cases is known. The
passage to the limit of a period that tends to the instant, implicit
in the differentiation operation with respect to ¢, allows to have a
curve of R; trend that is always updated in real-time.

According to the epidemiological definition of R;, we have the
following correspondence of classical outstanding cases, direct con-
sequence of that epidemiological definition:

Rist >0
when the daily cases increase and the epidemic is expanding:
therefore the associated eftist'9i = R, > 1.

Rist =0
when the daily cases remain constant and the epidemic is
stationary:
therefore the associated effist9i = R, = 1.
In this case the curve of daily cases has a minimum or a
maximum;
R, crosses 0; Ry crosses 1.

R’ist <0
when the daily cases decrease and the epidemic is contracting:
therefore the associated effist9 = R, < 1.

Since these outstanding cases derive from the epidemiological
definition of Ry, they also are criterion for evaluating the correct
estimate of R;. A contrasting value of R; respect to the epidemic
curve is also an indication that R; or the epidemic curve are wrong.



Summary of conversion formulas

The curve of daily cases f(t) expressed in logarithmic scale with
base e is obviously given by:

h(t) = In(f(t))

R;s is given by the first derivative (numerically or analytically
determined) of any smoothed curve of daily cases, given in loga-
rithmic scale with base e:

d

Rist = E

h(t)

Please notice that if we have a smoothing procedure of the curve of
daily cases that introduces any phase lag, as we have using mobile
averages or FIR/IIR filters, we will have the same phase lag in the
estimation of R;s; and R;. Otherwise if we have some form of static
averaging, as using some least squares fitting procedure, no phase
lag is introduced.

R, is given by:
R, = e(Rist-gi)

R, is also equivalen to:

The doubling or halving time of infection g4y, is given by impos-
ing 2.0 as R; and computing the number of resulting days (negative
numbers represent halving time):

~ In(2.0)
gdvh = Riu




Some charting outcome

The following charts show how R; may be estimated starting from
a fitting of the curve of cumulative cases, with a sort of derivative
of order 2. The curve of daily cases obviously is the first derivative
of cumulative cases.

The fitting is primarily done on cumulative cases because they
automatically compensate some kind of errors (for example: a missed
case one day may be detected in the following days, etc.). Model
and fitting techniques used for the following figures are outside the
scope of this writing. Here the model is simply used as source of a
smoothed daily data set. The other formulas used to generate the
following charts are summarized in the section above. The data-
source used for this fitting is the COVID-19 official one for Italy:
https://github. com/pcn-dpc/COVID-19/] |1/

Just a glance at the dispersion of a ample set of daily data
around a good fitting of these data let easily imagine how difficult
and unreliable could be any attempt to estimate a trend of the
epidemics from small samples of their derivatives and relying on
considerations of the spread of these samples over overlapping trees
of secondary cases, which is what the epidemiological definition of
R; asks to do.

Moreover, the dynamics of an epidemic seems to follow unpre-
dictable and chaotic behavior. We are used to think of populations
involved in an epidemic as an isotropic material, like steel, which
has equal behavior in all directions respect to stress and strain.

Perhaps, an epidemics may be better depicted as acting on many
different relationship fabrics entangled together. A burst of infec-
tions occurs when two or more entangled fabrics — which may be in
a stable infective condition that eventually saturate — mix and new
connections merge in a new more extended fabric.
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If this is a plausible landscape of an infection of a population,
not every link in this entaglement of networks has the same infec-
tion capacity and not all nodes of these networks are isotropically
connected.

In other words there may be several networks that may have
poor connections with each other, while having strong connection
among the members of each network. For example, the network
of families with children that go to the same school may have
strong link between families of teachers and classmates, but may
have weak connections with other unrelated networks of parents-
children-teachers. Some of these networks may saturate eventually,
while others may not have even been infected. The same thing
happens with other types of relational networks. This is a very
anisotropic environment.

This landscape shows a very challenging non linear object to
investigate. Maybe it has some emerging regularities at the macro-
scopic level, like sequences of overlapping sigmoidal shapes in the
curve of cumulative cases.
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Figure 1: Data fit with an adaptive diffusion/saturation model on cumulative cases.
Model and fitting techniques used for these charts are outside the scope of this writing.
Fitting model and details at http://adaptive.it/covid19/| [4]
data-sourcethttps://github.com/pcm-dpc/COVID-19/| [1]
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Daily Count in Logarithmic Scale
Confirmed cases--999-Italy (Py= 60M, i = 0.0594 since 2020-Jul-01)
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Figure 2: Daily cases smoothed by fitting, in logarithmic scale with base e.

Fitting model and details athttp://adaptive.it/covid19/] 4]
data-sourcethttps://github.com/pcm-dpc/COVID-19/ [1]
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R_t -- Reproduction number assuming 13 days of infectivity on average
Confirmed cases--999-Italy (P,ir=60M, i. = 0.0594 since 2020-Jul-01)
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Figure 3: Computed R; from smoothed daily cases in logarithmic scale with base e.

Fitting model and details at http://adaptive.it/covid19//http://adaptive.it/covid19/ B}
data-source:https://github.com/pcm-dpc/COVID-19/ ﬁﬂ
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R_ist -- Instantaneous reproduction number
Confirmed cases--999-Italy (Pi= 60M, i = 0.0594 since 2020-Jul-01)

3 —— today 2021-Jan-15
0.104 - - ;

— R_ist

0084 | - e
0064 -
. 0o0ad | ] P | I P S P
o . . . . .
ﬁl . . . . .
soad A S A
0.00 /\\\
—0.024 o S IEREREE P SR P af RERE T S RN
—0.044 - L el A P ]
0 30 60 90 120 150 180 210 240 270
d:198:2021-Jan-15

days (since 2020-Jul-01)
http://adaptive.it/covid19

Figure 4: Computed Rjs¢.

Fitting model and details at http://adaptive.it/covidi9/| [4]
data-source:https://github.com/pcm-dpc/COVID-19/ ﬁﬂ
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DH_t -- Doubling or Halving Time
o Confirmed cases--999-Italy (P,i= 60M, i = 0.0594 since 2020-Jul-01)
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Figure 5: Computed doubling/halving time (days). Negative values mean halving time.

Fitting model and details at http://adaptive.it/covid19/] [4]
data-sourcethttps://github.com/pcm-dpc/COVID-19/ [1]
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